考研数学三历年真题及解析
考研数学三真题试卷带答案解析(高清版)

2023考研数学三真题试卷带答案解析(高清版)2024年全国硕士研究生入学考试数学(三)真题及参考答案2024年考研数学复习时间规划复习的阶段大致可以分为三个阶段:基础奠定,强化训练,模拟冲刺。
1、6月之前:夯实基础通过看老师的基础课程数,学习基础知识,有视频的可以结合视屏看,看完一节,知道里面讲的什么,公式、概念。
看完一章,结合之前做的笔记,复盘这一章的内容,主要将说明,各知识点都用在什么地方,然后刷一刷这一章的讲义。
看完一章视频或书籍之后,最后做一做三大计算+660题。
2、7-9月:强化训练方法同打基础阶段。
看完视频后做对应的习题330题。
3、10-11月20日:真题冲刺后期可以做一做近10年的真题了,从近往远做,越近的真题越要花时间研究,不懂的地方可以看看名师的知识点讲解。
真题的错题,尤其要弄懂。
4、11月20日-考前:模拟训练最后一两个星期,就需要持续的模拟考场做试卷的状态和题型,建议大家做一做模拟卷,网上就可以购买,一般12月初都出来了,挑自己喜欢的老师即可。
提示:不要看押题卷,知识点学就会后,以不变应万变。
考研必考科目政治、英语和专业课。
所有专业都会考查政治,虽然管理类联考初试不涉及,但复试会考查。
除小语种专业外,其他专业都会考查英语,主要有英语一和英语二。
考研专业分为13个学科大类,包含上百个专业,每一专业都会有自己的专业课考试。
考研初试科目:初试方式为笔试,共四个科目:两门公共课、两门业务课。
两门公共课:政治、英语一或英语二;业务课一:数学或专业基础;业务课二(分为13大类):哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学等。
法硕、西医综合、中医综合、教育学、历史学、心理学、计算机、农学等属于统考专业课,其他非统考专业课都是各院校自主命题,具体考试科目请参照各大考研院校招生简章。
会计硕士(MPAcc)、图书情报硕士、工商管理硕士(MBA)、公共管理硕士(MPA)、旅游管理硕士、工程管理硕士和审计硕士只考两门,即:英语二和管理类联考综合能力。
数三考研真题及答案

数三考研真题及答案数学是考研数学一和数学二中的一门科目,也是许多考生最为关注的科目之一。
为了更好地备考数学,考生们普遍会通过做真题来提高自己的解题能力。
本文将为大家提供一份数学三(数三)考研真题及答案,希望对考生们的备考有所帮助。
一、选择题1. 集合A由m个不同的整数组成,集合B由n个不同的整数组成,A与B有r个公共元素。
则A与B的并集有几个元素?A. m + nB. m + n - rC. m + n + rD. m - n + r答案:B2. 设函数f(x) = x^n,其中n为大于1的正整数。
若f(2+x) = f(2-x),则x的值为多少?A. 0B. 1C. 2D. -1答案:A二、填空题1. 若f(x) = x^2 + 1,则f(a) + f(-a)的值为________。
答案:22. 设A为一个n阶方阵,若A^2 = A,则称A满足条件________。
答案:幂等矩阵三、解答题1. 解方程组:2x + 4y = 103x - 2y = 7解答:首先,将第二个方程两边同乘以2,得到方程6x - 4y = 14。
然后,将第一个方程和得到的方程相加,得到8x = 24,解得x = 3。
将x的值代入第一个方程,得到3*2 + 4y = 10,解得y = 1。
因此,方程组的解为x = 3,y = 1。
2. 求函数f(x) = e^xln(1 - x)的定义域。
解答:首先,根据指数函数的定义域可知,e^x的定义域为实数集R。
其次,根据对数函数的定义域可知,ln(1 - x)的定义域为(-∞, 1)。
因此,函数f(x) = e^xln(1 - x)的定义域为x < 1。
以上就是数学三(数三)考研真题及答案的部分内容。
希望通过这些题目的练习,考生们能够提高自己的解题能力,为考研数学的顺利通过打下坚实的基础。
祝愿所有的考生都能在考试中取得优异的成绩!。
考研数学三(微积分)历年真题试卷汇编21(题后含答案及解析)

考研数学三(微积分)历年真题试卷汇编21(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(1989年)设f(x)=2x+3x一2,则当x→0时( )A.f(x)是x等价无穷小.B.f(x)与x是同阶但非等价无穷小.C.f(x)是比x更高阶的无穷小.D.f(x)是比x较低阶的无穷小.正确答案:B解析:由于=ln2+ln3=1n6则应选B.2.(2010年)设f(x)=ln10x,g(x)=x,,则当x充分大时有( )A.g(x)<h(x)<f(x).B.h(x)<g(x)<f(x).C.f(x)<g(x)<h(x).D.g(x)<f(x)<h(x).正确答案:C解析:由于则当x充分大时h(x)>g(x).又则当x充分大时,g(x)>f(x),故应选C.3.(1998年)设周期函数f(x)在(一∞,+∞)内可导,周期为4,又,则曲线y=f(x)在点(5,f(5))处的切线斜率为( )A.B.0C.一1D.一2正确答案:D解析:由题设f(x)在(一∞,+∞)内可导,且f(x)=f(x+4),两边对x求导,则f’(x)=f’(x+4),故f’(5)=f’(1).由于则f’(1)=一2,故y=f(x)在点(5,f(5))处的切线斜率为f’(5)=一24.(2007年)曲线渐近线的条数为( )A.0.B.1.C.2.D.3.正确答案:D解析:由于则x=0为原曲线的一条垂直渐近线.而则y=0为原曲线的一条水平渐近线.则y=x为原曲线的一条斜渐近线,由此可知原曲线共有三条渐近线.所以.本题应选D.5.(2011年)设则I,J,K的大小关系为( )A.I<J<K.B.I<K<J.C.J<I<K.D.K<J<I.正确答案:B解析:当,sinx<cosx<1<cotx,而lnx为单调增的函数,则lnsinx<lncosx <lncotx 故应选B.6.(2005年)设其中D={(x,y)}x2+y2≤1},则( )A.I3>I2>I1B.I1>I2>I3C.I2>I1>I3D.I3>I1>I2正确答案:A解析:由于当cosx是减函数,而当0≤x2+y2≤1时,≥x2+y2≥(x2+y2),即I1≤I2≤I37.(2015年)下列级数中发散的是( )A.B.C.D.正确答案:C解析:由交错级数的莱布尼兹准则知,级数发散,故级数发散.选C.填空题8.(2006年)=_______.正确答案:应填1.解析:9.(1989年)曲线y=x+sin2x在点处的切线方程是______.正确答案:应填y=x+1.解析:y’=1+2sinxcosx,该曲线在点处的切线方程是即y=x+110.(2003年)设其导函数在x=0处连续,则λ的取值范围是=______.正确答案:应填λ>2.解析:当x≠0时当x=0时由上式可知,当λ>1时,f(0)存在,且f’(0)=0又由上式可知,当λ>2时,即导函数在x=0处连续.11.(2018年)曲线y=x2+2lnx在其拐点处的切线方程是______.正确答案:应填y=4x一3.解析:令y’’=0得x=±l,x=一1(舍去),拐点为(1,1),又f’(1)=2+2=4则拐点处的切方程是为y—1=4(x一1)即y=4x一312.(2008年)设=______.正确答案:应填解析:13.(1995年)设f(u)可导,则xzx’+yzy’=______.正确答案:应填2z.解析:14.(2013年)设函数z=z(x,y)由方程(z+y)z=xy确定,则=______.正确答案:应填2—21n2.解析:方程(x+y)x=xy两端取对数得xln(x+y)=lnx+lny 上式两端对x求偏导得将x=1,y=2代入上式,并注意z=0,得15.(2018年)差分方程△yx一yx=5的通解为______.正确答案:应填yx=C2x一5.解析:△2yx=△x+1一△yx (yx+2一yx+1)一(yx+1一yx) =yx+2—2yx+1+yx代入△2yx一yx=5得yx+2—2yx+1=5,即yx+1—2yx=5齐次差分方程yx+1一2yx=0的通解为yx=C.2x而yx+1—2yx=5的特解为yx*=一5故原方程的通解为yx=C2x一5解答题解答应写出文字说明、证明过程或演算步骤。
2022考研数学三真题及答案解析(数三)

2022年全国硕士研究生入学统一考试数学(三)试题及参考答案一、选择题:1~10题,每小题5分,共50分.1、当0→x 时,)()(x x βα、是非零无穷小量,给出以下四个命题 ① 若)(~)(x x βα,则)(~)(22x x βα; ② 若)(~)(22x x βα,则)(~)(x x βα; ③ 若)(~)(x x βα,则))(()()(x o x x αβα=-; ④ 若))(()()(x o x x αβα=-,则)(~)(x x βα. 其中正确的序号是( )A :①②;B :①④;C :①③④;D :②③④. 答案:C .解析:当0→x 时,若)(~)(x x βα,则1)()(lim 0=→x x x βα,故1)()(lim )()(lim 20220=⎪⎪⎭⎫⎝⎛=→→x x x x x x βαβα,即)(~)(22x x βα,且011)()()(lim0=-=-→x x x x αβα,故))(()()(x o x x αβα=-.所以①③正确.当0→x 时,)(~)(22x x βα,则1)()(lim 220=→x x x βα,此时1)()(lim 0±=→x x x βα,而1)()(lim 0-=→x x x βα时,)(x α与)(x β不是等价无穷小,故 ②不正确.当0→x 时,若))(()()(x o x x αβα=-,1)()(lim ))(()()(lim )()(lim000==-=→→→x x x o x x x x x x x αααααβα,所以)(~)(x x βα,④正确.综上,C 为选项.2 、已知),2,1()1( =--=n nn a nnn ,则}{n a ( ) A :有最大值,有最小值; B :有最大值,没有最小值; C :没有最大值,有最小值; D :没有最大值,没有最小值. 答案:A .解析:1212,1221<-=>=a a ,又1lim =∞→n n a ,故存在0>N ,当N n >时,12a a a n <<,所以}{n a 有最大值和最小值,选项A 正确.3、设函数)(t f 连续,令⎰---=y x dt t f t y x y x F 0)()(),(,则( )A :2222y F x F y F x F ∂∂=∂∂∂∂=∂∂,; B :2222y Fx F y F x F ∂∂-=∂∂∂∂=∂∂,; C :2222y F x F y F x F ∂∂=∂∂∂∂-=∂∂,; D :2222yF x F y F x F ∂∂-=∂∂∂∂-=∂∂,. 答案:C .解析:⎰⎰⎰-----=--=y x y x y x dt t tf dt t f y x dt t f t y x y x F 0)()()()()(),(,⎰⎰--=-----+=∂∂y x y x dt t f y x f y x y x f y x dt t f x F 00)()()()()()(,)(22y x f x F -=∂∂,同理⎰⎰---=--+----=∂∂y x y x dt t f y x f y x y x f y x dt t f yF00)()()()()()(,)(22y x f y F -=∂∂, 综上2222yF x F y F x F ∂∂=∂∂∂∂-=∂∂,,选项C 正确. 4、已知⎰⎰⎰+=++=+=101031021sin 12,cos 1)1ln(,)cos 1(2dx x xI dx x x I dx x x I ,则( ) A :321I I I <<; B :312I I I <<; C :231I I I <<; D :123I I I <<. 答案:A .解析:⎰⎰⎰+=++=+=1010310212sin 1,cos 1)1ln(,)cos 1(2dx xx I dx x x I dx x xI ,先比较21,I I 的大小,令)1,0()1ln(2)(∈+-=x x xx f ,此时0)0(=f ,此时0)1(211121)(<+-=+-='x x x x f ,即)(x f 单调递减,从而0)0()(=<f x f ,可得)1,0()1ln(2∈+x x x《,从而21I I <.再比较23,I I 的大小,因)1,0(,cos 12sin 1,)1ln(∈+<+<+x x x x x ,则2sin 1cos 1)1ln(x xxx +<++,从而23I I >.综上,可得A 正确.5、设A 为3阶矩阵,⎪⎪⎪⎭⎫ ⎝⎛-=Λ000010001,则A 的特征值为011,,-的充分必要条件是( )A :存在可逆矩阵Q P ,,使得Q P A Λ=;B :存在可逆矩阵P ,使得1-Λ=P P A ; C :存在正交矩阵Q ,使得1-Λ=Q Q A ; D :存在可逆矩阵P ,使得TP P A Λ=; 答案:B解析:3阶A 有011,,-三个不同的特征值,所以A 可以相似对角化,故存在可逆矩阵P ,使得1-Λ=P P A ;若存在可逆矩阵P ,使得1-Λ=P P A ,即A 相似与Λ,而相似矩阵具有相同的特征值,而Λ的特征值为011,,-,故A 的特征值为011,,-.因此选B . 6、设矩阵⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=421,1111122b b b a a A ,则线性方程组b Ax =解的情况为( )A :无解; B: 有解; C:有无穷多解或无解 ; D: 有唯一解或无解; 答案:D .解析:⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫⎝⎛→31101110111141211111)|2222b b a a b b a a b A ((1)当1=a 或1=b 时,)|()(b A r A r ≠,方程无解(2)当1≠a 且1≠b 时,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----+→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+→11130011110111113110111101111)|a b a b a a b b a a b A ( (i )当b a ≠时,3)|()(==b A r A r ,方程有唯一解 (ii )当b a =时,3)|(2)(==b A r A r ,,方程无解; 综述:方程有唯一解或无解,选D .7、设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=243211,11,11,11λλαλαλαλα,若向量组321,,ααα与421,,ααα等价,则λ的取值范围( )A :}1,0{ ; B:}2,|{-≠∈λλλR ;C:}2,1,|{-≠-≠∈λλλλR ; D:}1,|{-≠∈λλλR . 答案:C解析:向量组321,,ααα与421,,ααα等价的充要条件是()),,.,,(,,),,(421321421321ααααααααααααr r r ==,而),,,(),,.,,(4321421321αααααααααα,r r =()⎪⎪⎪⎭⎫ ⎝⎛-----→⎪⎪⎪⎭⎫ ⎝⎛→λλλλλλλλλλλλαααα2222431201101101111111111,,,(1)当1=λ时,()1).,,(,,),,(4321421321===ααααααααααr r r ,此时向量组等价 (2)当1≠λ时()⎪⎪⎪⎭⎫ ⎝⎛++---→⎪⎪⎪⎭⎫⎝⎛---+→⎪⎪⎪⎭⎫ ⎝⎛-++→24312)1(2001110111111001101110110110111,,,λλλλλλλλλλλαααα(i )当2-=λ时,3).,,(),,(2),,(4321421321===ααααααααααr r r ,,此时向量组不等价 (ii )当1,2-=-≠λλ时,3).,,(2),,(3),,(4321421321===ααααααααααr r r ,,,此时向量组不等价(iii )当1,2-≠-≠λλ时,3).,,(),,(),,(4321421321===ααααααααααr r r ,此时向量组等价 综上,当1,2-≠-≠λλ时,向量组321,,ααα与421,,ααα等价;选C8、随机变量)4,0(~N X ,随机变量⎪⎭⎫⎝⎛31,3~B Y ,且X 与Y 不相关,则=+-)13(Y X D ( )A: 2; B: 4; C: 6; D: 10. 答案:D .解析:由题意知,0),(32)(,4)(===Y X Cov Y D X D ,; 10)(9)()3()13(=+=-=+-Y D X D Y X D Y X D ,故选D .9、设随机变量序列 ,,,21n X X X 独立同分布,且i X 的概率密度为⎩⎨⎧<-=其他11)(x xx f 则当∞→n 时,∑=n i i X n 121依概率收敛于( )A :81; B : 61; C: 31; D: 21. 答案:B .解析:61)1(2)1()()(1211222=-=-==⎰⎰⎰-+∞∞-dx x x dx x x dx x f x X E i ,从而∑∑====⎪⎭⎫ ⎝⎛n i i n i i X E n X n E 121261)(11,由辛钦大数定律可得,∑=n i i X n 121依概率收敛于⎪⎭⎫ ⎝⎛∑=n i i X n E 121,从而选B .10、设二维随机变量),(Y X 的概率分布若事件}2},{max{==Y X A 与事件}1},{min{==Y X B 相互独立,则=),(Y X Cov ( )A :6.0- ; B: 36.0-; C: 0; D: 48.0. 答案:B .解析:1.0}2,1{)(,2.0)(,1.0)(=====+=Y X P AB P B P b A P ,由B A ,相互独立,故)()()(B P A P AB P =,解得4.0=b ,由分布律的性质得2.0=a ,6.0)(,2.1)(,2.0)(-==-=XY E Y E X E从而36.0)()()(),(-=-=Y E X E XY E Y X Cov ,故选B . 二、填空题:11~16题,每题5分,共30分.11、若=⎪⎪⎭⎫ ⎝⎛+→xx x e cot 021lim .答案:21e .解析:21tan 21lim21ln cot lim cot 00021lim e eeex e e x xxx x x xx ===⎪⎪⎭⎫⎝⎛+-⎪⎪⎭⎫ ⎝⎛+→→→.12、⎰=++-2024242dx x x x .答案:333ln π-. 解析:原式⎰⎰++-+++=2022024*******dx x x dx x x x ⎰⎰++-++++=20222022)3()1(1642)42(dx x x x x x d 20202|31arctan 36|)42ln(+-++=x x x 333ln π-=.13、已知函数x xe e xf sin sin )(-+=,则=''')2(πf .答案:0.解析:方法一:x xxe xex f sin sin cos cos )(--=',x x e x x e x x x f sin 2sin 2)sin (cos )sin (cos )(-++-='',)cos sin cos 2()sin (cos cos )sin (cos cos )cos sin cos 2()(sin sin 2sin 2sin x x x eex x x e x x x e x x x x f xxxx +-++--+--='''--从而01111)2(=+--='''πf . 方法二:x xe ex f sin sin )(-+=,显然)()(sin sin x f e e x f x x=+=--,故)(x f 为偶函数,且周期π2=T ,于是)(x f '为奇函数,)(x f ''为偶函数,)(x f '''为奇函数,从而0)0(='''f ,而0)0()2(='''='''f f π.14、已知⎩⎨⎧≤≤=其他,010,)(x e x f x ,则=-⎰⎰∞+∞-∞+∞-dy x y f x f dx )()( .答案:2)1(-e .解析:记}10,10|),{(≤-≤≤≤=x y x y x D ,原式⎰⎰⎰⎰-=-=Dx y x Ddxdy e e dxdy x y f x f )()(,2111)1()1(-=-==⎰⎰⎰+-e dy e e dy edx e x x xxy x.15、设A 为3阶矩阵,交换A 的第2行和第3行,再将第2列的1-倍加到第一列,得到矩阵⎪⎪⎪⎭⎫ ⎝⎛----=001011112B ,则1-A 的迹=-)(1A tr .答案:-1.解析:令⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=100011001,010********P P ,则B AP P =21 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛==--0100011111000110010010111120101000011211BP P A 0)1)(1(1011112=++-=-------=-λλλλλλE A ,解得i i -==-=321,,1λλλ 故1-A 的特征值为i i =-=-=321,,1λλλ,从而1)(1-=-A tr16、设C B A ,,为随机事件,且A 与B 互不相容,A 与C 互不相容,B 与C 相互独立,31)()()(===C P B P A P ,则=)|(C B A C B P .答案:85. 解析:()C B A P C B P C B A C B P )()|(=()98)()())(()()(95)()()()()()()()(=+=-+==-+=-+=C B P A P C B A P C B P A P C B A P C P B P C P B P BC P C P B P C B P从而85)|(=C B A C B P . 三、解答题:17~22小题,共94分,解答应写出文字说明,证明过程或演算步骤. 17、(本题满分10分)设函数)(x y 是微分方程x y xy +=+'221满足条件3)1(=y 的解,求曲线)(x y y =的渐近线.解:])2([)(2121C dx ex ex y dxxdxx+⎰+⎰=⎰-])2([C dx e x e x x ++=⎰-]2[C xee xx +=-xCe x -+=2,其中C 为任意常数,又3)1(=y ,得e C =,即xe x x y -+=12)(.22limlim 1=+==-+∞→+∞→xe x x y a xx x ,0lim )2(lim 1==-=-+∞→+∞→xx x e x y b ,故x y 2=为曲线)(x y y =的斜渐近线.18、(本题满分12分)设某产品的产量Q 由资本投入量x 和劳动投入量y 决定,生产函数为612112y x Q =,该产品的销售单价P 与Q 的关系为Q P 5.11160-=,若单位资本投入量和单位蓝洞投入量的价格分别为6和8,求利润最大时的产量.解:利润y x xy y x y x Q Q y x PQ L 862161392086)6.11160(86316121---=---=--=令⎪⎩⎪⎨⎧=--=--='=--=--='--------08)722320(872232006)722320(362166960612132326521612131316121y x xy xy y x L y x y y y x L yx,得驻点)64,256(, 此时38464256126=⨯⨯=Q ,在实际问题中由于驻点唯一,故利润L 在384=Q 处取到最大值. 19、(本题满分12分)已知平面区域}20,42|),{(2≤≤-≤≤-=y y x y y x D ,计算⎰⎰+-=Ddxdy y x y x I 222)(. 解:⎰⎰⎰⎰⎰⎰--+-=+-=ππϕϕπρρϕϕϕρρϕϕϕ2cos sin 20220202222)sin (cos )sin (cos )(d d d d dxdy y x y x I D⎰⎰+-=πππϕϕϕϕ2202)cos sin 21(2d d 22)12(2|)sin (2202-=+-=+-=ππππϕϕπ. 20、(本题满分12分)求幂级数∑∞=++-02)12(41)4(n nnn x n 的收敛域及和函数)(x S . 解:1)12(41)4()32(41)4(lim 22211n <++-++-+++∞→nnn n n n x n xn ,解得1||<x ,从而1=R ,收敛区间)1,1(-,当1±=x 时,∑∞=++-0)12(41)4(n nn n 收敛,故收敛域为]1,1[-. 当]1,1[-∈x ,令∑∑∞=∞=+++-=012)12(412)1()(n n n nn n n x x n x S , 令∑∑∞=+∞=≠+-=+-=0120210,12)1(112)1()(n n n n n n x n x x n x x S ,此时∑∑∞=∞=++=-='⎪⎪⎭⎫ ⎝⎛+-02201211)1(12)1(n nn n n n x x n x ,x dx x n x x n n n arctan 1112)1(0202=+=+-⎰∑∞=,故0,arctan 1)(1≠=x x xx S .∑∑∞=+∞=≠+=+=0120220,1241)12(4)(n n n n n n x n x x n x x S )(,此时2202012444114124x x x n x n n nn n n -=-=='⎪⎪⎭⎫ ⎝⎛+∑∑∞=∞=+)(,0,22ln 4412402012≠-+=-=+⎰∑∞=+x x x dx x n x x n n n )(,故0,22ln 1)(2≠-+=x xx x x S .0=x 时,2)0(=S .综上当]1,1[-∈x ,⎪⎩⎪⎨⎧=-∈-++=0,2]1,0)0,1[,22ln1arctan 1)(x x xx x x x x S ( . 21、(本题满分12分)已知二次型312322213212343),,(x x x x x x x x f +++=,(1)求正交变换Qy x =将),,(321x x x f 化为标准形; (2)证明:2)(min=≠xx x f T x . 解:(1)二次型对应矩阵⎪⎪⎪⎭⎫⎝⎛=301040103A ,0)2()4(3010401032=---=---=-λλλλλλE A ,解得4,2321===λλλ21=λ对应特征向量满足0)2(=-x E A ,解得⎪⎪⎪⎭⎫⎝⎛-=1011ξ432==λλ对应特征向量满足0)4(=-x E A ,解得⎪⎪⎪⎭⎫ ⎝⎛=0102ξ,⎪⎪⎪⎭⎫ ⎝⎛=1013ξ321,,ξξξ已经两两正交,单位化得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛-=22022,010,22022321ηηη,故存在正交矩阵),,(321ηηη=Q ,当Qy x =时232221321442),,(y y y y y y f ++=.(2)2322212322232221232221222442)()()(y y y y y y y y y y y y y y f Qy Q y y f x x x f T T T Qy x T ++++=++++==== 当0≠x 时,由Qy x =得0≠y ,当0,0132≠==y y y 时,2322212322222y y y y y ++++的最小值为2,故2)(min=≠xx x f Tx . 22、(本题12分)设n X X X ,,,21 为来自均值为θ的指数分布总体X 的简单随机样本,m Y Y Y ,,,21 为来自均值为θ2的指数分布总体Y 的简单随机样本,且两样本相互独立,其中)0(>θθ是未知参数,利用样本n X X X ,,,21 ,m Y Y Y ,,,21 ,求θ的最大似然估计量θˆ,并求)ˆ(θD . 解:由题知:总体Y X ,的概率密度为,0021)(,0001)(2⎪⎩⎪⎨⎧≤>=⎪⎩⎪⎨⎧≤>=--y y ey f x x ex f y YxX θθθθ令θθθθθθθθθ21211111121211),(),(∑∑=⋅=⋅===--+=-=-==∏∏∏∏mj j ni ij iy x n m m mj y ni x m j j Y ni i Xee e ey f x fLθθθ2ln )(2ln ln 11∑∑==--+--=mj jni i yx n m m L02ln 2121=+++-=∑∑==θθθθmj jni i yx n m d L d 解得⎪⎪⎭⎫⎝⎛++=∑∑==m j j n i i y x n m 11211ˆθ故θ的最大似然估计量⎪⎪⎭⎫⎝⎛++=∑∑==m j j n i i Y X n m 11211ˆθ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛++=∑∑∑∑====m j j n i i m j j n i i Y D X D n m Y X n m D D 11211)(41)()(1211)ˆ(θ⎪⎭⎫ ⎝⎛++=)(4)()(12j i Y D m X nD n m 而224)(,)(θθ==j i Y D X D ,从而n m m n n m D +=⎪⎭⎫ ⎝⎛⋅++=222244)(1)ˆ(θθθθ。
考研数学三真题及答案

6、设二次型 f x , x , x 在正交变换 x Py 下的标准形为 2 y2 y2 y2 ,其中 P e , e , e ,
133
1
2
3
123
若 Q e1, e3, e2 ,则 f x1, x3 , x3 在正交变换 x Qy 下的标准形为( )
(n +1)! nn (n+1)
= limç
n
÷n = 1 <1 ,所以(D)是收敛的。
n (n +1) n! n ç1+ n÷ e
1 1 ç 1÷ 1
1 ç 1÷
对于(B)选项, n1
n
ln
1
n
,
ln
ç1+
n
÷
,所以
n
n ln ç1+ n÷
11 ,根据 p 级数的
nn
5
f 1 2
11. 若函数 z z(x, y) 由方程 ex2 y3z xyz 1确定,则 dz (0,0)
【答案】 1 dx 2dy
3
zz 【解析】这道题目主要考查的是隐函数求偏导数。对于这道题目求全微分,分别求出 ,
xy
ex2
y3z
1
3
z x
【答案】2
【解析】对于这道题目主要是考查变上限积分求导数。
(1)
1
f (t)dt 1
0
x2
x2
(x) 0 xf (t)dt x0 f (t)dt
(x) x2 f (t)dt xf x 2 2x 0
(1)
1
0f
考研数三试题及答案

考研数三试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x,求f'(x)。
A. 3x^2 - 3B. x^3 - 3x^2C. 3x^2 - 3xD. x^3 - 3答案:A2. 计算积分∫(0到1) x dx。
A. 1/2B. 1C. 0D. 2答案:A3. 设矩阵A为3x3矩阵,且|A|=2,则矩阵A的逆矩阵的行列式|A^(-1)|等于多少?A. 1/2B. 2C. 1/4D. 4答案:C4. 求极限lim(x→0) (sin x)/x。
A. 1B. 0C. 2D. -1答案:A二、填空题(每题5分,共20分)5. 设函数g(x)=x^2+2x+1,求g(-1)的值为_________。
答案:06. 计算定积分∫(1到2) (x^2-1) dx的值为_________。
答案:27. 设向量a=(1,2),向量b=(3,-4),则向量a和向量b的点积a·b 为_________。
答案:-58. 设函数h(x)=e^x,求h'(x)的值为_________。
答案:e^x三、解答题(每题10分,共60分)9. 求函数y=x^2-4x+4的极值。
答案:函数y=x^2-4x+4可以写成y=(x-2)^2,这是一个开口向上的抛物线,因此它没有极值。
10. 计算定积分∫(0到π) sin x dx。
答案:011. 设矩阵B为2x2矩阵,B=|1 2; 3 4|,求矩阵B的行列式。
答案:-212. 求极限lim(x→∞) (1+1/x)^x。
答案:e13. 计算二重积分∬D (x^2+y^2) dxdy,其中D为x^2+y^2≤1的区域。
答案:π14. 设函数z=x^2y+y^2x,求偏导数∂z/∂x和∂z/∂y。
答案:∂z/∂x = 2xy + y^2,∂z/∂y = x^2 + 2xy四、证明题(每题10分,共20分)15. 证明:若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
2023年考研数学三真题及答案-完整版

且喜平常度,切忌神慌乱。
畅游题海后,金榜题君名。
考试在即,祝你成功。
2023年考研数学三真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上. 1. 已知函数(,)ln(|sin |)f x y y x y =+,则( ).A.(0,1)f x ∂∂不存在,(0,1)fy∂∂存在B.(0,1)f x ∂∂存在,(0,1)fy∂∂不存在C. (0,1)f x ∂∂存在,(0,1)fy∂∂存在D. (0,1)f x ∂∂不存在,(0,1)fy∂∂不存在【答案】A.【解析】由已知(,)ln(|sin |)f x y y x y =+,则(,1)ln(1|sin1|)f x x =+,(0,)ln f y y =.当0x >时,(,1)ln(1sin1)f x x =+,(0,1)0(,)d (,1)sin1d x f x y f x x x =∂==∂;当0x <时,(,1)ln(1sin1)f x x =-,(0,1)0(,)d (,1)sin1d x f x y f x x x =∂==-∂;所以(0,1)(,)f x y x ∂∂不存在.又(0,1)1(,)d (0,)1d y f x y f y y y=∂==∂,存在.故选A.2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3. 若0y ay by '''++=的通解在(,)-∞+∞上有界,则( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D.【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e(cos sin )22a x y x C x C x -=+;②若240a b ->,则通解为2212()eea a x x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.4. 设n n a b <,且1nn a∞=∑与1nn b∞=∑收敛,1nn a∞=∑绝对收敛是1nn b∞=∑绝对收敛的( ).A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分又非必要条件【解析】由已知条件可知1()nn n ba ∞=-∑为收敛的正项级数,进而1()n n n b a ∞=-∑绝对收敛.设1nn a∞=∑绝对收敛,则由n n n n n n n b b a a b a a =-+≤-+与比较判别法,得1nn b∞=∑绝对收玫;设nb∞∑绝对收敛,则由n n n n n n n a a b b b a b =-+≤-+与比较判别法,得1nn a∞=∑绝对收敛.故选A.5.,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A BC.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A 【答案】B. 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O A B O O B O B O B O E OA B ,故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E AB O O B O B O A B 1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A .故选B.. 6.222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,211210||134(7)131143141λλλλλλλ---=--=+-----A E210(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.7.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ B. 35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C. 11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D. 15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D.【解析】设11223142k k k k =+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得T T T T 1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.8.设X 服从参数为1的泊松分布,则(|()|)E X E X -=( ).A.1eB.12C.2eD.1【答案】C.【解析】方法一:由已知可得,1e {}(0,1,2,)!P X k k k -===L ,()1E X =,故111100|1|(1)(|()|)(|1|)e e e e!!k k k k E X E X E X k k ∞∞----==---=-==++∑∑12=2e (1)eE X -+-=. 故选C.方法二:由于0e !k xk x k ∞==∑,于是1111e 1(1)!(1)!k k x k k x x x k x k x +∞∞==--==++∑∑于是 1121111e 1(1)e 1(1)!(1)!(1)!k k k x x k k k kx x x x x k k x k x x -+∞∞∞==='''⎛⎫⎛⎫⎛⎫---+==== ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∑∑∑. 由已知可得,1e {}(0,1,2,)!P X k k k -===L ,()1E X =,故 111(1)(|()|)(|1|)e e !k k E X E X E X k ∞--=--=-=+∑111=e e (1)!k k k ∞--=++∑1121(1)e 1=e e x x x x --=-++112e e e --=+=. 111(|()|)(||)[e ()]e ()1e E X E X E Y E Y E X ----==+=+-=.故选C.9.设12,,,n X X X L 为来自总体21(,)N μσ的简单随机样本,12,,,m Y Y Y L 为来自总体22(,2)N μσ的简单随机样本,且两样本相互独立,记11ni i X X n ==∑,11m i i Y Y m ==∑,22111()1n i i S X X n ==--∑,22211()1m i i S Y Y m ==--∑,则( ) A. 2122(,)S F n m S : B. 2122(1,1)S F n m S --: C. 21222(,)S F n m S : D. 21222(1,1)S F n m S --: 【答案】D.【解析】由两样本相互独立可得212(1)n S σ-与222(1)2m S σ-相互独立,且 2212(1)(1)n S n χσ--:,2222(1)(1)2m S m χσ--:, 因此2122122222(1)(1)2(1,1)(1)(1)2n S n S F n m m S S m σσ--=----:,故选D.10. 已知总体X 服从正态分布2(,)N μσ,其中0σ>为未知参数,1X ,2X 为来自总体X的简单随机样本,记12ˆ||a X X σ=-,若µ()E σσ=,则a =( ).A.2B.2【答案】A.【解析】由与1X ,2X 为来自总体X 的简单随机样本,1X ,2X 相互独立,且21(,)X N μσ:,22(,)X N μσ:,因而212~(0,2)X X N σ-,令12Y X X =-,所以Y 的概率密度为2222()ey Y f y σ-⋅=,所以22222240(||)|ed 2ed y y E Y y y y σσ--+∞+∞⋅-∞===⎰⎰,由12ˆ()(||)E aE X X σσ=-=,即(||)aE Y a σ==,解得a =A.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.求极限211lim 2sincos x x x x x →∞⎛⎫--= ⎪⎝⎭____________. 【答案】23. 【解析】1220sin 2cos 11lim 2sincos limx tx t tt t x x x x t=→∞→--⎛⎫-- ⎪⎝⎭222230000sin 111cos sin 2limlimlim lim t t t t t ttt t t t t t t →→→→---=+=+1126=+ 23=. 12.已知函数(,)f x y 满足22d d d (,)x y y xf x y x y -=+,且(1,1)4f π=,则f =____________.【答案】3π. 【解析】由已知22(,)f x y y x x y ∂-=∂+,22(,)f x y xy x y ∂=∂+,则 22(,)d arctan ()y x f x y x y x y yϕ-==-++⎰, 所以22(,)()f x y xy y x yϕ∂'=+∂+,即()0y ϕ'=,()y C ϕ=, 从而(,)arctanxf x y C y=-+,又(1,1)4f π=,解得2C π=,故(,)arctan2x f x y yπ=-,arctan 233f ππ=-=.13.20(2)!nn x n ∞==∑____________.【答案】e e 2x x-+.【解析】令20()(2)!nn x S x n ∞==∑,则(0)1S =,且211()(21)!n n x S x n -∞='=-∑,(0)0S '=, 22210()()(22)!(2)!n nn n x x S x S x n n -∞∞==''===-∑∑,从而可得微分方程()()0S x S x ''-=,解得12()e e x xS x C C -=+,又(0)1S =,(0)0S '=,解得1212C C ==,故 20e e ()(2)!2n x xn x S x n -∞=+==∑. 14.某公司在t 时刻的资产为()f t ,则从0时刻到t 时刻的平均资产等于()f t t t-,假设()f t 连续且(0)0f =,则()f t =____________.【答案】2(e 1)t t --.【解析】由已知可得()d ()tf t t f t t tt=-⎰,整理变形20()d ()t f t t f t t =-⎰,等式两边求导()()2f t f t t '=-,即()()2f t f t t '-=,解得一阶线性微分方程通解为()2(1)e t f t t C =-++,又(0)0f =,解得2C =,故()2(e 1)tf t t =--.15. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a= ,则11120a a ab =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.16. 设随机变量X 与Y 相互独立,且()1,X B p :,()2,Y B p :,(0,1)p ∈则X Y+与XY -的相关系数为____________.【答案】13-【解析】由题意可得,()(1)D X p p =-,()2(1)D Y p p =-,又由X 与Y 相互独立可知,()()()D X Y D X D Y ±=+,故(,)X Y X Y ρ+-==()()(1)2(1)1()()(1)2(1)3D X D Y p p p p D X D Y p p p p ----===-+-+-三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知函数()y y x =满足2e ln(1)cos 0xa y y x yb ++-++=,且(0)0,(0)0y y '==.(1)求,a b 的值;(2)判断0x =是否为函数()y y x =的极值点.【解】(1)将(0)0y =代入2e ln(1)cos 0x a y y x y b ++-++=得0a b +=. 方程2e ln(1)cos 0x a y y x y b ++-++=两边对x 求导得1e 2cos ln(1)sin 01x a yy y y x y y x'''++-++⋅=+, 将(0)0y '=代入上式得10a -=,解得1,1a b ==-.(2)由(1)知1e 2cos ln(1)sin 01xyy y y x y y x'''++-++⋅=+,上式两边再对x 求导得 22111e 2()2cos sin sin ln(1)cos ln(1)sin (1)11x y yy y y y y y x y y y x y y x x x ⎡⎤''''''''+++++⋅+++⋅++⋅⎢⎥+++⎣⎦将(0)0,(0)0y y '==代入上式得(0)2y ''=-,所以0x =是函数()y y x =的极大值点.18.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成得旋转体的体积 【解】(1)222144sec 1d d tan sec sin t S x t t t t tππππ+∞===⎰⎰⎰222244sin 1d d cos sin 1cos t t t tt ππππ==--⎰⎰241cos 11ln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰. 19.(本题满分12分)已知22{(,)|(1)1}D x y x y =-+≤,求1|d d Dx y -⎰⎰.【解】令22221{(,)|(1)1,1}D x y x y x y =-+≤+≤,则|1|d d Dx y ⎰⎰)(111d d 1d d D D D x y x y -=+⎰⎰⎰⎰)(11d d 21d d DD x y x y =+⎰⎰⎰⎰2cos 122232cos 234327d d 2d d 39ππθππθππρρθπρρθ---=-+=⎰⎰⎰⎰20.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数.(1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a aξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a a η''≥--. 【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+,其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<,22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<,两式相加可得212()()()()2f f f a f a a ξξ''''+-+=,又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=,即21()[()()]f f a f a a ξ=-+. (2)设()f x 在0x 处取得极值,则0()0f x '=.将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+, 其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=-221020|()|()|()|()22f a x f a x ηη''''+-≤+220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=,即21|()||()()|2f f a f a aη''≥--.21.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A . (1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ.【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A , 即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A . (2)111101||211(2)20011011λλλλλλλλ---=--=+-----A E ,(2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭α;1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α;211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α,令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫⎪== ⎪ ⎪-⎝⎭P AP Λ.22.(本题满分12分)设随机变量X 的概率密度函数为2e (),(1e )xx f x x =-∞<<+∞+,令e X Y =. (1)求X 的分布函数; (2)求Y 的概率密度函数; (3)判断Y 的数学期望是否存在.【解】(1)设X 的分布函数为()X F x ,由分布函数的定义可得2e 1(){}()d d 1,(1e )1et xxX t t F x P X x f x x t x -∞-∞=≤===--∞<<+∞++⎰⎰. (2)设Y 的分布函数为()Y F y ,概率密度为()Y f y ,由分布函数的定义可得(){}{e }X Y F y P Y y P y =≤=≤,当0y ≤时,()0Y F y =; 当0y >时,1(){}{ln }(ln )11Y X F y P Y y P X y F y y=≤=≤==-+. 综上,00,()110.1Y y F y y y ≤⎧⎪=⎨->⎪+⎩,, 故Y 的概率密度函数200,()10.(1)Y y f y y y ≤⎧⎪=⎨>⎪+⎩,,(3)由(2)知,220011()()d d d (1)(1)Y yy E Y yf y y y y y y +∞+∞+∞-∞+-===++⎰⎰⎰20011d d 1(1)y y y y +∞+∞=-++⎰⎰ 01ln(1)=1y y +∞⎡⎤=+++∞⎢⎥+⎣⎦, 故Y 的数学期望不存在.。
考研数学三历年真题及答案

设F(x)=f(x)g(x),其中函数f(x),g(x)在 内满足以下条件:
, ,且f(0)=0,
(1)求F(x)所满足的一阶微分方程;
(2)求出F(x)的表达式.
八、〔此题总分值8分〕
设函数f(x)在[0,3]上连续,在〔0,3〕内可导,且f(0)+f(1)+f(2)=3, f(3)=1.试证必存在 ,使
〔6〕将一枚硬币独立地掷两次,引进事件: ={掷第一次出现正面}, ={掷第二次出现正面}, ={正、反面各出现一次}, ={正面出现两次},那么事件
(A) 相互独立. (B) 相互独立.
(C) 两两独立. (D) 两两独立. [ C ]
【分析】按照相互独立与两两独立的定义进展验算即可,注意应先检查两两独立,假设成立,再检验是否相互独立.
〔5〕设 均为n维向量,以下结论不正确的选项是
(A)假设对于任意一组不全为零的数 ,都有 ,那么 线性无关.
(B)假设 线性相关,那么对于任意一组不全为零的数 ,都有
(C) 线性无关的充分必要条件是此向量组的秩为s.
(D) 线性无关的必要条件是其中任意两个向量线性无关. [ ]
〔6〕将一枚硬币独立地掷两次,引进事件: ={掷第一次出现正面}, ={掷第二次出现正面}, ={正、反面各出现一次}, ={正面出现两次},那么事件
(C) 线性无关,那么此向量组的秩为s;反过来,假设向量组 的秩为s,那么 线性无关,因此(C)成立.
(D) 线性无关,那么其任一局部组线性无关,当然其中任意两个向量线性无关,可见(D)也成立.
综上所述,应选(B).
【评注】原命题与其逆否命题是等价的.例如,原命题:假设存在一组不全为零的数 ,使得 成立,那么 线性相关.其逆否命题为:假设对于任意一组不全为零的数 ,都有 ,那么 线性无关.在平时的学习过程中,应经常注意这种原命题与其逆否命题的等价性.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年全国硕士研究生入学统一考试数学(三)试题解析一、选择题:1:8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)设{}n x 是数列,下列命题中不正确的是 ( ) (A) 若lim →∞=n n x a ,则 221lim lim +→∞→∞==n n n n x x a(B) 若221lim lim +→∞→∞==n n n n x x a , 则lim →∞=n n x a(C) 若lim →∞=n n x a ,则 331lim lim +→∞→∞==n n n n x x a(D) 若331lim lim +→∞→∞==n n n n x x a ,则lim →∞=n n x a【答案】(D)【解析】答案为D, 本题考查数列极限与子列极限的关系.数列()n x a n →→∞⇔对任意的子列{}k n x 均有()k n x a k →→∞,所以A 、B 、C 正确; D 错(D 选项缺少32n x +的敛散性),故选D(2) 设函数()f x 在(),-∞+∞内连续,其2阶导函数()f x ''的图形如右图所示,则曲线()=y f x 的拐点个数为 ( )(A) 0 (B) 1 (C) 2 (D) 3 【答案】(C)【解析】根据拐点的必要条件,拐点可能是不存在的点或的点处产生.所以有三个点可能是拐点,根据拐点的定义,即凹凸性改变的点;二阶导函数符号发生改变的点即为拐点.所以从图可知,拐点个数为2,故选C.(3) 设 (){}2222,2,2=+≤+≤D x y xy x x y y ,函数(),f x y 在D 上连续,则(),d d Df x y x y =⎰⎰ ( )(A)()()2cos 2sin 4204d cos ,sin d d cos ,sin d f r r r r f r r r r θθθθθθθθπππ+⎰⎰⎰⎰ (B)()()2sin 2cos 420004d cos ,sin d d cos ,sin d f r r r r f r r r r θθθθθθθθπππ+⎰⎰⎰⎰()f x ''()0f x ''=()y f x =()f x ''(C) ()1012d ,d xxf x y y ⎰⎰(D) ()102d ,d xxf x y y ⎰【答案】(B)【解析】根据图可得,在极坐标系下该二重积分要分成两个积分区域所以,故选B.(4) 下列级数中发散的是( )(A) 13n n n∞=∑ (B)1)n n ∞=+∑(C) 2(1)1ln n n n ∞=-+∑ (D)1!n n n n∞=∑ 【答案】(C)【解析】A 为正项级数,因为,所以根据正项级数的比值判别法收敛;B,根据级数收敛准则,知收敛;C ,,根据莱布尼茨判别法知收敛, 发散,所以根据级数收敛定义知,发散;D 为正项级数,因为,所以根据正项级数的比值判别法收敛,所以选C.1(,)0,02sin 4D r r πθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭2(,),02cos 42D r r ππθθθ⎧⎫=≤≤≤≤⎨⎬⎩⎭2sin 2cos 4204(,)(cos ,sin )(cos ,sin )Df x y dxdy d f r r rdr d f r r rdr ππθθπθθθθθθ=+⎰⎰⎰⎰⎰⎰11113lim lim 1333n n n nn n n n +→∞→∞++==<13nn n∞=∑3211)n n +:P 11)n n ∞=+111(1)1(1)1ln ln ln n n n n n n n n ∞∞∞===-+-=+∑∑∑1(1)ln nn n∞=-∑11ln n n ∞=∑1(1)1ln n n n ∞=-+∑11(1)!(1)!1(1)lim lim lim 1!!(1)1nn n n n n n nn n n n n n n n n e n ++→∞→∞→∞+++⎛⎫===< ⎪++⎝⎭1!n n n n ∞=∑(5)设矩阵21111214a a ⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,21d d ⎛⎫⎪ ⎪= ⎪⎪⎝⎭b .若集合}{1,2Ω=,则线性方程组=Ax b 有无穷多解的充分必要条件为 ( )(A) ,a d ∉Ω∉Ω (B) ,a d ∉Ω∈Ω (C) ,a d ∈Ω∉Ω (D) ,a d ∈Ω∈Ω 【答案】(D)【解析】2211111111(,)1201111400(1)(2)(1)(2)A b ad a d a d a a d d ⎛⎫⎛⎫⎪ ⎪=→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,由()(,)3r A r A b =<,故1a =或2a =,同时1d =或2d =.故选(D ) (6) 设二次型()123,,f x x x 在正交变换=x Py 下的标准形为2221232y y y +-,其中123(,,)=P e e e ,若132(,,)=-Q e e e 则123(,,)f x x x =在正交变换=x Qy 下的标准形为( )(A)2221232y y y -+ (B) 2221232y y y +- (C) 2221232y y y -- (D) 2221232y y y ++ 【答案】(A)【解析】由x Py =,故222123()2T T T f x Ax y P AP y y y y ===+-. 且200010001TP AP ⎛⎫⎪= ⎪ ⎪-⎝⎭.又因为100001010Q P PC ⎛⎫ ⎪== ⎪ ⎪-⎝⎭故有200()010001T T TQ AQ C P AP C ⎛⎫⎪==- ⎪ ⎪⎝⎭所以222123()2T T T f x Ax y Q AQ y y y y ===-+.选(A )(7) 若,A B 为任意两个随机事件,则: ( ) (A)()()()≤P AB P A P B (B)()()()≥P AB P A P B (C) ()()()2+≤P A P B P AB (D) ()()()2+≥P A P B P AB【答案】(C)【解析】由于,AB A AB B ⊂⊂,按概率的基本性质,我们有()()P AB P A ≤且()()P AB P B ≤,从而()()()2P A P B P AB +≤≤,选(C) .(8) 设总体()~,,X B m θ12,,,n X X X K 为来自该总体的简单随机样本, X 为样本均值,则()21ni i E X X=⎡⎤∑-=⎢⎥⎣⎦( ) (A) ()()11θθ--m n (B)()()11θθ--m n (C)()()()111θθ---m n (D)()1θθ-mn 【答案】(B)【解析】根据样本方差2211()1ni i S X X n ==--∑的性质2()()E S D X =,而()(1)D X m θθ=-,从而221[()](1)()(1)(1)ni i E X X n E S m n θθ=-=-=--∑,选(B) .二、填空题:9:14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9) 20ln(cos )lim__________.x x x→= 【答案】 【解析】原极限(10)设函数()f x 连续,2()()d ,x x xf t t ϕ=⎰若(1)1,(1)5,ϕϕ'==则(1)________.f =【答案】【解析】因为连续,所以可导,所以;因为,所以12-2200ln(1cos 1)cos 11limlim 2x x x x x x →→+--===-2()f x ()x ϕ2220()()2()x x f t dt x f x ϕ'=+⎰(1)1ϕ=1(1)()1f t dt ϕ==⎰又因为,所以故(11)若函数(,)z z x y =由方程23e1x y zxyz +++=确定,则(0,0)d _________.z=【答案】 【解析】当,时带入,得.对求微分,得把,,代入上式,得 所以 (12)设函数()y y x =是微分方程20y y y '''+-=的解,且在0x =处取得极值3,则()________.y x =【答案】【解析】的特征方程为,特征根为,,所以该齐次微分方程的通解为,因为可导,所以为驻点,即,,所以,,故(13)设3阶矩阵A 的特征值为2,2,1-,2,=-+B A A E 其中E 为3阶单位矩阵,则行列式________.=B【答案】 21【解析】A 的所有特征值为2,2,1.-B 的所有特征值为3,7,1. 所以||37121B =⨯⨯=.(14)设二维随机变量(,)X Y 服从正态分布(1,0;1,1;0)N ,则(1)5ϕ'=1(1)()2(1)5f t dt f ϕ'=+=⎰(1)2f =1233dx dy --0x =0y =231x y ze xyz +++=0z =231x y zexyz +++=2323()(23)()x y z x y z d e xyz e d x y z d xyz +++++=+++23(23)x y z e dx dy dz yzdx xzdy xydz ++=+++++0=0x =0y =0z =230dx dy dz ++=(0,0)1233dz dx dy =--2()2xx y x ee -=+20y y y '''+-=220λλ+-=2λ=-1λ=212()xx y x C eC e -=+()y x 0x =(0)3y =(0)0y '=11C =22C =2()2x x y x e e -=+{0}_________.P XY Y -<=【答案】12【解析】由题设知,~(1,1),~(0,1)X N Y N ,而且X Y 、相互独立,从而{0}{(1)0}{10,0}{10,0}P XY Y P X Y P X Y P X Y -<=-<=-><+-<>11111{1}{0}{1}{0}22222P X P Y P X P Y =><+<>=⨯+⨯=. 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10 分)设函数3()ln(1)sin ,()f x x a x bx x g x c kx =+++==.若()f x 与()g x 在0x →时是等价无穷小,求,,a b k 的值.【答案】 111,,23a b k --=-==【解析】法一:因为,, 则有,, 可得:,所以,.法二: 由已知可得得由分母,得分子,求得233ln(1)()23x x x x o x +=-++33sin ()3!x x x o x =-+23333000(1)()()()ln(1)sin 231lim lim lim ()x x x a aa xb x x o x f x x a x bx x g x kx kx→→→++-+++++===100213a ab ak⎧⎪+=⎪⎪-=⎨⎪⎪=⎪⎩11213a b k ⎧⎪=-⎪⎪=-⎨⎪⎪=-⎪⎩300sin )1ln(lim )()(lim1kxxbx x a x x g x f x x +++==→→203cos sin 11lim kxx bx x b x ax ++++=→03lim 2=→kx x )cos sin 11(lim 0x bx x b xax ++++→0)1(lim 0=+=→a xc ;于是由分母,得分子,求得; 进一步,b 值代入原式,求得(16)(本题满分10 分) 计算二重积分()d d Dx x y x y +⎰⎰,其中222{(,)2,}.D x y x y y x =+≤≥ 【答案】245π-【解析】)()(lim10x g x f x →=23cos sin 111lim kx x bx x b x x +++-=→)(x kx xx bx x x b x x +++++=→13cos )1(sin )1(lim223cos )1(sin )1(limkx xx bx x x b x x ++++=→kxxx bx x bx x x b x x b x b x 6sin )1(cos cos )1(cos )1(sin 1lim0+-++++++=→06lim 0=→kx x ]sin )1(cos cos )1(2sin 1[lim 0x x bx x bx x x b x b x +-++++→0)cos 21(lim 0=+=→x b x 21-=b )()(lim 10x g x f x →=kxx x x x x x x x x 6sin )1(21cos 21cos )1(sin 211lim0++-+--=→k xx x x x x x x x x x x x x x 6cos )1(21sin 21sin )1(21sin 21cos 21sin )1(cos cos 21lim 0++++++-++--=→k621-=.31-=k 2()DDx x y dxdy x dxdy +=⎰⎰⎰⎰21202xdx dy =⎰12202)x x dx =⎰(17)(本题满分10分)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设Q 为该商品的需求量,P 为价格,MC 为边际成本,η为需求弹性(0)η>.(I) 证明定价模型为11MCP η=-; (II) 若该商品的成本函数为2()1600C Q Q =+,需求函数为40Q P =-,试由(I )中的定价模型确定此商品的价格.【答案】(I)略(II) .【解析】(I)由于利润函数,两边对求导,得. 当且仅当时,利润最大,又由于,所以, 故当时,利润最大. (II)由于,则代入(I)中的定价模型,得,从而解得.(18)(本题满分10 分)设函数()f x 在定义域I 上的导数大于零,若对任意的0x I ∈,曲线()y f x =在点00(,())x f x 处的切线与直线0x x =及x 轴所围成区域的面积恒为4,且(0)2f =,求()f x 表达式.【答案】()84f x x=-12240022222sin 2cos 55x t xt tdt π=--⎰⎰22242002222sin 2sin .5545u t tdt udu πππ==-=-=-⎰⎰30P =()()()()L Q R Q C Q PQ C Q =-=-Q ()dL dP dP P Q C Q P Q MC dQ dQ dQ'=+-=+-0dL dQ =()L Q P dQ Q dPη=-⋅1dP PdQ Q η=-⋅11MCP η=-()22(40)MC C Q Q P '===-40P dQ P Q dP Pη=-⋅=-2(40)401P P P P-=--30P =【解析】曲线的切线方程为,切线与轴的交点为故面积为:. 故满足的方程为,此为可分离变量的微分方程,解得,又由于,带入可得,从而 (19)(本题满分 10分)(I )设函数(),()u x v x 可导,利用导数定义证明[()()]()()()();u x v x u x v x u x v x '''=+ (II )设函数12(),(),,()n u x u x u x L 可导,12()()()()n f x u x u x u x =L ,写出()f x 的求导公式.【答案】【解析】(I )(II )由题意得(20) (本题满分 11分)设矩阵101101a a a ⎛⎫⎪- ⎪ ⎪⎝⎭A =,且3=A O .(I) 求a 的值;()()()000y f x f x x x '-=-x ()()000,0f x x f x ⎛⎫- ⎪ ⎪'⎝⎭()()200142f x S f x =='()f x ()()28f x f x '=()8f x x C -=+()0=2f 4C =-()84f x x=-12()[()()()]n f x u x u x u x ''=L 121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++L L L L 0()()()()[()()]limh u x h v x h u x v x u x v x h→++-'=0()()()()()()()()limh u x h v x h u x h v x u x h v x u x v x h→++-+++-=00()()()()lim ()lim ()h h v x h v x u x h u x u x h v x h h→→+-+-=++()()()()u x v x u x v x ''=+12()[()()()]n f x u x u x u x ''=L 121212()()()()()()()()()n n n u x u x u x u x u x u x u x u x u x '''=+++L L L L(II)若矩阵X 满足22--+=X XA AX AXA E ,其中E 为3阶单位矩阵,求X .【答案】3120,111211a X -⎛⎫ ⎪==- ⎪ ⎪-⎝⎭【解析】(I)323100100111100011a A O A a a a a a aaa=⇒=⇒-=--==⇒=-(II)由题意知()()()()()()()()()222211122212X XA AX AXA E X E A AX E A E E A X E A E X E A E A E A E A X E A A ------+=⇒---=⎡⎤⇒--=⇒=--=--⎣⎦⇒=--2011111112E A A -⎛⎫⎪--=- ⎪ ⎪--⎝⎭,011100111010111010011100112001112001----⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭MM M M M M 111010111010011100011100021011001211------⎛⎫⎛⎫ ⎪ ⎪→--→-- ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭M M M M M M 110201100312010111010111001211001211---⎛⎫⎛⎫ ⎪ ⎪→-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭M M M M M M 312111211X -⎛⎫ ⎪∴=- ⎪ ⎪-⎝⎭(21) (本题满分11 分)设矩阵02313312a -⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭A 相似于矩阵12000031b -⎛⎫⎪⎪ ⎪⎝⎭B =.(I) 求,a b 的值;(II )求可逆矩阵P ,使1-P AP 为对角矩阵.【答案】2314,5,101011a b P --⎛⎫ ⎪===- ⎪ ⎪⎝⎭【解析】(1) ~()()311A B tr A tr B a b ⇒=⇒+=++23120133001231--=⇒--=-A B b a14235-=-=⎧⎧∴⇒⎨⎨-==⎩⎩a b a a b b 023100123133010123123001123---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪∴=--=+--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭A E C()123112*********---⎛⎫⎛⎫ ⎪ ⎪=--=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭CC 的特征值1230,4λλλ===0λ=时(0)0-=E C x 的基础解系为12(2,1,0);(3,0,1)ξξ==-T T 5λ=时(4)0-=E C x 的基础解系为3(1,1,1)ξ=--TA 的特征值1:1,1,5λλ=+A C令123231(,,)101011ξξξ--⎛⎫⎪==- ⎪ ⎪⎝⎭P ,1115-⎛⎫ ⎪∴= ⎪ ⎪⎝⎭P AP(22) (本题满分11 分)设随机变量X 的概率密度为()2ln 2,00,0xx f x x -⎧>⎪=⎨≤⎪⎩,对X 进行独立重复的观测,直到第2个大于3的观测值出现时停止,记Y 为观测次数(I)求Y 的概率分布; (II)求()E Y .【答案】(I)12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =L ; (II)16E Y =().【解析】(I) 记p 为观测值大于3的概率,则313228()ln x p P X dx +∞-=>==⎰,从而12221171188n n n P Y n C p p p n ---==-=-{}()()()(),23,,n =L 为Y 的概率分布; (II) 法一:分解法:将随机变量Y 分解成=Y M N +两个过程,其中M 表示从1到()n n k <次试验观测值大于3首次发生,N 表示从1n +次到第k 试验观测值大于3首次发生.则M Ge n p ~(,),N Ge k n p -(,):(注:Ge 表示几何分布)所以11221618E Y E M N E M E N p p p =+=+=+===()()()(). 法二:直接计算22212221777711288888n n n n n n n E Y n P Y n n n n n ∞∞∞---====⋅==⋅-=⋅--+∑∑∑(){}()()()()[()()()]记212111()()n n S x n n xx ∞-==⋅--<<∑,则2113222211n n n n n n S x n n xn xx x ∞∞∞--==='''=⋅-=⋅==-∑∑∑()()()()(),12213222111()()()()()n n n n xS x n n xx n n x xS x x ∞∞--===⋅-=⋅-==-∑∑, 2222313222111()()()()()nn n n x S x n n x xn n xx S x x ∞∞-===⋅-=⋅-==-∑∑,所以212332422211()()()()()x x S x S x S x S x x x-+=-+==--, 从而7168E Y S ==()(). (23) (本题满分11 分)设总体X 的概率密度为,1,(,),x f x θθθ⎧≤≤⎪=-⎨⎪⎩110其他,其中θ为未知参数,12n X ,X ,,X L 为来自该总体的简单随机样本.(I)求θ的矩估计量; (II)求θ的最大似然估计量.【答案】(I)$1121ni i X X X n θ==-=∑, ;(II)$12nX X X θ=min{,,,}L . 【解析】(I)11112()(;)E X xf x dx x dx θθθθ+∞-∞+==⋅=-⎰⎰, 令()E X X =,即12X θ+=,解得$1121ni i X X X n θ==-=∑,为θ的矩估计量 ;(II)似然函数11110,()(;),n ni i i x L f x θθθθ=⎧⎛⎫≤≤⎪ ⎪==-⎨⎝⎭⎪⎩∏其他, 当1i x θ≤≤时,11111()()nni L θθθ===--∏,则1ln ()ln()L n θθ=--.从而1ln ()d L nd θθθ=-,关于θ单调增加,所以$12nX X X θ=min{,,,}L 为θ的最大似然估计量.。