CRISPRCas基因敲除原理及其应用
基因编辑技术的新突破CRISPRCas在生物学研究中的应用

基因编辑技术的新突破CRISPRCas在生物学研究中的应用基因编辑技术的新突破CRISPR-Cas在生物学研究中的应用随着科技的飞速发展,基因编辑技术正逐渐成为生物学研究领域的热门话题。
其中,CRISPR-Cas系统被公认为最具潜力的基因编辑技术之一。
本文将介绍CRISPR-Cas技术的原理及其在生物学研究中的应用。
一、CRISPR-Cas技术的原理CRISPR-Cas系统是一种细菌和古细菌天然存在的免疫系统。
它通过特定的基因编辑工具,如Cas9酶,识别并切割DNA序列,从而实现基因组的定点修改。
CRISPR-Cas技术的核心是靶向性寻找和修饰DNA序列,其革命性在于只需简单设计合适的RNA引导序列即可实现对特定基因的编辑。
二、CRISPR-Cas技术在生物学研究中的应用1. 基因功能研究CRISPR-Cas技术为研究人员提供了一种高效的基因编辑方法,能够准确地揭示基因在细胞和生物体中的功能。
通过引入特定的突变或删除特定基因,研究人员可以验证基因对生物体生理和病理过程的影响,为研究疾病治疗提供有力的依据。
2. 疾病模型建立CRISPR-Cas技术使得建立动物模型更加简单和高效。
通过编辑动物模型的特定基因,研究人员能够模拟人类疾病的发展过程,进一步研究疾病的发生机制和药物治疗策略。
这为疾病的早期筛查和新药开发提供了重要的平台。
3. 农作物遗传改良CRISPR-Cas技术还在农业领域发挥着重要作用。
通过对农作物基因组的编辑,研究人员能够改良作物的品质、抗病能力和产量,从而提高农作物的经济效益和耐逆性。
这对于全球粮食安全和可持续发展具有重要意义。
4. 基因治疗CRISPR-Cas技术为基因治疗提供了新的可能性。
通过修复或替换患者异常基因,CRISPR-Cas技术可以治愈一些遗传性疾病,如囊性纤维化和遗传性失聪。
然而,基因治疗涉及伦理和安全等问题,仍需更多的研究和临床试验来验证其可行性和安全性。
三、CRISPR-Cas技术的挑战和前景尽管CRISPR-Cas技术在基因编辑领域具有巨大潜力,但仍面临一些挑战。
CRISPRCas9技术的原理及应用

基因打靶小鼠制作流程
2.5-3 mouth
设计
•打靶载体 •鉴定方案
ES打靶
• 药物筛选 • 中靶鉴定
37-54 day
注射
• 囊胚注射 • 胚胎移植
繁育
• 繁育 • 建系
sgRNA筛 选
囊胚打靶测 试
注射
• 囊胚注射 • 胚胎移植
繁育
• 繁育 • 建系
鉴定
• 基因型鉴定 • 突变检测
胚胎冷冻
鉴定
• 传统KO,需要较长的同源臂(3000-5000bp),且打靶载体定的 构 建难度大,耗时长,
• 既然同源重组效率高,同源臂降低也可发生高效重组, 且多位点同时 发生同源重组也可实现
• 以CKO为例,介绍结合Cas9发生KI,完成CKO模型
常规CKO
借助Cas9切割,利用KI实现常规CKO
调节基因转录的Cas9模式
We next examined whether CRISPRi could block a transcription factor from binding to enhancer sites This suggests that dCas9 can sterically compete with transcription factors that have tight binding affinity for DNA elements, further implying that CRISPRi can be used to perturb and map the regulatory roles of distal and proximal enhancers.
基因敲除 Knock-out
基因敲除 Knock-out
完全性基因敲除技术原理及应用

完全性基因敲除技术原理及应用完全性基因敲除技术原理:CRISPR/Cas9(Clustered Regularly Interspaced Short Palindromic Repeats)最新出现的一种由RNA指导Cas核酸酶对靶向基因进行特定DNA修饰的技术。
CRISPR是细菌和古细菌为应对病毒和质粒不断攻击而演化来的获得性免疫防御机制。
在这一系统中,crRNA(CRISPR-derived RNA)通过碱基配对与tracrRNA(trans-activating RNA)结合形成双链RNA,此tracrRNA/crRNA二元复合体指导Cas9蛋白在crRNA引导序列靶定位点剪切双链DNA达到对基因组DNA进行修饰的目的。
CRISPR/Cas9系统能够对小鼠和大鼠基因组特定基因位点进行精确编辑,目前已经成功应用于大、小鼠基因KO/KI的模型制备。
完全性基因敲除技术特点:(1)无物种限制(2)靶向精确性更高(3)可实现对靶基因多个位点同时敲除(4)基因调控方式多种多样(5)修饰效率高,实验周期短通过CRISPR /Cas9基因敲除技术,针对靶基因设计和构建gRNA 与Cas9表达质粒,造成目的基因的功能区域被敲除,获得全身所有的组织和细胞中都不表达该基因的小鼠模型。
移码突变鼠的建系原则与流程1、通过针对靶基因设计、构建相应的gRNA质粒,体外转录为RNA后,与Cas9 mRNA一起原核显微注射获得测序鉴定阳性的F0代杂合子鼠;2、F0代杂合子鼠与野生型鼠进行交配,获得PCR和测序鉴定阳性的F1代杂合子鼠;3、选择来自同一只F0代鼠,基因型一致的F1代鼠,达到性成熟后进行互配,可获得F2代鼠。
对获得的F2代鼠进行PCR及测序鉴定,理论上,F2代鼠中25%为纯合子,50%为杂合子,25%为野生鼠(赛业可构建完全性基因敲除鼠)。
片段基因敲除鼠的建系原则与流程1、通过针对靶基因不同位点设计、构建相应的一对gRNA质粒,体外转录为RNA后,与Cas9 mRNA一起原核显微注射获得测序鉴定阳性的F0代杂合子鼠;2、F0代杂合子鼠与野生型鼠进行交配,获得PCR鉴定阳性的F1代杂合子鼠;3、选择来自同一只F0代鼠,基因型一致的F1代鼠,达到性成熟后互配,可获得F2代鼠。
基因编辑技术CRISPRCas的原理与应用

基因编辑技术CRISPRCas的原理与应用基因编辑技术CRISPR-Cas的原理与应用在该题目中,我们将探讨基因编辑技术CRISPR-Cas的原理和应用。
以下是对CRISPR-Cas的解释以及该技术在生物学和医学领域的广泛应用。
一、CRISPR-Cas的概述CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)是一种存在于细菌和古菌中的宿主免疫系统。
CRISPR-Cas系统通过储存和利用外源DNA序列信息来识别和破坏入侵的病毒和噬菌体。
二、CRISPR-Cas的工作原理1. CRISPR-Cas9系统CRISPR-Cas9是其中最常用的一种CRISPR系统。
它基于Cas9酶与CRISPR RNA(crRNA)和转录单元的连接,使Cas9能够识别和切割目标DNA序列。
crRNA通过配对目标DNA上的特定序列,引导Cas9到目标位点。
Cas9酶通过其核酸酶活性切割DNA,引发细胞自然的DNA修复机制。
2. CRISPR-Cas12和CRISPR-Cas13系统除了Cas9,CRISPR-Cas系统中还有其他酶如Cas12和Cas13。
CRISPR-Cas12使用crRNA和转录单元来导向Cas12酶切割DNA,而CRISPR-Cas13则使用crRNA来导向Cas13酶切割RNA。
三、CRISPR-Cas的应用领域1. 基因组编辑CRISPR-Cas系统可以被用来编辑生物体的基因组。
通过设计合适的引导RNA序列,可以将Cas酶定点引导到目标基因组位点,并进行切割或修改特定的DNA序列。
这为基因功能研究和疾病相关基因的研究提供了高效率和精准性的工具。
2. 基因治疗CRISPR-Cas系统在基因治疗中具有巨大潜力。
通过将CRISPR-Cas 工具引导到有缺陷的基因区域,可以修复或替换不正常的基因序列。
这为一些遗传性疾病的治疗提供了新的可能性。
初二生物基因敲除技术原理

初二生物基因敲除技术原理基因是生物体内控制遗传信息的基本单位,也是决定生物性状的重要因素。
基因敲除技术是一种通过删除或关闭特定基因来研究其功能的方法。
本文将介绍初二生物基因敲除技术的原理及其应用。
一、基因敲除技术的原理基因敲除技术是通过使用CRISPR-Cas9系统进行基因编辑实现的。
CRISPR-Cas9系统是一种先进的基因编辑工具,能够精确地剪切和修改DNA序列。
其原理包括以下几个步骤:1.设计sgRNA:sgRNA是单导RNA,能够指导Cas9蛋白靶向到特定的DNA序列。
在基因敲除实验中,sgRNA的设计目标是靶向到欲敲除的基因区域。
2.合成sgRNA和Cas9蛋白:sgRNA和Cas9蛋白质被合成并结合在一起,形成CRISPR-Cas9复合物。
3.靶向到基因组中的特定区域:CRISPR-Cas9复合物通过与靶向序列DNA相互作用,靶向到基因组中的特定区域。
4.切割DNA:一旦CRISPR-Cas9复合物与靶向序列结合,Cas9酶具有剪切双链DNA的能力,导致靶向序列的断裂。
5.修复和编辑:当DNA双链断裂时,细胞会尝试修复这些断裂。
通常情况下,细胞采用非同源末端连接(Non-Homologous End Joining, NHEJ)的方式来修复断裂,这会导致插入或缺失的突变。
而在实验中,可以利用同源重组(Homologous Recombination, HR)技术来实现特定基因的敲除。
二、基因敲除技术的应用1.功能研究:基因敲除技术可以帮助科学家们研究基因功能。
通过敲除特定基因,可以观察到敲除基因带来的生物学变化,进而推测该基因在生物体内的功能。
2.疾病模型:基因敲除技术可以用于构建疾病模型。
例如,在敲除小鼠的特定基因后,可以观察到小鼠是否会出现与人类疾病相关的表型,从而研究和治疗相关疾病提供新的思路。
3.农业应用:基因敲除技术可以用于改良农作物。
通过敲除农作物中的不利基因,可以提高抗病性、耐逆性和产量等重要农艺性状,从而改善农作物品质和增加产量。
基因敲除技术的基本原理和应用

基因敲除技术的基本原理和应用1. 基因敲除技术的概述基因敲除技术是一种通过人为干预来改变生物体特定基因表达的方法。
它是基于基因组工程技术的基础上发展起来的。
2. 基因敲除技术的基本原理基因敲除技术的基本原理是通过人为设计和构建特定的DNA序列,通过转染或转化将其导入到目标细胞中,从而抑制或破坏目标基因的正常功能,进而实现对目标基因的敲除。
3. 基因敲除技术的方法3.1 siRNA敲除法siRNA(small interfering RNA)是一种通过RNA干扰机制来靶向特定基因的技术。
它通过设计合成与目标基因互补的双链小分子RNA,并通过导入细胞内抑制目标基因的表达。
3.2 CRISPR-Cas9系统CRISPR-Cas9系统是一种新兴的基因编辑工具,可以实现高效、精准地靶向敲除目标基因。
该系统包括CRISPR RNA (crRNA) 和转录单元结合酶Cas9。
通过引导RNA与Cas9结合,可精确指导Cas9蛋白靶向到特定的DNA序列,从而实现基因敲除。
3.3 TALEN技术TALEN(Transcription activator-like effector nuclease)技术是一种利用转录激活样结构域的蛋白质与核酸酶结合来敲除基因的方法。
它可以实现对特定DNA序列的敲除,具有较高的精准性和特异性。
4. 基因敲除技术的应用4.1 功能基因研究基因敲除技术可以帮助研究人员确定特定基因在生物体发育、生长、代谢等方面的作用。
通过敲除特定基因,可以观察到其缺失对生物体功能的影响,从而揭示出该基因的功能和作用机制。
4.2 疾病模型研究基因敲除技术可以构建疾病模型,帮助研究人员深入了解某些疾病的发生机制。
通过敲除与特定疾病相关的基因,在动物模型中观察到与人类疾病相似的表型,可以用来研究疾病的发展过程和潜在治疗方法。
4.3 基因治疗基因敲除技术可用于基因治疗,即通过敲除异常基因来恢复或调节正常基因的功能。
基因敲除的原理及应用

基因敲除的原理及应用前言基因敲除是一种重要的分子生物学技术,它通过特定的操作使得目标基因在细胞或生物体中失去功能。
基因敲除对于研究基因功能和疾病发生机制具有重要的意义,也在农业、医药等领域具有广泛的应用前景。
原理基因敲除的原理是通过干扰目标基因表达来实现。
具体说,通过介导特定的DNA修复机制,使得目标基因的DNA序列在细胞中发生改变,导致基因失去功能。
基因敲除可以分为两种主要的方法:CRISPR/Cas9系统和RNA干扰。
CRISPR/Cas9系统CRISPR/Cas9系统是一种新兴的基因编辑技术,它基于细菌天然的免疫系统。
通过设计合成一段目标基因特异性的RNA,并与Cas9蛋白结合,形成一个双链RNA将导致Cas9蛋白在目标基因上发生剪切,从而实现基因敲除。
RNA干扰RNA干扰是一种通过介导RNA分子进行基因敲除的技术。
该技术通过合成特异性的双链RNA,将其导入目标细胞,RNA分子会与目标基因的mRNA相结合,导致mRNA降解,从而抑制目标基因的表达。
应用基因敲除在医学、农业等领域有着广泛的应用。
研究基因功能基因敲除是研究基因功能的重要工具之一。
通过敲除特定基因,可以观察目标基因参与的信号通路、调控网络以及该基因对于细胞生物学过程的影响。
这有助于揭示基因与疾病发生相关机制,并为研发相关治疗手段提供理论基础。
研究疾病发生机制基因敲除在疾病研究中起到重要作用。
通过敲除与某种疾病相关的基因,可以研究该基因对疾病发生的具体作用。
例如,敲除某些恶性肿瘤相关基因后,可以观察到肿瘤细胞的增殖受到抑制,从而为肿瘤治疗提供策略。
农业应用基因敲除技术在农业领域有着广泛的应用前景。
通过敲除与农作物病虫害相关的基因,可以使作物具备更强的抗性。
此外,基因敲除还可以用于改良农作物的品质和产量等重要性状。
结论基因敲除技术是一种重要的分子生物学技术,通过干扰目标基因表达来实现。
它在研究基因功能、疾病发生机制以及农业领域都具有广泛的应用前景。
CRISPRCas基因敲除原理及其应用

C R I S P R C a s基因敲除原理及其应用The Standardization Office was revised on the afternoon of December 13, 2020CRISPR/Cas9基因敲除原理及其应用CRISPR(clustered,regularlyinterspaced,shortpalindromicrepeats)是一种来自细菌降解入侵的病毒DNA或其他外源DNA的免疫机制。
在细菌及古细菌中,CRISPR 系统共分成3类,其中Ⅰ类和Ⅲ类需要多种CRISPR相关蛋白(Cas蛋白)共同发挥作用,而Ⅱ类系统只需要一种Cas蛋白即可,这为其能够广泛应用提供了便利条件[1]。
目前,来自Streptococcuspyogenes的CRISPR-Cas9系统应用最为广泛。
Cas9蛋白(含有两个核酸酶结构域,可以分别切割DNA两条单链。
Cas9首先与crRNA及tracrRNA结合成复合物,然后通过PAM序列结合并侵入DNA,形成RNA-DNA复合结构,进而对目的DNA双链进行切割,使DNA双链断裂。
由于PAM序列结构简单(5’-NGG-3’),几乎可以在所有的基因中找到大量靶点,因此得到广泛的应用。
CRISPR-Cas9系统已经成功应用于植物、细菌、酵母、鱼类及哺乳动物细胞,是目前最高效的基因组编辑系统[1]。
通过基因工程手段对crRNA和tracrRNA进行改造,将其连接在一起得到sgRNA(singleguideRNA)。
融合的RNA具有与野生型RNA类似的活力,但因为结构得到了简化更方便研究者使用。
通过将表达sgRNA的原件与表达Cas9的原件相连接,得到可以同时表达两者的质粒,将其转染细胞,便能够对目的基因进行操作[2,3]。
目前常用的CAS9研究方法是通过普通质粒,质粒构建流程如下:Cas9质粒构建设计2条单链oligo序列;退火形成双链DNA将双链DNA连接到载体中转化G10competentcell筛选阳性克隆;测序验证序列;质粒大提;电转染靶细胞在细胞内crRNA识别靶位点,Cas9对靶位点进行随机剪切CruiserTM酶切细胞池,计算突变率;CruiserTM酶切初筛阳性克隆;将阳性克隆测序验证;做敲除序列比对分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C R I S P R C a s基因敲除原
理及其应用
The Standardization Office was revised on the afternoon of December 13, 2020
CRISPR/Cas9基因敲除原理及其应用
CRISPR(clustered,regularlyinterspaced,shortpalindromicrepeats)是一种来自细菌降解
入侵的病毒DNA或其他外源DNA的免疫机制。
在细菌及古细菌中,CRISPR 系统共分成3类,其中Ⅰ类和Ⅲ类需要多种CRISPR相关蛋白(Cas蛋白)共同发挥作用,而Ⅱ类系统只需要一种Cas蛋白即可,这为其能够广泛应用提供了便利条件[1]。
目前,来自Streptococcuspyogenes的CRISPR-Cas9系统应用最为广泛。
Cas9蛋白(含有两个核酸酶结构域,可以分别切割DNA两条单链。
Cas9首先与crRNA及tracrRNA结合成复合物,然后通过PAM序列结合并侵入DNA,形成RNA-DNA复合结构,进而对目的DNA双链进行切割,使DNA双链断裂。
由于PAM序列结构简单(5’-NGG-3’),几乎可以在所有的基因中找到大量靶点,因此得到广泛的应用。
CRISPR-Cas9系统已经成功应用于植物、细菌、酵母、鱼类及哺乳动物细胞,是目前最高效的基因组编辑系统[1]。
通过基因工程手段对crRNA和tracrRNA进行改造,将其连接在一起得到sgRNA(singleguideRNA)。
融合的RNA具有与野生型RNA类似的活力,但因为结构得到了简化更方便研究者使用。
通过将表达sgRNA的原件与表达Cas9的原件相连接,得到可以同时表达两者的质粒,将其转染细胞,便能够对目的基因进行操作[2,3]。
目前常用的CAS9研究方法是通过普通质粒,质粒构建流程如下:
Cas9质粒构建
设计2条单链oligo序列;退火形成双链DNA
将双链DNA连接到载体中
转化G10competentcell筛选阳性克隆;测序验证序列;质粒大提;电转染靶细胞
在细胞内crRNA识别靶位点,Cas9对靶位点进行随机剪切
CruiserTM酶切细胞池,计算突变率;CruiserTM酶切初筛阳性克隆;将阳性克隆测序验证;做敲除序列比对分析。
目前常见的CAS9普通质粒有(汉恒生物提供cas9质粒试剂盒):
虽然普通质粒很多时候也能达到实验效果,但是质粒转染具有效率低,作用时间短暂性等缺点。
病毒的出现解决了质粒这些问题,常用的病毒主要有慢病毒和腺病毒,慢病毒常用质粒见addgene(lentiCRISPRv2,lentiGuide-Puro,lentiCas9-Blast),慢病毒可以整合入宿主基因组中,长期稳定的表达(汉恒生物提供CRISPR/cas9慢病毒包装),但是由于慢病毒克隆能力有限而CAS9本身分子量比较大(大于4kb),且长期插入可能导致乱切,脱靶等,同时慢病毒包装最终获得的滴度不高等原因,腺病毒更有优势,腺病毒克隆能力强,获得的病毒滴度也高。
同时相对于普通质粒来说,作用是时间也比较长,可以达到更理想的敲除效果。
(汉恒生物提供CRISPR/cas9腺病毒包装)。