初一数学上册《 余角和补角》

合集下载

初中数学七年级上册《余角和补角》课件

初中数学七年级上册《余角和补角》课件

知识点 1 余角和补角 【例1】如图,A,O,B三点在一条直线上,∠AOC=∠DOE=90°,
(1)图中互余的角有哪些? (2)相等的角有哪些(小于90°的角)?
【思路点拨】(1)找出图中所有90°的角→找出两角之和等于 90°的角→答案 (2)利用余角的性质找相等的角
【自主解答】(1)因为∠AOC=∠DOE=90°,所以∠1+∠2=90°, ∠3+∠2=90°,∠1+∠4=180°-∠DOE=90°. 又因为∠COB=180°-∠AOC=180°-90°=90°, 所以∠3+∠4=90°. 所以∠1与∠2互余、∠3与∠2互余、∠1与∠4互余、∠3与∠4互 余. (2)由同角的余角相等可得:∠1=∠3,∠2=∠4.
【归纳】补角的性质:同角(等角)的补角__相__等_. 余角的性质:同角(等角)的余角__相__等_.
3.方位角: 方位角是以_正__北__、_正__南__方向为的两角一定相等.( × ) (2)两个小于90°的角一定互余.( × ) (3)若∠1<90°,则∠1的补角大于90°( √ ) (4)相等且互补的两个角分别等于90°.( √ ) (5)东南方向在东和南之间的任意一条射线上.( × )
2.余角和补角的性质: 如图,∠1与∠2互补,∠3与∠4互补,且∠1=∠3,∠2与∠4 有什么关系?
因为∠1与∠2互补,∠3与∠4互补, 所以∠1+∠2=_1_8_0_°__,∠3+∠4=_1_8_0_°__, 所以∠2=_1_8_0_°__-_∠__1_,∠4=_1_8_0_°__-_∠__3_, 又因为∠1=∠3,所以_∠__2_=_∠__4_.
数学人教版七年级上册
4.3.3 余角和补角
1.掌握余角和补角的定义和性质,并能熟练应用. 2.正确地根据方位角确定方向.

余角和补角_课件

余角和补角_课件
= (∠AOC+ ∠BOC ) =90° 所以, ∠COD 和∠COE 互为余角, 同理, ∠AOD +∠BOE, ∠AOD +∠COE , ∠COD +∠BOE 也互为余角.
∠1和∠2互补,即: ∠1是∠2的余角 ∠2是∠1的余角
注意事项
1.定义中的“互为”是什么意思?
即每一个角都是另一个角的余角并多次变换位置,如图,这
两角还是互为补角吗?
还是补角
补角和余角都是表示角度的 大小关系,与位置无关.
练习
1.若∠1与∠2互补,则∠1+∠2=_1_8__0_°__. 2.∠1=90º-∠2,则∠1与∠2的关系为互__余_____.
解得: x =60 答:这个角的度数是60 °.
总结:直接求解有困难,就要想到列方程.
余角和补角之列方程
如何利用列方程的技巧解决与余角和补角有关的角度计 算问题?
练习 ∠α 的余角是它的3倍,∠α 是多少度? 答案:22.5°.
练习
一个角的余角比这个角的补角的 还小10°,求这个角的余 角及这个角的补角的度数. 答案:这个角是60°,它的余角是30°,补角是120°.
探究
(1)已知∠1与∠2,∠3都互为补角.那么∠2和∠3的大小有什么关系 ? 由∠1与∠2和∠3都互为补角,那么∠2=180º-∠1, ∠3=180º- ∠1, 所以∠2=∠3.
探究
(2)已知∠1与∠2互补,∠3与∠4互补.若∠1=∠3,那么∠2和 ∠4 相等吗?为什么? 由∠1与∠2互补,得∠1+∠2=180°,所以∠2=180º-∠1. 由∠3与∠4互补,得∠3+∠4=180º, 所以∠4=180º-∠3. 又因为∠1=∠3,180º-∠1=180º-∠3, 所以∠2=∠4.

七年级数学上册6.3余角、补角、对顶角什么叫余角、补角?它们的性质是什么?素材苏科版

七年级数学上册6.3余角、补角、对顶角什么叫余角、补角?它们的性质是什么?素材苏科版

什么叫余角、补角?它们的性质是什么?难易度:★★★★关键词:角答案:(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角。

即其中一个角是另一个角的余角。

(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角。

即其中一个角是另一个角的补角。

(3)性质:等角的补角相等。

等角的余角相等。

(4)余角和补角计算的应用,常常与等式的性质、等量代换相关联。

注意:余角(补角)与这两个角的位置没有关系。

不论这两个角在哪儿,只要度数之和满足了定义,则它们就具备相应的关系。

【举一反三】典例:已知一个角的补角比这个角的余角的3倍大10°,求这个角的度数.思路引导:主要考查了余角和补角的概念以及运用.互为余角的两角的和为90°,互为补角的两角之和为180度.解此题的关键是能准确的从图中找出角之间的数量关系,从而计算出结果.利用题中“一个角的补角比这个角的余角的3倍大10°"作为相等关系列方程求解即可.设这个角是x,则(180°-x)—3(90°-x)=10°,解得x=50°.故答案为50°.标准答案:50°尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

人教版七年级数学上 4.3.3《余角和补角》课件(共18张PPT)课件

人教版七年级数学上  4.3.3《余角和补角》课件(共18张PPT)课件

理由:由(1)可知∠1+∠2+∠3+∠4=180° 由(2)可知 ∠1+∠3=∠2+∠4=∠1+∠4=∠2+∠3=90°
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
第3关:合作展示 求知、求真、求健,求美
2.若一个角的补角是这个角的余角的4倍,求这个角. 解:设这个角是x°, 则 180-x= 4 ( 90-x) 解得x = 60 答:这个角是60°.
第3关:合作展示 求知、求真、求健,求美
1.如下图,点A,O,B在同一条直线上,射线OD和射线OE分别平
分∠AOC和∠BOC,
(1)∠AOC与∠BOC的关系是什么?
互补 (2)图中有哪几对相等的角?
因为OD平分∠AOC,所以∠1=∠2,
23
1
4
同理,∠3=∠4
(3)图中有哪几对互余的角?
∠2和∠3, ∠1和∠4, ∠1和∠3, ∠2和∠4.
的角? ∠1=∠A ,∠2=∠B
因为∠1与∠2互余
因为∠1与∠2互余
∠A与∠2互余恭喜大家∠1!与∠B互余
所以∠1=∠A 闯关所成以功∠2!=∠B
(同角的余角相等) (同角的余角相等)
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m
课堂小结
求知、求真、求健,求美
思考:直角和平角中,被分成的两个角的度数分别有什 么关系呢?
1 2
3
4
∠1+∠2=__9_0_°,
∠3+∠4=__1_8_0.°
结论:两个角的数量关系与角的位置无关.
知识的Ne超twor市k Op,timi生zatio命n Ex的pert狂Tea欢m

数学人教版七年级上册余角补角概念和性质

数学人教版七年级上册余角补角概念和性质
P139: 习题4.3 第7、13题。
1
互余、互补是两角之间的数量关系,只 与他们的度数和有关,与位置无关。 互余、互补概念中的角是成对出现的。
角 的余角是 90 ,补角是 180 , 同一个锐角的补角比余角大 90o。 只有锐角才有余角。 一个角的余角(补角)有多个。 9 0 。 同角(等角)的补角相等; 同角(等角)的余角相等。
如图∠AOC=∠BOC=∠DOE=90°,则 ∠2 ,∠4 (1) 图中与∠3互余的角是_________, (2) 图中与∠4互余的角是∠ _________, 3 ,∠1 ∠BOD (3) 图中有与∠3互补的角吗?_________.
D C E 1 A 2 3 4 O
B
若一个角的补角等于它的 余角的4倍,求这个角的余角 是多少度?
2
3
4 5
6
思考题: 如图,A,O,B在同一直线上,
射线OD和射线OE分别平分∠AOC和∠BOC,
图中哪些角互余? D
C
E
A o B
小结:
本节课你有什么收获? 还有什么疑问?
互余
互补
两角间 1 2 9 0 1 2 1 8 0 的数量 1 1 8 0 2 ) ( 1 9 0 2 )( 关系
对应 图形 性质 同角或等角的 余角相等 同角或等角的 补角相等
作业:
1
3
2
4
余角性质:
同角或等角的余角相等
三、练一练
如图两堵墙围一个角 AOB ,但人 不能进入围墙,我们如何去测量这个角的 大小呢?
A
α
动动脑 C
O B
认真观察下面的图形,回答下列问题: C (1)图中有哪几对互余的角? ∠A与∠B互余 2 1 ∠A与∠2互余 ∠1与∠B互余 B D ∠1与∠2互余 A (2)图中哪几对角是相等的角(直角除外)? 说明它们相等的原因。 ∠B=∠2(同角的余角相等) ∠A=∠1(同角的余角相等)

人教版初一数学上册余角和补角.3.3余角与补角课件

人教版初一数学上册余角和补角.3.3余角与补角课件

二柳州铁思考?1 ■什么是互为余角?如果两个角的和等于90。

,就说这两个角互为余角,简称互余,其中一个角是另一个角的余角.2 ■什么是互为补角?如果两个角的和等于180。

,就说这两个角互为补角,简称互补, 其中一个角是另一个角的补角.找一找:图中给出的各角,哪些为补60°80°750。

算一算;若一个角的补角等于它的余角的4倍》求这个角的度数.解:设这个角是X。

,则它的补角是(180° -x° )除角是(90。

-x° )・根据题意得:(180° -x° ) =4(90°・x° )解得:x =60答:这个角的度数是60。

・填空:1•若Z1+ Z2 =90 °,贝#1 和Z2互余2•若Z1和Z2 互余JI|Z1+ Z2 =90°. 3•若Z3 + Z4 =180。

,贴3和Z4互补・Z3+ Z4 =180 °4 •若Z3和Z4互补,则________________ .思考.1.如图,Z1与Z2互余,Z1与Z3互余, 请问:Z 2与Z3相等吗?为什么? 答:相等结论:同角的余角相等思考.2.如图,Z1与Z2互余,且Z1 二Z3,请问:Z 2与Z4相等吗?为什么?答:相等结论:等角的余角相等Z3与Z4互余,并思考.请问:Z 2与Z4相等吗?为什么? 答:相等.结论:同角的补角相等Z1与Z3互补, 3.如图,Z1与Z2互补, 并且Z1二Z3,思考.请问:Z 2与Z4相等吗?为什么?答:相等.结论:同角的补角相等4•如图,Z1与Z2互补, 并且Z1二Z3, Z3与Z4互补,例1・如图,A, 0,B三点在一条直线上,ZA0C=ZD0E=90°・(1)列出图中互余的角?(2)相等的角有哪些(小于90°的角)?Z1 = Z3, Z2=Z4.例2・如图A、O、B三点在同一直线上,射线OD和射线OE分别平分ZAOC和ZBOC.⑴ZCOD与ZCOE有什么关° /c系,并说明理由;\(2)图中哪些角互为余角?A OB (3)图中哪些角互为补角?小结:请谈谈本节课你学会了什么?作业本上教材P140第9、12题金榜上79至80页的练习OX。

人教七年级数学上册4.3.3《余角和补角》课件

人教七年级数学上册4.3.3《余角和补角》课件

知识点 1 余角和补角 【例1】如图,A,O,B三点在一条直线上,∠AOC=∠DOE=90°,
(1)图中互余的角有哪些? (2)相等的角有哪些(小于90°的角)?
【思路点拨】(1)找出图中所有90°的角→找出两角之和等于 90°的角→答案 (2)利用余角的性质找相等的角
【自主解答】(1)因为∠AOC=∠DOE=90°,所以∠1+∠2=90°, ∠3+∠2=90°,∠1+∠4=180°-∠DOE=90°. 又因为∠COB=180°-∠AOC=180°-90°=90°, 所以∠3+∠4=90°. 所以∠1与∠2互余、∠3与∠2互余、∠1与∠4互余、∠3与∠4互 余. (2)由同角的余角相等可得:∠1=∠3,∠2=∠4.
【解题探究】1.C在A的北偏东30°是绕点A以什么方向为基准, 沿什么方向旋转30°. 提示:以正北方向为基准,沿顺时针方向旋转30°. 2.C在B南偏东45°是绕点B以什么方向为基准,沿什么方向旋 转45°. 提示:以正南方向为基准,沿逆时针方向旋转45°.
3.点C与以上两个方向线有什么关系? 提示:以上两个方向线的交点就是点C.如图:
2.余角和补角的性质: 如图,∠1与∠2互补,∠3与∠4互补,且∠1=∠3,∠2与∠4 有什么关系?
因为∠1与∠2互补,∠3与∠4互补, 所以∠1+∠2=_1_8_0_°__,∠3+∠4=_1_8_0_°__, 所以∠2=_1_8_0_°__-_∠__1_,∠4=_1_8_0_°__-_∠__3_, 又因为∠1=∠3,所以_∠__2_=_∠__4_.
【归纳】补角的性质:同角(等角)的补角__相__等_. 余角的性质:同角(等角)的余角__相__等_.
3.方位角: 方位角是以_正__北__、_正__南__方向为基准,描述物体运动方向的角.

人教版数学七年级上4.3.3《余角和补角》教案

人教版数学七年级上4.3.3《余角和补角》教案
-余角和补角的性质:包括互为余角或补角的两个角相等,以及一个角的补角比它的余角大90°等性质。这些性质是解决相关数学问题的关键。
-实际应用:学会将余角和补角的概念应用到解决实际问题中,如计算角的补角或余角,以及利用这些知识简化计算过程。
举例:在讲解余角时,可以通过一个具体的例子,如两个角的度数分别为30°和60°,它们互为余角,因为30°+60°=90°。强调这种关系在几何证明和计算中的应用。
关于学生小组讨论,我觉得整体效果还是不错的,学生们能够围绕主题展开讨论,并提出自己的观点。但在讨论过程中,我发现有些学生过于依赖课本,缺乏独立思考。因此,我需要在教学中更加注重培养学生的创新意识和解决问题的能力。
最后,在总结回顾环节,学生对余角和补角的知识点有了较为全面的掌握,但仍有个别学生在提问时表现出对某些部分的理解不够深入。在今后的教学中,我需要关注这部分学生,及时解答他们的疑问,确保他们能够跟上教学进度。
其次,在新课讲授环节,我发现学生在理解余角和补角的定义及性质时,存在一定的难度。尽管我通过举例和比较来进行解释,但仍有部分学生表示理解不够透彻。在以后的教学中,我可以尝试使用更生动的例子,或者结合生活实际,让学生在具体情境中感受余角和补角的概念,以便更好地理解。
在实践活动环节,学生们分组讨论和实验操作的过程较为顺利,但我注意到有些小组在讨论时,成员之间的交流并不充分。为了提高学生的团队合作能力,我可以在今后的教学中加强引导,鼓励他们多发表自己的观点,学会倾听和尊重他人的意见。
今天的学习,我们了解了余角和补角的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对余角和补角的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余角和补角
尊敬的各位领导、各位评委:
大家好!
我今天说课的课题是人教版义务教育课程标准实验教科书七年级数学上册第四章第三节《余角和补角》第一课时。

下面我从:教材分析、教法与学法及教学手段、教学书设计四部分来说这一节课,其中,教学过程分为:设置问题,以趣激情;以旧探新,引出课题;初步应用,巩固新知;范例教学,练习反馈;知识整理,归纳小结和作业布置六部分。

1、说教材的地位和作用
《图形的初步知识》这一章节是学生进入平面几何大厦的“门槛”。

《余角和补角》是《图形的初步知识》的重要组成部分,从线段的概念引出射线的概念进而引入角的概念,在认识了直角、平角,比较角的大小后,就引进了余角、补角的概念及性质;是实验几何逐渐向证明几何的过渡,为以后证明角的相等作铺垫,也是为培养和发展学生的逻辑思维能力、观察分析能力、演绎归纳能力打基础。

2、说教学目标
(1)教学目标
根据上述教学内容的地位和作用以及初一学生现有认知水平确定,我制定如下教学目标:
知识目标:在具体情境中了解余角与补角,理解余角与补角的性质,通过练习掌握其概念及性质,并能运用他们解决一些简单实际问题。

能力目标:经历、观察、操作,探究等过程,发展学生几何概念,培养学生推理能力和表达能力。

情感目标:培养学生乐于探究、合作的习惯,体验探索成功,感受到成功的乐趣,进一步体会“数学就在我的身边”,增强学生用数学解决实际问题的意识。

(2)教学重点和难点
重点:余角和补角的概念教学时可运用文字语言、图形语言、符号语言三结合的训练方法强调概念的本质特征,突出教学重点。

难点:关于余角和补角应用常常需要说理,或综合运用代数知识,特别是用代数的方法来计算角的度数,由于学生缺乏经验,是教学中的难点。

可通过由浅入深、讨论比较、归纳小结等方法及变化训练突破上述难点。

3、说教法
(1)教法分析建构主义教学理论认为:“知识是不能为教师所传授的,而只能为学习者所构建.”也就是说,教学过程不只是知识的(传)授——(接)受过程,也不是机械的告诉与被告诉的过程,而是一个学习者主动学习的过程.因而,考虑到学生的认知水平,本节通过师生之间的相互探讨和交流进行教学,即以探究研讨法为主,结合讲练结合法、谈话法等展开教学.为让学生体验概念产生的过程;以及概念的形成和同化相结合,促进学生对概念的理解;同时让学生主动暴露思维过程,及时得到信息的反馈。

我采用对比、类比、尝试教学,让学生始终处于主动学习的状态,课堂上教师起主导作用,让学生有充分的思考机会,使课堂气氛活泼,有新鲜感。

(2)学法指导
根据新课程标准理念,学生是学习的主体,教师只是学习的帮助者,引导者.考虑到这节课主要通过老师的引导让学生自己发现规律,在自己的发现中学到知识,提高能力,我主要引导学生自己观察、归纳,采用自主探究的方法进行学习,并使学生从中体会学习的乐趣。

(3)教学手段
采用多媒体辅助教学,增加课堂容量,提高教学效果。

4.、说设计:
一、导入设计
由数字入手向学生提问:90°和180°在几何中表示哪两个角的度数?然后请学生画出这两个角。

并与书上合作学习作比较得出课题。

(设计意图:因为直角和平角是学生熟悉的两个角,由已知引出未知符合学生的认知规律,再通过实践操作,寻找数量关系、图形变式揭示概念特征,渗透从特殊到一般的归纳方法。

)
二、余角和补角概念的教学
教师用多媒体演示,通过上面的演示,让学生说出余角的概念,并能从图形和数字两方面说,能把文字语言转化为符号语言。

(教师扳书)
同样的方法得出补角的概念。

(教师扳书)
师生一起归纳:1、互余和互补是指两个角之间的关系;
2、两个角是否互余或互补只跟这两个角的大小有关,与它们的位置无关。

3、强化两个角互余或互补的数量关系,互余:互补:
(设计意图:培养学生的观察、归纳能力及文字语言、符号语言的表述能力。

)
三、概念的应用
为了巩固,理解概念,我设计了2个抢答题和一个例题
(设计意图:通过以上练习,让学生进一步巩固余角与补角的概念,掌握概念的本质。

让学生明白:①互余和互补是指两个角之间的关系。

②互余和互补只跟这两个角的数量有关,与它们的位置无关。

③互余或互补的两个角中,已知一个角的度数,可求出另一个角的度数。

)
例1的教学,为了分散难点,我在教例1前先设计了3个练习。

再让学生独立思考用怎样的方法解答,最后教师进行启发,启发学生用方程的思想来求未知角,具体的解答过程教师严格板书示例,强调解题格式。

目的是让学生对余角和补角的概念有更加深化的了解和应用,加深印象。

(学生通过课内练习3及时巩固用方程思想来求某个角的度数问题。

)
五、小结评学
以表格的形式出现,这种形式进行归纳小结,其目的是让知识形成体系,理清新知识,培养学生概括提炼能力。

六、作业布置
设计意图:①养成良好的学习习惯。

②巩固所学新知识。

③发现和弥补教与学中的遗漏和不足。

相关文档
最新文档