人教版七年级数学上册余角和补角练习

合集下载

人教版七年级上第四章余角和补角同步练习题(含答案)

人教版七年级上第四章余角和补角同步练习题(含答案)

人教版七年级上第四章余角和补角同步练习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知7622α'∠=︒,则α∠的补角是( ).A .10338'︒B .10378'︒C .1338'︒D .1378'︒ 2.若一个角的补角加上20︒后等于这个角余角的3倍,则这个角的度数为( ). A .25︒ B .35︒ C .45︒ D .55︒ 3.如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠互补的是( ) A . B . C . D .4.将一副三角板按如图方式摆放,则下列结论错误的是( )A .1135∠=︒B .2145∠=︒C .12∠=∠D .12270∠+∠=︒ 5.如果∠α和∠β互补,且∠α<∠β,则下列表示∠α的余角的式子中:∠90°﹣∠α;∠∠β﹣90°;∠12(∠α+∠β);∠12(∠β﹣∠α).其中正确的有( )A .1个B .2个C .3个D .4个 6.如图,点A 在点O 的北偏西60°的方向上,点B 在点O 的南偏东20°的方向上,那么AOB ∠的大小为( )A .110°B .130°C .140°D .150°7.在如图所示的方位角中,射线OA 表示的方向是( )A .东偏南60°B .南偏东30°C .南偏东60°D .南偏西60°8.如果一个角的余角等于这个角的补角的14,那么这个角是( ) A .30 B .45︒ C .60︒ D .75︒9.如图,直线DE 与BC 相交于点O ,1∠与2∠互余,150BOE ∠=︒,则AOE ∠的度数是( )A .120︒B .130︒C .140︒D .150︒10.已知∠AOB =70°,以O 为端点作射线OC ,使∠AOC =42°,则∠BOC 的度数为( ) A .28° B .112° C .28°或112° D .68°二、填空题11.将18.25°换算成度、分、秒的结果是__________.12.如图,直线AB ,CD 相交于点O ,EO ∠AB ,垂足为O ,∠EOC =35°,则∠AOD 的度数为______.13.如图,在渔船上的渔民在A 处看见灯塔M 在北偏东60°方向,这艘渔船以28海里/时的速度向正东方向航行,半小时后到达B 处,在B 处看见灯塔M 在北偏东15°方向,此时灯塔M 与渔船的距离是______海里.14.如果∠1与∠2互余,∠3与∠4互余,且∠1=∠3,∠2=55°,那么∠4=_____度.三、解答题15.如图,AB CD ,连接CA 并延长至点H ,CF 平分ACD ∠,CE CF ⊥,GAH ∠与AFC ∠互余.(1)求证:AG CE ∥;(2)若110GAF ∠=,求AFC ∠的度数.16.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D作DE l ⊥交于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥于点C ,NG l ⊥于点G ,由(1)易知NG =_______,ND 与直线l 交于点P ,求证:NP DP =.17.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A 处测得北偏东30°方向上,距离为20海里的B 处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向以20海里/小时的速度前去拦截.问:经过多少小时,海监执法船恰好在C 处成功拦截.18.如图,点O 是等边三角形ABC 内的一点,∠BOC =150°,将∠BOC 绕点C 按顺时针方向旋转一定的角度,得到∠ADC ,连接OD ,OA .(1)求∠ODC 的度数;(2)试判断AD 与OD 的位置关系,并说明理由;(3)若OB =2,OC =3,求AO 的长(直接写出结果).参考答案:1.A【分析】直接将180°减去∠α即可.【详解】解:∠∠α=7622︒',∠∠α的补角为180180762210338α︒-∠=︒-︒'=︒',故选A .【点睛】本题考查了补角的定义,即如果两个角的和是180°,那么其中一个角就是另一个角的补角,因此,已知一个角,那么它的补角就等于180°减去这个已知角,解题的关键是牢记概念和公式等.2.B【分析】可先设这个角为∠α,则根据题意列出关于∠α的方程,问题可解【详解】解:设这个角为∠α,依题意,得180°-∠α+20°=3(90°﹣∠α)解得∠α=35°.故选B .【点睛】此题考查的两角互余和为90°,互补和为180°的性质,关键是根据题意列出方程求解.3.D【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】解:A 、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项不符合题意;B 、图中∠α=∠β,不一定互余,故本选项错误;C 、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D 、图中∠α+∠β=180°,互为补角,故本选项正确.故选:D .【点睛】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.4.B【分析】如图,根据一副三角板的特征可得∠3=∠4=45°,然后根据平角的定义可得∠1和∠2的度数,进而可排除选项.【详解】解:如图,由题意得:∠3=∠4=45°,∠13180,24180∠+∠=︒∠+∠=︒,∠12135∠=∠=︒,故A 、C 正确,B 错误;∠12270∠+∠=︒,故D 正确;故选B .【点睛】本题主要考查补角的性质及角的和差关系,熟练掌握补角的性质及角的和差关系是解题的关键.5.C【分析】由α∠和β∠互补,可得180αβ∠+∠=︒,即:180αβ=︒-∠,119022αβ∠+∠=︒,再用不同的形式表示α∠的余角.【详解】解:α∠和β∠互补, 180αβ∴∠+∠=︒,180αβ∴∠=︒-∠,119022αβ∠+∠=︒ 于是有:α∠的余角为:90α︒-∠,故∠正确,α∠的余角为:9090(180)90αββ︒-∠=︒-︒-∠=∠-︒,故∠正确,α∠的余角为:1111902222ααβαβα︒-∠=∠+∠-∠=∠-∠,故∠正确, 而1()902αβ∠+∠=︒,而α∠不一定是直角,因此∠不正确,因此正确的有∠∠∠,故选:C .【点睛】本题考查互为余角、互为补角的意义,熟悉利用等式的性质进行变形和整体代入的方法是解题的关键.6.C【分析】结合图形,然后求出OA 与西方的夹角的度数,再列式计算即可得解.【详解】解:∠点A 在点O 北偏西60°的方向上,∠OA 与西方的夹角为90°-60°=30°,又∠点B 在点O 的南偏东20°的方向上,∠∠AOB =30°+90°+20°=140°.故选:C .【点睛】本题考查了方向角,熟记概念是解题的关键,结合图形更形象直观.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.7.C【分析】表示OA 的方式有两种,东偏南30°;南偏东60°;作出判断即可.【详解】根据题意,得表示OA 的方式有东偏南30°;南偏东60°两种,故选C.【点睛】本题考查了方位角的表示法,熟练掌握方位角的表示方法是解题的关键. 8.C【分析】设这个角是x ︒,根据题意得190(180)4x x -=-,解方程即可. 【详解】解:设这个角是x ︒,根据题意得190(180)4x x -=-, 解得x =60,故选:C .【点睛】此题考查角度计算,熟练掌握一个角的余角及补角定义,并正确列得方程解决问题是解题的关键.9.A【分析】直接利用互余的定义以及结合平角的定义得出∠AOC 以及∠EOC 的度数,进而得出答案.【详解】解:∠∠1与∠2互余,∠1290∠+∠=︒,∠90AOC ∠=°,∠150BOE ∠=︒,∠18015030EOC ∠=︒-︒=°,∠9030120AOE AOC EOC ∠=∠+∠=︒+︒=︒.故选:A【点睛】此题主要考查了邻补角以及余角,正确掌握相关定义是解题关键.10.C【分析】根据题意画出图形,利用数形结合求解即可.【详解】解:如图,当点C与点C1重合时,∠BOC=∠AOB﹣∠AOC=70°﹣42°=28°;当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+42°=112°.故选C.【点睛】本题考查的是角的计算,在解答此题时要注意进行分类讨论,不要漏解.11.18°15′0″【分析】根据将高级单位化为低级单位时,乘以60,即可求得答案.【详解】18.25°=18°+0.25×60=18°15′0″,故答案为18°15′0″.【点睛】本题考查了度、分、秒的换算,掌握1度=60分,即1°=60′,1分=60秒,即1′=60″是解题的关键.12.125°【分析】由两直线垂直,求得∠AOE=90°;由∠AOC与∠EOC互余,∠EOC=35°,即可得到∠AOC的度数;再由∠AOD与∠AOC互补,即可得出∠AOD的度数.【详解】解:∠EO∠AB,∠∠AOE=90°,又∠∠EOC=35°,∠∠AOC=∠AOE-∠EOC=90°-35°= 55°,∠∠AOD=180°-∠AOC=180°-55°=125°,故答案为:125°.【点睛】本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.13.【分析】过点B作BN∠AM于点N,由已知可求得BN的长;再根据勾股定理求BM的长.×28=14海里,∠MAB=30°,∠ABM=105°.【详解】解:由已知得,AB=12过点B作BN∠AM于点N.∠在直角∠ABN中,∠BAN=30°AB=7海里.∠BN=12在直角∠BNM中,∠MBN=45°,则直角∠BNM是等腰直角三角形.即BN=MN=7海里,∠BM=.故答案为:【点睛】本题考查的是勾股定理解直角三角形的应用-方向角问题,正确标注方向角、掌握勾股定理是解题的关键.14.55【分析】根据余角的定义及等角的余角相等即可求解.【详解】解:∠∠1与∠2互余,∠∠1+∠2=90°,∠∠3与∠4互余,∠∠3+∠4=90°,又∠1=∠3,∠∠2=∠4=55°,故答案为:55.【点睛】本题考查了余角的定义及等角的余角相等等知识点,属于基础题,计算过程中细心即可.15.(1)见解析(2)20AFC ∠=︒【分析】(1)根据角平分线得出ACF FCD ∠∠=,利用平行线的性质可得AFC FCD ∠∠=,然后利用各角之间的关系得出GAH ECA ∠∠=,再由平行线的判定即可证明;(2)根据平行线的性质得出HAF ACD ∠∠=,GAH ECA ∠∠=.结合图形利用各角之间的数量关系得出20∠︒=FCD ,再由平行线的性质即可得出结果.(1)证明:∠CF 平分ACD ∠,∠ACF FCD ∠∠=.∠AB ∠CD ,∠AFC FCD ∠∠=,∠ACF AFC ∠∠=,∠GAH ∠与AFC ∠互余,即90GAH AFC ∠+∠︒=,∠90GAH ACF ∠+∠︒=.∠CE CF ⊥,∠90ECF ECA ACF ∠∠+∠︒==,∠GAH ECA ∠∠=,∠AG ∠CE(2)解:∠AB ∠CD ,AG ∠CE ,∠HAF ACD ∠∠=,GAH ECA ∠∠=.∠HAF GAH ACD ECA ∠+∠∠+∠=,即GAF ECD ∠∠=.∠110GAF ∠︒=,∠110ECD ∠︒=.∠90ECF ∠︒=,∠1109020FCD ECD ECF ∠∠∠︒︒=-=-=.∠AB ∠CD ,∠20AFC ∠︒=.【点睛】题目主要考查平行线的判定和性质及各角之间的等量代换,熟练掌握平行线的判定和性质是解题关键.16.(1)DE ,AE ;(2)AC .证明见详解.【分析】(1)根据(AAS)≌ABC DAE ,得出AC =DE ,BC =AE 即可;(2)过D 作DE ∠直线l 于E ,先证∠MCA ∠∠AGN (AAS ),得出AC =NG ,由(1)知(AAS)≌ABC DAE ,得出AC =DE ,再证∠NGP ∠∠DEP (AAS )即可.(1)解:∠(AAS)≌ABC DAE ,∠AC =DE ,BC =AE ,故答案为DE ,AE ;(2)证明:过D 作DE ∠直线l 于E ,∠90MAN ∠=︒,∠∠CAM +∠NAG =90°,∠BM ∠l ,∠∠MCA =90°,∠∠M +∠CAM =90°,∠∠M =∠NAG ,∠NG l ⊥,∠∠AGN =90°,在∠MCA 和∠AGN 中,MCA AGN M GAN MA AN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∠∠MCA ∠∠AGN (AAS ),∠AC =NG ,由(1)知(AAS)≌ABC DAE ,∠AC =DE ,∠NG =DE ,在∠NGP 和∠DEP 中,90NGP DEP GPN EPDNG DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∠∠NGP ∠∠DEP (AAS )∠NP =DP ,故答案为AC .【点睛】本题考查一线三直角全等问题,掌握余角性质,三角形全等判定与性质是解题关键. 17【分析】过点C 作CD ∠AB 交线段AB 延长线于点D ,证∠ACD 是等腰直角三角形,得AD =CD ,由勾股定理得AC,AD =CD,然后由AD −BD =AB 求出BD ,进而求出AC ,再利用路程=速度×时间即可求解.【详解】解:如图,过点C 作CD ∠AB 交线段AB 延长线于点D ,∠∠BAC =75°−30°=45°,∠∠ACD 是等腰直角三角形,∠AD =CD ,∠ACCD ,∠∠DBC =∠BAE =90°−30°=60°,∠∠BCD =30°,∠BC =2BD ,AD =CD =, ∠AD −BD =AB ,20BD -= 海里,解得:BD =10)1 海里,∠CD (30=+ 海里,∠AC =(海里),∠t ==C 处成功拦截. 【点睛】此题考查了解直角三角形的应用−方向角问题,勾股定理、等腰直角三角形的判定等知识,正确作出辅助线构造直角三角形是解题的关键.18.(1)60°(2)AD OD ⊥,见解析(3)AO =【分析】(1)根据旋转的性质得到三角形ODC 为等边三角形即可求解;(2)将∠BOC 绕点C 按顺时针方向旋转一定的角度,得到∠ADC ,可知∠ADC =∠BOC =150°,即得∠ADO =∠ADC -∠ODC =90°,故AD ∠OD ;(3)在Rt ∠AOD 中,由勾股定理即可求得AO 的长.(1)由旋转的性质得:CD CO =,OCB DCA ∠=∠.∠ACO OCB ACO DCA ∠+∠=∠+∠,即ACB DCO ∠=∠.∠ABC 为等边三角形,∠60ACB ∠=︒.∠60DCO ∠=︒.∠OCD 为等边三角形,60ODC ∠=︒.(2)由旋转的性质得,150BOC ADC ∠=∠=︒.∠60ODC ∠=︒,∠90ADO ADC ODC ∠=∠-∠=︒.即AD OD ⊥.(3)由旋转的性质得,AD =OB =2,∠∠OCD 为等边三角形,∠OD =OC =3,在Rt ∠AOD 中,由勾股定理得:AO【点睛】本题考查等边三角形中的旋转变换,涉及直角三角形判定、勾股定理等知识,解题的关键是掌握旋转的性质,旋转不改变图形的大小和形状.。

人教版初中七年级上册数学《余角和补角》练习题

人教版初中七年级上册数学《余角和补角》练习题

4321E DBACO45︒30︒60︒68︒O东南西北第四章 几何图形初步4.3 角 4.3.3 余角和补角1.如图所示,∠1是锐角,则∠1的余角是( ). A .1212∠-∠ B .132122∠-∠ C .1(21)2∠-∠ D .1(21)3∠+∠2、(1)A 看B 的方向是北偏东21°,那么B 看A 的方向( )A:南偏东69° B:南偏西69° C:南偏东21° D:南偏西21°(2)如图,下列说法中错误的是( )A: OC 的方向是北偏东60° B: OC 的方向是南偏东60° C: OB 的方向是西南方向 D: OA 的方向是北偏西22°(3)在点O 北偏西60°的某处有一点A ,在点O 南偏西20°的某处有一点B ,则∠AOB 的度数是( )A:100° B:70° C:180° D:140°3、若一个角的补角等于它的余角4倍,求这个角的度数。

4、如图,∠AOB=90°,∠COD=∠EOD=90°,C,O,E 在一条直线上,且∠2=∠4,请说出∠1与∠3之间的关系?并试着说明理由?A O60南东北西5、如图.货轮O 在航行过程中,发现灯塔A 在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C 和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C 和海岛D 方向的射线.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。

人教版七年级上册数学试题:4.3.3余角和补角练习题

人教版七年级上册数学试题:4.3.3余角和补角练习题

O E D CB 4.3.3余角和补角1、如图,直线AB ,CD 相交于点0,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2的依据是 ( )A.同角的余角相等B.等角的余角相等C.同角的补角相等D.等角的补角相等2、如图,下列说法中错误的是( ) AA .OC 的方向是北偏东60°B .OC 的方向是南偏东60°C .OB 的方向是西南方向D .OA 的方向是北偏西22° CB3、A 看B 的方向是北偏东21°,那么B 看A 的方向( )A.南偏东69°B.南偏西69°C.南偏东21°D.南偏西21°4、如图,射线OA 表示的方向是 ( )A.西北方向B.东南方向C.西偏南30°D.南偏西30°5、甲看乙的方向是南偏西35°,那么乙看甲的方向是( )A.北偏东55°B.南偏东55°C.北偏东35°D.北偏西35°6、一艘轮船从点A 出发,沿南偏西60°方向航行到B 点,再从B 点出发沿北偏东15°方向航行到C 点,则∠ABC 等于( )A.45°B.75°C.105°D.135°7、如果∠1+∠2=180°,∠2+∠3=180°,则∠1___∠3(填>、=或<),理由是__________;8、如果∠1+∠2=90°,∠3+∠4=90°,∠1=∠4,则∠2___∠3,理由是____________.9、目标A 在点C 的北偏东60°方向,目标B 在点C 的南偏西20°方向,则∠ACB= 。

10、如图,直线AE 上有一点O ,∠AOC=90°,∠BOD=90°,有哪些相等的角?有哪些互余的角?有哪些互补的角?11、灯塔A 在灯塔B 的南偏东74°,轮船C 在灯塔B 的正东,在灯塔A 的北偏西40°,画图确定轮船C 的位置。

七年级数学余角和补角

七年级数学余角和补角
C
D
O
解: ∠AOB=180°- ∠BOD B ∴ ∠AOB与∠BOD互补; ∠COD=180 °- ∠AOC ∴ ∠COD与∠AOC互补;
A
又∠AOB=∠COD= 180 °- ∠AOC ∴ ∠AOB与∠AOC互补; 又∠COD=∠AOB= 180 °- ∠BOD
∴ ∠COD与∠BOD互补;
小结:
答:这个角是60°.
练习2、(1)如果∠ 的余角是∠ 的2 倍,求 ∠ 的度数。 (2)如果∠1的补角是∠1的3 倍,求∠1的度数。
练习2、(1)如果∠ 的余角是∠ 的2 倍, 求 ∠ 的度数。 解:设∠ 的度数为x度,则 ∠ 的余 角为(90-x)度。 由题意,得: 90-x=2 x -3x=-90
的余角=90°- ∠
若∠ =∠ 则90°- ∠ =90°- ∠ 即∠

的余角= ∠ 的余角
图形一
同角或等角的余角相等。
(2)补角的基本性质:
∠ 的补角= 180o
-∠
∠ 的补角= 180o -∠ 若∠ =∠ 则 180o -∠ =180o -∠
即∠ 的补角= ∠ 的补角
同角或等角的补角相等。
图形2
例1、如图,∠AOC=∠BOD=Rt∠,
问有哪两个锐角相等? 解:∠AOB=90°-∠COB, ∠DOC=90°-∠COB, ∴∠AOB=∠COD
D
C
B
O
A
例2、已知一个角的补角是这个角的余角 的4倍,求这个角的度数。 解:设这个角为x度, 则其余角为(90-x)度, 补角为(180-x)度。 由题意,得: 180 - x =4(90 - x) 解方程,得: x =60(度)
解:∠ 的余角=90°- ∠ ∠的余角=90°-62°32′ =27°28′ ∠

人教版七年级数学上册角4.余角和补角

人教版七年级数学上册角4.余角和补角

10.如图,∠AOC与∠BOD都是90°,且∠AOB∶∠AOD= 2∶11,求∠AOB与∠BOC的度数. 解:∠AOB=20°,∠BOC=70°
知识点3:表示方向的角 11.(例题4变式)如图,下列说法正确的个数有( D ) ①射线OA表示北偏东30°;②射线OB表示北偏西30°;③射线 OD表示南偏西45°,也叫西南方向;④射线OC表示正南方向. A.1个 B.2个 C.3个 D.4个
4.若∠A的余角等于40°,则∠A的补角等于( C ) A.40° B.50° C.130° D.140° 5.如果一个角的余角等于它本身,那么这个角等于 45° ________;若一个角的补角等于它本身,则这个90角°等于 _______.
6.如图,已知点O是直线AB上的一点,∠BOC=40°,OD,OE分 别是∠BOC,∠AOC的平分线. (1)求∠AOE的度数; (2)写出图中与∠EOC互余的角; (3)∠COE有补角吗?若有,请把它找出来,并说明理由. 解:(1)∠AOE=70° (2)图中与∠EOC互余的角有∠COD, ∠BOD (3)∠COE的补角是∠BOE,理由:因为∠AOE= ∠EOC,∠AOE+∠BOE=180°,所以∠COE+∠BOE= 180°,则∠COE的补角是∠BOE
18.已知∠α 与∠β 互余,且∠α 比∠β 小 25°,求 2∠α-15∠β 的值. 解:设∠α 的度数为 x°,则∠β 的度数为(x+25)°,又∠α 与∠β 互余,所以 x+x+25=90,解得 x=32.5,即∠α=32.5°,则∠β =57.5°,所以 2∠α-15∠β=2×32.5°-15×57.5°=53.5°
15.学校、电影院、公园在平面图上分别用点A,B, C表示,电影院在学校的北偏西30°,公园在学校的 南偏东15°,那么平面图上的∠BAC等于___1_6_5_°___. 16.一个角等于它的补角的3倍,则这个角的补角的 余角是___4_5_°_.

人教版七年级上册数学4. 余角和补角课件

人教版七年级上册数学4. 余角和补角课件

4.3.3 余角和补角
课堂导案
8.如下图,点A、O、E在同 一条直线上,OB、OC、 OD都是射线,∠1=∠2, ∠1与∠4互为余角. (2)∠3与∠4的大小有何关系?请说明理由.
∠3=∠4 理由:由(1)知∠1+∠4=90°,
∠2+∠3=90°, 又∠1=∠2,∴∠3=∠4.
4.3.3 余角和补角
=180°,∠2+∠3=180°,所以∠1=∠2.其推理
根据是( C )
A.同角的余角相等 B.等角的余角相等 C.同角的补角相等 D.等角的补角相等
4.3.3 余角和补角
课堂导案
7.如上图,∠AOB=∠COD=90°,则下列结论中,
正确的是( B )
A.∠1=∠2
B.∠1=∠3
C.∠2=∠3
D.∠1与∠3互余
∠BOE,OD⊥OC于点O,则与∠DOE互补的角
是( D )
A.∠EOC
B.∠AOC
C.∠AOE
D.∠BOD
4.3.3 余角和补角
课后练案
16.如上图,点O是直线AB上一点,∠DOB=90°,
∠COE=90°,图中与∠AOC互补的角有( B )
A.1个
B.2个
C.3个
D.4个
4.3.3 余角和补角
4.3.3 余角和补角
课堂导案
8.如下图,点A、O、E在同 一条直线上,OB、OC、 OD都是射线,∠1=∠2, ∠1与∠4互为余角. (1)∠2与∠3的大小有何关系?请说明理由.
∠2与∠3互余. 理由:∵∠1与∠4互余,∴∠1+∠4=90°,
∵∠1+∠2+∠3+∠4=180°. ∴∠2+∠3=90°,∴∠2与∠3互余.
课后练案
17.一个角的补角比这个角的余角的3倍少18°,求 这个角.

2022人教版初中数学七年级上册练习题--余角和补角

2022人教版初中数学七年级上册练习题--余角和补角

初中数学·人教版·七年级上册——第四章几何图形初步4.3.3 余角和补角测试时间:30分钟一、选择题1.(2021广东广州增城期末)如图,将一副三角尺按不同位置摆放,下列摆放中∠1与∠2互为余角的是()ABCD2.若∠1与∠2互余,∠1与∠3互补,∠2与∠3的和等于周角的1,则∠1,∠2,∠3这三个角的度数分别是3()A.50°,30°,130°B.70°,20°,110°C.75°,15°,105°D.60°,30°,120°3.(2021浙江杭州拱墅校级期末)如图,∠AOD=∠DOB=∠COE=90°,则图中互补的角有()A.5对B.6对C.7对D.8对4.如图,将一个含60°角的三角板的60°角的顶点与另一个三角板的直角顶点重合,若∠1=27°41',则∠2的余角的大小是()A.27°41'B.57°41'C.58°19'D.32°19',则这个角的度数为()5.(2021甘肃定西安定期末)一个角的余角是它的补角的25A.60°B.45°C.30°D.75°6.(2021辽宁葫芦岛绥中期末)下列说法正确的是()A.锐角的补角一定是钝角B.一个角的补角一定大于这个角C.锐角和钝角一定互补D.两个锐角一定互为余角7.如图,甲从A点出发沿北偏东60°方向走到点B,乙从点A出发沿南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°8.(2021天津滨海新区期末)如图,∠AOD=120°,OC平分∠AOD,OB平分∠AOC.下列结论:①∠AOC=∠COD;②∠COD=2∠BOC;③∠AOB与∠COD互余;④∠AOC与∠AOD互补.其中,正确的个数是()A.1B.2C.3D.4二、填空题9.如果一个角的余角与它的补角度数之比为2∶5,则这个角等于.10.已知∠α与∠β互为余角,∠α=38°24',则∠β=.11.已知∠A和∠B互为余角,∠A=60°,则∠B的度数是,∠A的补角的度数是.12.如图,某海域有三个小岛A,B,O,在小岛O处观测到小岛A在它北偏东60°的方向上,观测到小岛B在它南偏东38°的方向上,则∠AOB的度数是.13.如图,直线AB与CD相交于点O,若∠AOC+∠BOD=90°,则∠BOC=.14.已知一个角的补角比它的余角的2倍还大45°,则这个角的度数为°.15.如图,点A在点O的北偏西15°方向,点B在点O的北偏东30°方向,若∠1=∠AOB,则点C在点O的方向.三、解答题16.一个角的补角加上10°,等于这个角的余角的3倍,求这个角的度数.17.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,判断∠DOE与∠AOB是否互补,并说明理由.18.如图,点O是直线AB上任意一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角是;(2)若∠AOD=36°,求∠DOE的度数;(3)当∠AOD=x°时,请直接写出∠DOE的度数.19.如图,OA的方向是北偏东15°,OB的方向是西偏北50°.(1)若∠AOC=∠AOB,求OC的方向;(2)OD是OB的反向延长线,求OD的方向;(3)∠BOD可看作是OB绕点O顺时针方向旋转至OD,作∠BOD的平分线OE,求OE的方向.20.我们规定,如果两个角的差是一个直角(大角减小角),那么这两个角互为足角,其中的一个角叫做另一个角的足角.(1)如图,直线AB经过点O,OE平分∠COB,OF⊥OE.请直接写出图中∠BOF的足角;,求这个角的度数.(2)如果一个角的足角等于这个角的补角的2321.(1)如图1所示,一副直角三角尺的直角顶点重合在点O处.①∠AOC与∠BOD相等吗?说明理由;②∠AOD与∠BOC数量上有什么关系?说明理由;(2)若将这副直角三角尺按图2所示的方式摆放,直角顶点重合在点O处,不添加字母,分析图中已标注字母所表示的角.①找出图中相等的角;②找出图中互补的角,并说明理由.一、选择题1.答案A A.∠1+∠2=90°,即∠1与∠2互为余角,故正确;B.∠1=∠2,故错误;C.∠1+∠2=180°,即∠1与∠2互为补角,故错误;D.∠1=∠2,故错误.故选A.2.答案C设∠1=x°,则∠2=(90-x)°,∠3=(180-x)°,易知∠2+∠3=120°,所以90-x+180-x=120,所以x=75,所以∠1=75°,∠2=15°,∠3=105°.故选C.3.答案C互补的角有:∠AOD与∠BOD,∠AOD与∠COE,∠COE与∠BOD,∠AOC与∠BOC,∠DOE与∠BOC,∠AOE与∠BOE,∠AOE与∠COD,共7对,故选C.4.答案D因为∠BAC=60°,∠1=27°41',所以∠EAC=32°19',因为∠EAD=90°,所以∠2与∠EAC互余,所以∠2的余角的大小为32°19'.故选D.5.答案C设这个角的度数是x°,则90-x=2(180-x),5解得x=30,即这个角的度数是30°,故选C.6.答案A锐角的补角一定是钝角,选项A正确;一个角的补角不一定大于这个角,B选项说法错误,例如:120°角的补角是60°的角,而60°<120°;锐角和钝角不一定互补,C选项说法错误,例如:20°+120°=140°,20°的角与120°的角不互补;两个锐角不一定互为余角,D选项说法错误,例如:30°的角与30°的角不是互为余角.故选A.7.答案D如图,因为∠DAB=60°,所以∠BAF=30°,因为∠CAE=20°,所以∠BAC=∠CAE+∠EAF+∠BAF=20°+90°+30°=140°,故选D.∠AOD=60°,故①正确.8.答案D①因为OC平分∠AOD,所以∠AOC=∠COD=12②因为OB平分∠AOC,所以∠AOC=2∠BOC,所以∠COD=2∠BOC,故②正确.∠AOC=30°,所以∠AOB+∠COD=90°,所以∠AOB与∠COD互余,故③正确.③因为∠AOB=∠BOC=12④因为∠AOC+∠AOD=60°+120°=180°,所以∠AOC与∠AOD互补,故④正确.故选D.二、填空题9.答案30°解析设该角的度数为x°,则它的余角的度数为(90-x)°,补角的度数为(180-x)°,根据题意得(90-x)∶(180-x)=2∶5,解得x=30.所以这个角等于30°.10.答案51°36'(或51.6°)解析因为∠α与∠β互为余角,∠α=38°24',所以∠β=90°-38°24'=51°36'(或51.6°).11.答案30°;120°解析因为∠A和∠B互为余角,∠A=60°,所以∠B=90°-∠A=90°-60°=30°.∠A的补角=180°-∠A=180°-60°=120°.12.答案82°解析由已知得,∠AOB=180°-60°-38°=82°.13.答案135°解析因为∠AOC和∠BOD都是∠BOC的补角,所以∠AOC=∠BOD,又因为∠AOC+∠BOD=90°,所以∠AOC=∠BOD=45°,所以∠BOC=135°.14.答案 45解析 设这个角的度数为x ,则它的余角的度数为90°-x ,补角的度数为180°-x , 根据题意得180°-x =2(90°-x )+45°, 解得x =45°,所以这个角的度数为45°. 15.答案 东南解析 由题意知,∠AOB =15°+30°=45°. 因为∠1=∠AOB ,所以∠1=45°. 所以点C 在点O 的东南方向. 三、解答题16.解析 设这个角的度数为x°,则它的补角的度数为(180-x )°,它的余角的度数为(90-x )°, 根据题意,得(180-x )+10=3(90-x ),解得x =40. 所以这个角的度数为40°.17.解析 (1)∠AOB =∠BOC +∠AOC =70°+50°=120°, ∠AOB 的补角的度数为180°-∠AOB =180°-120°=60°. (2)∠DOC =12∠BOC =12×70°=35°,∠AOE =∠COE =12∠AOC =12×50°=25°. ∠DOE 与∠AOB 互补.理由:因为∠DOE =∠DOC +∠COE =60°, 所以∠DOE +∠AOB =60°+120°=180°, 所以∠DOE 与∠AOB 互补.18.解析 (1)因为OE 平分∠BOC ,所以∠BOE =∠COE. 因为∠AOE +∠BOE =180°,所以∠AOE +∠COE =180°, 所以与∠AOE 互补的角是∠BOE 、∠COE. 故答案为∠BOE 、∠COE.(2)因为OD 、OE 分别平分∠AOC 、∠BOC , 所以∠COD =∠AOD =36°,∠COE =∠BOE =12∠BOC , 所以∠AOC =2×36°=72°, 所以∠BOC =180°-72°=108°,所以∠COE=1∠BOC=54°,2所以∠DOE=∠COD+∠COE=90°.(3)当∠AOD=x°时,∠DOE=90°.19.解析(1)如图,因为OB的方向是西偏北50°, 所以∠BOF=90°-50°=40°,所以∠AOB=40°+15°=55°,因为∠AOC=∠AOB,所以∠AOC=55°,所以∠FOC=∠AOF+∠AOC=15°+55°=70°,所以OC的方向是北偏东70°.(2)因为OB的方向是西偏北50°,所以∠BOF=40°,因为∠DOH和∠BOF都是∠BOH的补角,所以∠DOH=∠BOF=40°,所以OD的方向是南偏东40°.(3)因为OE是∠BOD的平分线,所以∠BOE=90°,因为∠BOF=40°,所以∠FOE=50°,所以OE的方向是北偏东50°.20.解析(1)因为OE平分∠COB,所以∠BOE=∠COE,因为OF⊥OE,所以∠BOF-∠BOE=90°,所以∠BOF-∠COE=90°,所以∠BOF的足角是∠COE、∠BOE.(2)设这个角的度数为x°,则它的补角的度数为(180-x)°, 当0<x≤90时,这个角的足角的度数为(90+x)°,则有90+x=2(180-x),3解得x=18;当90<x<180时,这个角的足角的度数为(x-90)°,(180-x).则有x-90=23解得x=126.所以这个角的度数为18°或126°.21.解析(1)①∠AOC与∠BOD相等.理由如下:因为∠AOB=∠DOC=90°,所以∠AOB+∠BOC=∠DOC+∠BOC,即∠AOC=∠BOD.②∠AOD+∠BOC=180°.理由如下:因为∠AOD+∠BOC+∠COD+∠AOB=360°,∠AOB=∠COD=90°,所以∠AOD+∠BOC=180°.(2)①∠AOB=∠COD,∠AOC=∠BOD.②∠AOB与∠COD互补,∠AOD与∠BOC互补.理由如下:因为∠AOB=∠COD=90°,所以∠AOB+∠COD=180°,即∠AOB与∠COD互补.因为∠AOD=∠AOB+∠BOD=90°+∠BOD,∠BOC=∠COD-∠BOD=90°-∠BOD,所以∠AOD+∠BOC=90°+∠BOD+90°-∠BOD=180°,所以∠AOD与∠BOC互补.11。

2020-2021学年人教版七年级数学上学期《4.3.3 余角和补角》测试卷及答案解析

2020-2021学年人教版七年级数学上学期《4.3.3 余角和补角》测试卷及答案解析

2020-2021学年人教版七年级数学上学期《4.3.3 余角和补角》测试卷一.选择题(共10小题)1.若α=29°45′,则α的余角等于()A.60°55′B.60°15′C.150°55′D.150°15′2.与30°的角互为余角的角的度数是()A.30°B.60°C.70°D.90°3.已知∠α=60°32′,则∠α的余角是()A.29°28′B.29°68′C.119°28′D.119°68′4.如果∠1和∠2互补,且∠1>∠2,则下列表示∠2的余角的式子中:①90°﹣∠1;②∠1﹣90°;③(∠1+∠2);④(∠1﹣∠2).正确的有()A.1个B.2个C.3个D.4个5.下列说法:①射线AB和射线BA是同一条射线;②锐角和钝角互补;③若一个角是钝角,则它的一半是锐角;④一个锐角的补角比这个角的余角大90度.其中正确的个数是()A.1个B.2个C.3个D.4个6.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定7.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为()A.30°B.60°C.120°D.150°8.如图,在△ABC中,∠BAC=90°,点D,E分别在BC,CA边的延长线上,EH⊥BC 于点H,EH与AB交于点F.则∠1与∠2的数量关系是()A.∠1=∠2B.∠1与∠2互余C.∠1与∠2互补D.∠1+∠2=100°9.∠1、∠2互为补角,且∠1>∠2,则∠2的余角是()A.∠1+∠2B.∠1﹣∠2C.∠1﹣90°D.90°﹣∠1 10.如图,一副三角板按不同的位置摆放,摆放位置中∠1≠∠2的是()A.B.C.D.二.填空题(共9小题)11.如果∠α=35°,那么∠α的余角等于°.12.如图,∠AOB与∠BOD互为余角,OB是∠AOC的平分线,∠AOB=25°,则∠COD 的度数是.13.已知∠α和∠β互为余角,且∠β比∠α大40°,则∠β=°.14.一个角的余角的度数为30°,则这个角的补角的度数为.15.如图,∠AOC与∠BOD都是直角,且∠AOD:∠AOB=7:2,则∠AOB等于度.16.已知∠α+∠β=90°,且∠α=35°41′,则∠β=.17.如图,将一副直角三角尺的直角顶点C叠放在一起,若∠ECD比∠ACB的小6°,则∠BCD的度数为.18.如图将一副三角板的直角顶点重合,摆放在桌面上,若∠AOC=110°,则∠BOD=°.19.如图,将一副三角板按不同位置摆放,∠α与∠β互余的是,∠α与∠β互补的是,∠α与∠β相等的是.三.解答题(共8小题)20.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°.若∠AOC=40°.(1)求∠DOE的度数;(2)图中互为余角的角有.21.一个角的余角比它的补角的还少15°,求这个角的度数.22.如图,O为直线AB上一点,OM是∠AOC的角平分线,ON是∠COB的平分线(1)指出图中所有互为补角的角.(2)求∠MON的度数.(3)指出图中所有互为余角的角.23.如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE=;(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.24.将一副三角板中的两块直角三角板按如图的方式叠放在一起,直角顶点重合.(1)若∠ACB=115°时,则∠DCE的度数等于;(2)当CE平分∠ACD时,求∠ACB的度数;(3)猜想并直接写出∠ACB与∠DCE的数量关系(不必说明理由).25.设∠α、∠β的度数分别为(2n+5)°和(65﹣n)°,且∠α、∠β都是∠γ的补角(1)求n的值;(2)∠α与∠β能否互余,请说明理由.26.如图①,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一直角边OM在射线OB上,另一直角边ON在直线AB 的下方,(1)将图①中的三角板绕点O逆时针方向旋转至图②,使边OM在∠BOC的内部,且恰好平分∠BOC,求∠BON大小;(2)将图①中的三角板绕点O逆时针方向旋转至图③.①如果ON恰好是∠AOC的角平分线,则∠AOM﹣∠NOC的度数为;②如果ON始终在∠AOC的内部,∠AOM﹣∠NOC的度数不会变化,请猜测出∠AOM﹣∠NOC的度数并说明理由.27.如图,若O是直线AB上一点,∠COD=90°,OE平分∠BOC,∠AOC=40°,求∠DOE的度数.2020-2021学年人教版七年级数学上学期《4.3.3 余角和补角》测试卷参考答案与试题解析一.选择题(共10小题)1.若α=29°45′,则α的余角等于()A.60°55′B.60°15′C.150°55′D.150°15′【解答】解:∵α=29°45′,∴α的余角等于:90°﹣29°45′=60°15′.故选:B.2.与30°的角互为余角的角的度数是()A.30°B.60°C.70°D.90°【解答】解:与30°的角互为余角的角的度数是:60°.故选:B.3.已知∠α=60°32′,则∠α的余角是()A.29°28′B.29°68′C.119°28′D.119°68′【解答】解:∵∠α=60°32′,∠α的余角是为:90°﹣60°32′=29°28′,故选:A.4.如果∠1和∠2互补,且∠1>∠2,则下列表示∠2的余角的式子中:①90°﹣∠1;②∠1﹣90°;③(∠1+∠2);④(∠1﹣∠2).正确的有()A.1个B.2个C.3个D.4个【解答】解:∵∠1和∠2互补,∴∠1+∠2=180°.因为90°﹣∠2=∠1﹣90°,所以①错误,②正确;(∠1+∠2)+∠2=×180°+∠2=90°+∠2≠90°,所以③错误;(∠1﹣∠2)+∠2=(∠1+∠2)=×180°=90°,所以④正确.综上可知,②④均正确.故选:B.5.下列说法:①射线AB和射线BA是同一条射线;②锐角和钝角互补;③若一个角是钝角,则它的一半是锐角;④一个锐角的补角比这个角的余角大90度.其中正确的个数是()A.1个B.2个C.3个D.4个【解答】解:①射线AB和射线BA表示的方向不同,不是同一条射线,故原说法错误;②锐角和钝角是相对于直角的大小而言,没有一定的数量关系,不一定构成互补关系故原说法错误;③一个角是钝角,则这个角大于90°小于180°,它的一半大于45°小于90°,是锐角,正确;④锐角为x°,它的补角为(180﹣x°),它的余角为(90﹣x°),相差为90°,正确.故正确的说法有③④共2个.故选:B.6.如果∠1与∠2互余,∠2与∠3互余,那么∠1与∠3的关系为()A.互余B.互补C.相等D.无法确定【解答】解:∵∠1与∠2互余,∠2与∠3互余,∴∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,故选:C.7.如果∠1的余角是∠2,并且∠1=2∠2,则∠1的补角为()A.30°B.60°C.120°D.150°【解答】解:∵∠1的余角是∠2,∴∠1+∠2=90°,∵∠1=2∠2,∴2∠2+∠2=90°,∴∠2=30°,∴∠1=60°,∴∠1的补角为180°﹣60°=120°.故选:C.8.如图,在△ABC中,∠BAC=90°,点D,E分别在BC,CA边的延长线上,EH⊥BC 于点H,EH与AB交于点F.则∠1与∠2的数量关系是()A.∠1=∠2B.∠1与∠2互余C.∠1与∠2互补D.∠1+∠2=100°【解答】解:∵EH⊥BC,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE.∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C.9.∠1、∠2互为补角,且∠1>∠2,则∠2的余角是()A.∠1+∠2B.∠1﹣∠2C.∠1﹣90°D.90°﹣∠1【解答】解:∵∠1,∠2互为补角∴∠1+∠2=180°∴∠2的余角是90°﹣∠2=∠1﹣90°,故选:C.10.如图,一副三角板按不同的位置摆放,摆放位置中∠1≠∠2的是()A.B.C.D.【解答】解:A.∠1=45°,所以∠1=∠2=45°,故本选项不合题意;B.根据等角的补角相等可得∠1=∠2=135°,故本选项不合题意;C.图中∠1≠∠2,故本选项符合题意;D.根据同角的补角相等可得∠1=∠2,故本选项不合题意.故选:C.二.填空题(共9小题)11.如果∠α=35°,那么∠α的余角等于55°.【解答】解:∵∠α=35°,∴∠α的余角等于90°﹣35°=55°故答案为:55.12.如图,∠AOB与∠BOD互为余角,OB是∠AOC的平分线,∠AOB=25°,则∠COD 的度数是40°.【解答】解:∵OB是∠AOC的平分线,∴∠BOC=∠AOB=25°,∵∠AOB与∠BOD互为余角,∴∠BOD=90°﹣∠AOB=90°﹣25°=65°,∴∠COD=∠BOD﹣∠BOC=65°﹣25°=40°.故答案为:40°13.已知∠α和∠β互为余角,且∠β比∠α大40°,则∠β=65°.【解答】解:设∠α为x,则∠β为90°﹣x,由题意得,90°﹣x=x+40°,解得x=65°.故答案为:65.14.一个角的余角的度数为30°,则这个角的补角的度数为120°.【解答】解:∵一个角的余角的度数是30°,∴这个角的补角的度数是90°+30°=120°,故答案为:120°.15.如图,∠AOC与∠BOD都是直角,且∠AOD:∠AOB=7:2,则∠AOB等于36度.【解答】解:设∠AOB=x,则∠AOD=90°+x,∵∠AOD:∠AOB=7:2,∴,解得:x=36°.故答案为:36.16.已知∠α+∠β=90°,且∠α=35°41′,则∠β=54°19′.【解答】解:∵∠α+∠β=90°,∠α=35°41′,∴∠β=90°﹣35°41′=54°19′,故答案为:54°19′.17.如图,将一副直角三角尺的直角顶点C叠放在一起,若∠ECD比∠ACB的小6°,则∠BCD的度数为65°.【解答】解:∵∠ACE=90°﹣∠ECD,∴∠ACB=90°+∠ACE=90°+90°﹣∠ECD=180°﹣∠ECD,∴∠ECD=(180°﹣∠ECD)﹣6°,解得:∠ECD=25°,∴∠BCD=90°﹣∠ECD=90°﹣25°=65°,故答案为:65°.18.如图将一副三角板的直角顶点重合,摆放在桌面上,若∠AOC=110°,则∠BOD=70°.【解答】解:∵∠AOB=∠COD=90°,∴∠AOD=∠AOC﹣∠COD=110°﹣90°=20°,∴∠BOD=∠AOB﹣∠AOD=90°﹣20°=70°.故答案为:70.19.如图,将一副三角板按不同位置摆放,∠α与∠β互余的是(1),∠α与∠β互补的是(4),∠α与∠β相等的是(2)(3).【解答】解:(1)根据平角的定义得:∠α+90°+∠β=180°,∴∠α+∠β=90°,即∠α与∠β互余;(2)根据两个直角的位置得:∠α=∠β;(3)根据三角尺的特点和摆放位置得:∠α+45°=180°,∠β+45°=180°,∴∠α=∠β;(4)根据图形可知∠α与∠β是邻补角,∴∠α+∠β=180°;综上所述:(1)中∠α与∠β互余;(4)中∠α与∠β互补;(2)(3)中,∠α=∠β.故答案为:(1),(4),(2)(3).三.解答题(共8小题)20.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°.若∠AOC=40°.(1)求∠DOE的度数;(2)图中互为余角的角有∠AOC和∠BOE,∠COD和∠DOE,∠BOD和∠DOE.【解答】解:(1)∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=140°,∵OD平分∠BOC,∴∠COD=∠BOC=70°,∵∠COE=90°,∴∠DOE=90°﹣70°=20°.(2)∵∠COE=90°,∴∠AOC+∠BOE=90°,∠COD+∠DOE=90°,∵OD平分∠BOC,∴∠COD=∠BOD,∴∠BOD+∠DOE=90°,∴图中互为余角的角有∠AOC和∠BOE,∠COD和∠DOE,∠BOD和∠DOE;故答案为:∠AOC和∠BOE,∠COD和∠DOE,∠BOD和∠DOE.21.一个角的余角比它的补角的还少15°,求这个角的度数.【解答】解:设这个角的度数为x,根据题意得:90°﹣x=(180°﹣x)﹣15°,解得:x=30°.答:这个角的度数为30°.22.如图,O为直线AB上一点,OM是∠AOC的角平分线,ON是∠COB的平分线(1)指出图中所有互为补角的角.(2)求∠MON的度数.(3)指出图中所有互为余角的角.【解答】解:(1)∠AOM与∠MOB,∠AOC与∠BOC,∠AON与∠BON,∠COM与∠MOB,∠CON与∠AON;(2)∵∠AOC的平分线是OM,∠BOC的平分线是ON,∴∠COM=∠AOC,∠CON=∠BOC,∵∠AOB=∠AOC+∠BOC=180°,∴∠MON=∠COM+∠CON=(∠AOC+∠BOC)=×180°=90°,(3)∠AOM与∠BON,∠COM与∠BON,∠CON与∠AOM,∠CON与∠COM.23.如图,以直线AB上一点O为端点作射线OC,使∠AOC=65°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)(1)如图①,若直角三角板DOE的一边OD放在射线OA上,则∠COE=25°;(2)如图②,将直角三角板DOE绕点O顺时针方向转动到某个位置,若OC恰好平分∠AOE,求∠COD的度数;(3)如图③,将直角三角板DOE绕点O任意转动,如果OD始终在∠AOC的内部,试猜想∠AOD和∠COE有怎样的数量关系?并说明理由.【解答】解:(1)∠COE=∠DOE﹣∠AOC=90°﹣65°=25°,故答案为:25°.(2)∵OC恰好平分∠AOE,∠AOC=65°,∴∠AOC=EOC=65°,∴∠COD=∠DOE﹣∠EOC=90°﹣65°=25°,答:∠COD=25°,(3)∠COE﹣∠AOD=25°,理由如下:当OD始终在∠AOC的内部时,有∠AOD+∠COD=65°,∠COE+∠COD=90°,∴∠COE﹣∠AOD=90°﹣65°=25°,24.将一副三角板中的两块直角三角板按如图的方式叠放在一起,直角顶点重合.(1)若∠ACB=115°时,则∠DCE的度数等于65°;(2)当CE平分∠ACD时,求∠ACB的度数;(3)猜想并直接写出∠ACB与∠DCE的数量关系(不必说明理由).【解答】解:(1)∵∠ACE+∠DCE=∠ACD=90°,∠BCD+∠DCE=∠BCE=90°,∴∠ACE=∠BCD=∠ACB﹣90°=25°,∴∠DCE═∠ACB﹣∠ACE﹣∠BCD=115°﹣25°﹣25°=65°;故答案为:65°(2)由CE平分∠ACD可得CE平分∠ACD=∠DCE=45°,由(1)可知∠ACE=∠BCD=45°,∴∠ACB=∠ACE+∠BCD+∠DCE=135°;(3)猜想:∠ACB+∠DCE=180°理由如下:∵∠ACE=90°﹣∠DCE又∵∠ACB=∠ACE+90°∴∠ACB=90°﹣∠DCE+90°=180°﹣∠DCE即∠ACB+∠DCE=180°.25.设∠α、∠β的度数分别为(2n+5)°和(65﹣n)°,且∠α、∠β都是∠γ的补角(1)求n的值;(2)∠α与∠β能否互余,请说明理由.【解答】解:(1)由∠α、∠β都是∠γ的补角,得∠α=∠β,即(2n+5)°=(65﹣n)°.解得n=20;(2)∠α与∠β互余,理由如下:∠α=(2n+5)°=45°,∠β=(65﹣n)°=45°,∵∠α+∠β=90°,∴∠α与∠β互为余角.26.如图①,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一直角边OM在射线OB上,另一直角边ON在直线AB 的下方,(1)将图①中的三角板绕点O逆时针方向旋转至图②,使边OM在∠BOC的内部,且恰好平分∠BOC,求∠BON大小;(2)将图①中的三角板绕点O逆时针方向旋转至图③.①如果ON恰好是∠AOC的角平分线,则∠AOM﹣∠NOC的度数为30°;②如果ON始终在∠AOC的内部,∠AOM﹣∠NOC的度数不会变化,请猜测出∠AOM﹣∠NOC的度数并说明理由.【解答】解:(1)∵OM平分∠BOC,∠BOC=120°,∴∠BOM=∠MON=60°,∵∠MON=90°,∴∠BON=∠MON﹣∠BOM=90°﹣60°=30°;(2)①∠AOM﹣∠NOC=30°;故答案为:30°②∠AOM﹣∠NOC=30°,理由如下:∵∠AOM=∠MON﹣∠AON=90°﹣∠AON,∠NOC=∠AOC﹣∠AON=60°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.27.如图,若O是直线AB上一点,∠COD=90°,OE平分∠BOC,∠AOC=40°,求∠DOE的度数.【解答】解:∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=180°﹣40°=140°.∵OE平分∠BOC,∴∠COE=∠BOE=∠BOC=×140°=70°,∴∠DOE=∠COD﹣∠COE=90°﹣70°=20°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

70︒
15︒


C
A B
D F C
A E
B O
人教版七年级数学上册余角和补角
练习
一﹨填空:
1.已知∠1=200
,∠2=300
,∠3=600
,∠4=1500
,则∠2是____的余角,_____是∠4的补角. 2.如果∠α=39°31°,∠α的余角∠β =_____,∠α的补角∠γ=_____,∠α-∠β=___. 3.若∠1+∠2=90°,∠3+∠2=90°,∠1=40°,则∠3=______°, 依据是_______。

二﹨选择:
4.如果∠α=n °,而∠α既有余角,也有补角,那么n 的取值范围是( ) A.90°<n<180° B.0°<n<90° C.n=90° D.n=180°
5.如图,甲从A 点出发向北偏东70°方向走50m 至点B,乙从A 出发 向南偏西15°方向走80m 至点C,则∠BAC 的度数是( ) A.85° B.160° C.125° D.105°
6.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,
如果∠BAF=60°,则∠DAE 等于( ) A.15° B.30° C.45° D.60°
7.已知∠α,用两种不同的方法,画出∠α的余角∠β 和∠α的补角∠γ.
α
α
8.一个角的余角比它的补角的 少40°,求这个角的度数.
9.在图中,确定A ﹨B ﹨C ﹨D 的位置: (1)A 在O 的正北方向,距O 点2cm;
(2)B 在O 的北偏东60°方向,距O 点3cm; (3)C 为O 的东南方向,距O 点1.5cm; (4)D 为O 的南偏西40°方向,距O 点2cm.
10.直线AB ﹨CD 相交于O,∠BOC=80°,OE 平分∠BOC,OF 为OE 的反向延长线. 画出图形并求出∠BOD 和∠DOF 的度数.
11.如图所示,A ﹨B 两条海上巡逻艇同时发现海面上有一不明物体,A 艇发现该不明物体在它的东北方向,B 艇发现该不明物体在它的南偏东60°的方向上, 请你试着在图中确定这个不明物体的位置.

西
东北
A
B
12.小华从A 点出发向北偏东50°方向走了80米到达B 地,从B 地他又向西走了100米到达C 地.
(1)用1:2000的比例尺(即图上1cm 等于实际距离20米)画出示意图; (2)用刻度尺和量角器量出AC 的距离,以及C 点的方向角;
(3)回答C 点距A 点的实际距离是多少(精确到1米),C 点的方向角为多少.(精确到1°).
13.在飞机飞行时,飞行方向是用飞行路线与实际的南或北方向线之间的夹角大小来表示的.如图,用AN(南北线)与飞行线之间顺时针方向夹角作为飞行方向角. 从A到B的飞行方向角为35°,从A到C的飞行方向角为60°,从A到D 的飞行方向角为145°,试求AB与AC 之间夹角为多少度?AD与AC之间夹角为多少度?并画出从A飞出且方向角为105°的飞行线.
N(北)
B
C
A
D
答案:
1.∠3,∠2
2.50°29′,129°31′,79°2′
3.40°,同角的余角相等
4. B
5.C
6.A 8.30° 10.∠BOD=120°,∠DOF=40°
13.AB与AC之间夹角为25°, AD与AC之间夹角85°.。

相关文档
最新文档