初二数学奥林匹克竞赛题及答案

合集下载

初中数学奥林匹克竞赛题4套带详解

初中数学奥林匹克竞赛题4套带详解

初中数学奥林匹克竞赛题4套带详解初中数学奥林匹克竞赛是挑战数学天赋和才能的绝佳场所。

这种竞赛是为那些对数字和逻辑有天赋和兴趣的人所设计的。

无论是追求数学事业,还是成为一名数学家,初中数学奥林匹克竞赛都是一个巨大的机会,可以开阔思维和向高级数学的道路迈进。

本文所述的四套初中数学奥林匹克竞赛题带有详细解析,可供所有有兴趣的人参考学习。

第一套试题:平方和试题:假设我们有两个正整数 a 和 b。

如果我们写一个等式 a²+ b² = 130, 请问这个方程有多少对正整数解?解析:通过对题目的分析,我们发现 a 和 b 都是小于等于 11 的正整数,因为如果是大于 11,它们的平方数之和会大于 130。

我们可以用双重循环解决这个问题:```ans = 0for a in range(1, 12):for b in range(1, 12):if a * a + b * b == 130:ans += 1print(ans)```第二套试题:比率试题:如果 3 个大苹果的重量等于 4 个小苹果的重量,又知道3 个小苹果重量等于 2 个中等苹果的重量,那么问:如果要将 20 个中等苹果与其中 $x$ 个大苹果混合,让它们的重量相等,求出$x$ 的值。

解析:我们可以用比率法解决这个题目。

首先,根据第一个给出的条件,我们有:```3a = 4b```其中,$a$ 是大苹果的重量,$b$ 是小苹果的重量。

然后,根据第二个条件,我们可以得到:```3b = 2c```其中,$c$ 是中等苹果的重量。

现在我们只需要将 $a$ 和$c$ 的比率相等,即:```a / c = 20x / (20 - x)```通过简单的代数运算,我们可以得到:```60x = 80(20 - x)x = 16```因此,我们需要加入 $16$ 个大苹果。

第三套试题:平均值试题:32 个正整数的平均值为20,当其中一个数字被改变后,平均数变为 19.875。

初中数学奥林匹克竞赛题包括答案.docx

初中数学奥林匹克竞赛题包括答案.docx

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题 1 分,共 10 分)1.如果 a,b 都代表有理数,并且a+b=0 ,那么 ( ) A.a,b 都是 0B.a,b 之一是 0C.a,b 互为相反数D. a,b 互为倒数答案: C解析:令 a=2 , b= - 2,满足 2+( - 2)=0 ,由此 a、b 互为相反数。

2.下面的说法中正确的是( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案: D3都是单项式.两个单项式33A。

两个单项式解析: x2, x x , x2之和为 x +x 2是多项式,排除x2, 2x2之和为3x2是单项式,排除 B。

两个多项式x3+x2 与 x3-x2之和为2x3 是个单项式,排除 C,因此选 D。

3.下面说法中不正确的是( )A.有最小的自然数B.没有最小的正有理数Word资料C.没有最大的负整数D.没有最大的非负数答案: C解析:最大的负整数是-1 ,故 C 错误。

4.如果 a,b 代表有理数,并且a+b 的值大于 a- b 的值,那么( ) A.a,b 同号B.a,b 异号C.a>0D. b> 0答案: D5.大于-π并且不是自然数的整数有( )A.2 个B.3 个C.4 个D.无数个答案: C解析:在数轴上容易看出:在-π右边0的左边(包括0 在)的整数只有-3,- 2,-1 ,0 共 4 个.选 C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

Word资料这四种说法中,不正确的说法的个数是( )A.0 个B.1 个C.2 个D. 3 个答案: B解析:负数的平方是正数,所以一定大于它本身,故 C 错误。

7.a 代表有理数,那么, a 和- a 的大小关系是( )A.a 大于- aB.a 小于- aC.a 大于- a 或 a 小于- aD. a 不一定大于- a答案: D解析:令 a=0 ,马上可以排除A、 B、 C,应选 D。

初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)

初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)

初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)初中数学奥林匹克竞赛全真试题(全国联赛卷)(详解版)一、填空题1. 如果函数 f(x)=x^2-2x+1的根为 a,b,那么a + b 等于_____.答案:-12. 已知正整数 m、n 满足 mx+ny=1(m、n 都不为 0),若 m + n 等于 8,则 m - n 等于_____.答案:73. 若等差数列{an}的前 n 项和为 Sn,且 a1=3,Sn=15,则 n 的值是_____.答案:64. 在△ABC 中,已知 a=4,b=4,c=8,若 AB+AC=9,则∠B =_____.答案:45°二、选择题5. 已知 A、B 两点的坐标分别为(3,1)、(5,-1),则 AB 是_______.A. 水平的直线B. 斜率为 1 的直线C. 斜率为 -1/3 的直线D. 竖直的直线答案:B6. 若正方形的边长为 x,周长为 5x,则 x 的值等于_______.A. 4B. 5C. 8D. 10答案:A7. 已知tanα=2,cotβ=-3,则 tan(α-β)等于_______.A. 5B. -5C. -1/5D. 1/5答案:B8. 把一个正整数分成 K 份,第一份的数量是剩下的 K-1 份的总和的()A. 1/2B. 3/2C. 2/3D. 3/4答案:B三、解答题9. 已知函数 f(x)=2x+1,若直线 4x+3y=37 与曲线 f(x) 相切,求该曲线上点 P 的坐标答:设点 P 的坐标为 (x,y),因为直线 4x+3y=37 与曲线 f(x) 相切,所以曲线上点 P 的 y 值可由 4x+3y=37 中求得,即 y=12-4/3x,由函数 f(x)可得 12-4/3x=2x+1,故 x=7,代入 y=12-4/3x 可得 y=12-4/3(7)=8。

点 P的坐标即为 (7, 8)。

10. 已知△ABC 中,a=3,b=3,∠A=120°,求 B 的坐标答:由△ABC 中 A 的坐标为(0,0),a=3,b=3 可知 C 的坐标为(3,0),∠A=120°,∠C=60°,因为∠B=60,则以 C 为外接圆圆心,半径为3 的圆○上可得点B,即B(√3,1),综上所述,点B 的坐标为(√3,1)。

初中数学奥林匹克竞赛模拟试卷(八年级)

初中数学奥林匹克竞赛模拟试卷(八年级)

初中数学奥林匹克竞赛模拟试卷(八年级)全国初中数学奥林匹克竞赛试卷(八年级)一、选择题1、已知三点A(2,3),B(5,4),C(-4,1)依次连接这三点,则三点在同一直线上。

解析:AB的解析式为y= 3x+3,当x= -4时,y=1,即点C在直线AB上,∴选D。

2、边长为整数,周长为20的三角形个数是8个。

解析:设三角形的三边为a、b、c且a≥b≥c,a+b+c=20,a≥7,又b+c>a,2a<20a<10,又7≤a≤9,可列出(a、b、c)有:(9,9,2)(9,8,3)(9,7,4)(9,6,5)(8,8,4)(8,7,5)(8,6,6)(7,7,6)共八组,选C。

3、N=++,则N的个位数字是9.解析:的个位数字为3,的个位数字为9,的个位数字为7,∴N的各位数字为9,选C。

4、P为正方形ABCD内一点,若解析:过P作BP’⊥BP,且使BP’=BP,连P’A。

易得△P’AB≌△PBC,则P’A=PC,设PA=k,则PB=2k,PC=P’A=3k,连PP’,则Rt△PBP’中,∠P’PB=45°且PP’=22k,在△P’AP中有:P’A2=P’P2+PA2,∴∠P’PA=90°,∴∠APB=135°选B。

5、在函数y= -x(a为常数)的图象上有三点:(-1,y1)(-4,y2)(2,y3),则函数值y1,y2,y3的大小关系是y3<y1<y2.解析:-(a2+1)<0,∴在每个象限,y随x的增大而增大,因此y1<y2.又∵(-1,y1)在第二象限,而(2,y3)在第四象限,∴y3<y1,选C。

6、已知a+b+c≠0,且c=a=b。

解析:由c=a=b,可得a=b=c,代入a+b+c≠0中,得3a≠0,∴a≠0,选D。

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案

初二奥数竞赛试题及答案试题一:代数问题题目:若\( a \)、\( b \)、\( c \)为正整数,且满足\( a^2 + b^2 + c^2 = 1 \),求\( a \)、\( b \)、\( c \)的值。

答案:由于\( a \)、\( b \)、\( c \)为正整数,且\( a^2 + b^2 + c^2 = 1 \),我们可以推断出\( a \)、\( b \)、\( c \)的值只能是1或0。

因为\( 1^2 = 1 \),而\( 2^2 = 4 \),所以\( a \)、\( b \)、\( c \)不能大于1。

经过尝试,我们可以发现只有当\( a = b = c = 0 \)或\( a = 1, b = 0, c = 0 \)(或其它两种排列)时,等式成立。

试题二:几何问题题目:在一个直角三角形ABC中,∠C是直角,AC = 6,BC = 8,求斜边AB的长度。

答案:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。

所以,我们有:\[ AB^2 = AC^2 + BC^2 \]\[ AB^2 = 6^2 + 8^2 \]\[ AB^2 = 36 + 64 \]\[ AB^2 = 100 \]\[ AB = \sqrt{100} \]\[ AB = 10 \]试题三:组合问题题目:有5种不同的颜色的球,每种颜色有3个球,现在要从中选出3个球,求不同的选法总数。

答案:这是一个组合问题,我们可以使用组合公式来解决。

组合公式为:\[ C(n, k) = \frac{n!}{k!(n-k)!} \]其中\( n \)是总数,\( k \)是要选择的数目。

在这个问题中,\( n = 15 \)(因为有5种颜色,每种3个球),\( k = 3 \)。

所以:\[ C(15, 3) = \frac{15!}{3!(15-3)!} \]\[ C(15, 3) = \frac{15 \times 14 \times 13}{3 \times 2 \times 1} \]\[ C(15, 3) = 455 \]试题四:逻辑问题题目:有5个盒子,每个盒子里都装有不同数量的糖果,从1到5。

全国初中数学奥林匹克竞赛试题

全国初中数学奥林匹克竞赛试题

1、若一个正多边形的每个内角都等于150度,则这个正多边形是()边形。

A. 六B. 七C. 八D. 九解析:正多边形的内角和外角互补,即内角加外角等于180度。

已知内角为150度,则外角为180-150=30度。

正多边形的所有外角之和为360度,因此这个正多边形有360/30=12个边,但考虑到是内角为150度,实际应为正多边形的边数n满足(n-2)*180/n=150,解得n=12/3+2=6。

(答案:A)2、在直角坐标系中,点A(3,4)关于原点对称的点B的坐标是()。

A. (-3,-4)B. (3,-4)C. (-3,4)D. (4,-3)解析:在直角坐标系中,任意一点关于原点对称的点的坐标,横纵坐标都会变成相反数。

因此,点A(3,4)关于原点对称的点B的坐标应为(-3,-4)。

(答案:A)3、若一个数的平方等于它本身,则这个数是()。

A. 1B. -1C. 0或1D. 0,1或-1解析:设这个数为x,则x2=x,移项得x2-x=0,即x(x-1)=0,解得x=0或x=1。

因此,这个数是0或1。

(答案:C)4、下列四个数中,最大的是()。

A. 1/2B. -1/2C. 0D. -1解析:正数总是大于0,0总是大于负数。

在给出的四个数中,1/2是正数,-1/2和-1是负数,0是零。

因此,1/2是最大的。

(答案:A)5、若a,b,c为三角形的三边,且a=3,b=4,则c的取值范围是()。

A. 1<c<7B. 3<c<4C. 4<c<7D. 无法确定解析:根据三角形的性质,任意两边之和大于第三边,任意两边之差小于第三边。

因此,a+b>c,a-b<c,即3+4>c,4-3<c,所以1<c<7。

(答案:A)6、下列哪个选项中的两个数互为相反数()。

A. 2和-3B. -2和-2C. 3和-3D. 2和1/2解析:相反数的定义是,如果两个数的和等于零,那么这两个数互为相反数。

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:互为相反数。

b,由此a、-2,满足2+(-2)=0令a=2,b=2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D33222解析:3是多项式,排除A+x之和为xx,x。

两个单项都是单项式.两个单项式x,x22223之和为2x3x是个单-之和为3xx是单项式,排除B。

两个多项式x3+x2式x2x,与。

,因此选D项式,排除C3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:错误。

C最大的负整数是-1,故4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,13/ 1初中数学奥林匹克竞赛题及答案。

个.选C0共4-1,6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:。

,应选D、B、C,马上可以排除令a=0A8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

初二数学奥林匹克竞赛题及答案

初二数学奥林匹克竞赛题及答案

初二数学奥林匹克竞赛题及答案1、如图,梯形ABCD 中,AD ∥BC ,DE =EC ,EF ∥AB 交BC 于点F ,EF =EC ,连结DF 。

(1)试说明梯形ABCD 是等腰梯形;(2)若AD =1,BC =3,DC DCF 的形状;(3)在条件(2)下,射线BC 上是否存在一点P ,使△PCD 是等腰三角形,若存在,请直接写出PB 的长;若不存在,请说明理由.2、在边长为6的菱形ABCD 中,动点M 从点A 出发,沿A →B →C 向终点C 运动,连接DM 交AC 于点N 。

(1)如图25-1,当点M 在AB 边上时,连接BN .①求证:△ABN ≌△ADN ; ②若∠ABC = 60°,AM = 4,求点M 到AD 的距离; (2)如图25-2,若∠ABC = 90°,记点M 运动所经过的路程为x (6≤x ≤12)试问:x 为何值时,△ADN 为等腰三角形.3、对于点O 、M ,点M 沿MO 的方向运动到O 左转弯继续运动到N ,使OM =ON ,且OM ⊥ON ,这一过程称为M 点关于O 点完成一次“左转弯运动".正方形ABCD 和点P ,P 点关于A 左转弯运动到P 1,P 1关于B 左转弯运动到P 2,P 2关于C 左转弯运动到P 3,P 3关于D 左转弯运动到P 4,P 4关于A 左转弯运动到P 5,……. (1)请你在图中用直尺和圆规在图中确定点P 1的位置;(2)连接P 1A 、P 1B ,判断 △ABP 1与△ADP 之间有怎样的关系?并说明理由。

(3)以D 为原点、直线AD 为y 轴建立直角坐标系,并且已知点B 在第二象限,A 、P 两点的坐标为(0,4)、(1,1),请你推断:P 4、P 2009、P 2010三点的坐标.BA4、如图1和2,在20×20的等距网格(每格的宽和高均是1个单位长)中,Rt△ABC从点A与点M重合的位置开始,以每秒1个单位长的速度先向下平移,当BC边与网的底部重合时,继续同样的速度向右平移,当点C与点P重合时,Rt△ABC停止移动.设运动时间为x秒,△QAC的面积为y.(1)如图1,当Rt△ABC向下平移到Rt△A1B1C1的位置时,请你在网格中画出Rt △A1B1C1关于直线QN成轴对称的图形;(2)如图2,在Rt△ABC向下平移的过程中,请你求出y与x的函数关系式,并说明当x分别取何值时,y取得最大值和最小值?最大值和最小值分别是多少?(3)在Rt△ABC向右平移的过程中,请你说明当x取何值时,y取得最大值和最小值?最大值和最值分别是多少?为什么?5、如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图中有几个等腰三角形?猜想: EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学奥林匹克竞赛题及答案1、如图,梯形ABCD中,AD∥BC,DE=EC,EF∥AB交BC于点F,EF=EC,连结DF。

(1)试说明梯形ABCD是等腰梯形;(2)若AD=1,BC=3,DC= 2 ,试判断△ DCF的形状;(3)在条件(2)下,射线BC上是否存在一点P,使△ PCD是等腰三角形,若存在,请直接写出PB的长;若不存在,请说明理由。

2、在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.(1)如图25-1,当点M在AB边上时,连接BN. ①求证:△ ABN≌ △ADN;②若∠ ABC = 60°,AM = 4,求点M到AD的距离;(2)如图25-2,若∠ ABC = 90 °,记点M运动所经过的路程为x (6≤x≤12)试问:x为何值时,△ ADN为等腰三角形.3、对于点O、M,点M沿MO的方向运动到O左转弯继续运动到N,使OM=ON,且OM⊥ ON,这一过程称为M点关于O点完成一次“左转弯运动” .正方形ABCD和点P,P 点关于 A 左转弯运动到P1,P1关于B左转弯运动到P2,P2 关于C左转弯运动到P3,P3 关于D左转弯运动到P4,P4关于A左转弯运动到P5,⋯⋯.(1)请你在图中用直尺和圆规在图中确定点P1 的位置;(2)P 两点的坐标为(0,4)、( 1 0三点的坐P由。

(3)以D为原点、直线AD为y轴建立直角坐标系,并且已知点B 在第二象限,A、A4、如图 1 和 2,在 20×20 的等 QAC 的面积为 y.(1) 如图 1,当 Rt △ABC 向下平移到 Rt △A 1B 1C 1 的位置时,请你在网格中画出 Rt △A 1B 1C 1关于直线 QN 成轴对称的图形;(2) 如图 2,在 Rt △ABC 向下平移的过程中,请你求出 y 与 x 的函数关系式, 并说明当 x 分别取何值时, y 取得最大值和最小值?最大值和最小值分别是多 少? (3)在 Rt △ABC 向右平移的过程中,请你说明当 x 取何值时, y 取得最大值和 最小值?最大值和最值分别是多少?为什么?5、如图①,△ ABC 中, AB=AC ,∠ B 、∠C 的平分线交于 O 点,过 O 点作 EF ∥BC 交 AB 、 AC 于 E 、F .(1) 图中有几个等腰三角形 ?猜想: EF 与 BE 、CF 之间有怎样的关系,并说 明理由.(2) 如图②,若 AB ≠AC ,其他条件不变,图中还有等腰三角形吗 ?如果有, 分别指出它们.在第 (1) 问中 EF 与 BE 、CF 间的关系还存在吗 ?(3) 如图③,若△ ABC 中∠ B 的平分线 BO 与三角形外角平分线 CO 交于 O ,过 O 点作 OE ∥BC 交 AB 于 E ,交 AC 于 F .这时图中还有等腰三角形吗 ?EF 与 BE 、CF6、已知,如图,△ ABC 中,∠ BAC=90°,AB=AC,D 为 AC 上一点,且 ∠ BDC=12°4 ,延长 BA 到点 E ,使 AE=AD,BD 的延长线交 CE 于点 F , 求∠ E 的度数。

距网格(每格的宽和高均是 1 个 单位长)中, Rt △ABC 从点 A 与 点 M 重合的位置开始,以每秒 1 个单位长的速度先向下平移, 当 BC 边与网的底部重合时,继续 同样的速度向右平移,当点 C 与点 P 重合时, Rt △ ABC 停止 移7、如图,正方形ABCD的对角线AC,BD交于点O,将一三角尺的直角顶点放在点O处,让其绕点O旋转,三角尺的直角边与正方形ABCD的两边交于点 E 和 F 通过观察或测量OE,OF的长度,你发现了什么?试说明理由。

1、解:(1)证明:∵ EF=EC,∴∠ EFC=∠ECF,∵EF∥AB,∴∠B=∠EFC,∴∠ B=∠ECF,∴梯形ABCD是等腰梯形;1 (2)△DCF是等腰直角三角形,证明:∵DE=EC,EF=EC,∴EF= 1 CD,2 ∴△CDF 是直角三角形(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形),∵梯形ABCD是等腰梯形,∴CF= 1(BC-AD)=1,∵DC= 2 ,∴由勾股定2 理得:DF=1,∴△DCF是等腰直角三角形;(3)共四种情况:PB=1,PB=2,PB=3- 2 ,PB=3+ 22、证明:(1)①∵四边形ABCD是菱形,∴AB=AD,∠1=∠2.又∵ AN=AN,∴△ ABN≌△ ADN.②解:作MH⊥DA交DA的延长线于点H.由AD∥BC,得∠ MAH∠= ABC=60°.在Rt△AMH中,MH=A?Msin60 °=4×sin60 °=2 3.∴点M到AD的距离为 2 3.∴ AH=2.∴DH=6+2=.8(2)解:∵∠ ABC=90°,∴菱形ABCD是正方形.∴∠CAD=4°5 .下面分三种情形:(Ⅰ)若ND=N,A 则∠ADN=∠NAD=4°5 .此时,点M恰好与点 B 重合,得x=6;(Ⅱ)若DN=D,A 则∠DNA=∠ DAN=4°5 .此时,点M恰好与点C重合,得x=12;(Ⅲ)若AN=AD=,6 则∠ 1=∠2.∵AD∥BC,∴∠1=∠4,又∠ 2=∠3,∴∠ 3=∠ 4.∴CM=C.N ∴AC=6 2.∴CM=CN=AC-AN=6 2.-6故x=12-CM=12-( 6 2-6 )=18-6 2 .综上所述:当x=6 或12 或18-6 2 时,△ ADN是等腰三角形3、解:(1)用直尺和圆规作图,作图痕迹清晰;ABP1可看成是由△ ADP绕点 A 顺时针旋转90°而得.理由如下:在△ ABP1和△ ADP中,由题意:AB=AD,AP=AP1,∠ PAD=∠P1AB,∴△ ABP1≌△ ADP,又∵△ ABP1和△ADP有公共顶点A,且∠ PAP1=90°,∴△ ABP1可看成是由△ ADP绕点A顺时针旋转90°而得;(3)点P(1,1)关于点A(0,4)左转弯运动到P1(-3 ,3),点P1(-3 ,3)关于点B(-4 ,4)左转弯运动到点P2(-5 ,3),点P2(-5 ,3)关于点C(-4 ,0)左转弯运动到点P3(-1 ,1),点P3(-1 ,1)关于点D(0,0)左转弯运动到点P4(1,1),点P4(1,1)关于点A(0,4)左转弯运动到点P5(-3 ,3),点P5与点P1重合,点P6与点P2重合,,点P2009的坐标为(-3 ,3)点P2010的坐标为(-5 ,3).4、解:(1)如图1,△ A2B2C2 是△A1B1C1 关于直线QN成轴对称的图形;(2)当△ ABC以每秒 1 个单位长的速度向下平移x 秒时(如图2),则有:MA=x,MB=x+4,MQ=2,0y=S 梯形QMB-C S △AMQ-S△ABC1 1 1= 4+20)(x+4)- × 20x- × 4× 42 2 2=2x+40(0≤x≤16).由一次函数的性质可知:当x=0 时,y 取得最小值,且y 最小=40,当x=16时,y取得最大值,且y 最大=2×16+40=72;(3)解法一:当△ ABC继续以每秒 1 个单位长的速度向右平移时,此时16≤x≤32,PB=20-(x-16 )=36-x ,PC=PB-4=32-x,111∴ y=S 梯形BAQ-P S △CPQ-S △ ABC= (4+20)(36-x )- ×20×(32-x )- ×4×4 222 =-2x+104(16≤x≤32).由一次函数的性质可知:当x=32时,y取得最小值,且y 最小=-2 ×32+104=40;当x=16时,y取得最大值,且y 最大=-2 ×16+104=72.解法二:在△ ABC自左向右平移的过程中,△QAC在每一时刻的位置都对应着(2)中△ QAC某一时刻的位置,使得这样的两个三角形关于直线QN成轴对称.因此,根据轴对称的性质,只需考查△ ABC在自上至下平移过程中△ QAC面积的变化情况,便可以知道△ ABC在自左向右平移过程中△ QAC面积的变化情况.当x=16 时,y 取得最大值,且y 最大=72,当x=32 时,y 取得最小值,且y 最小=40.5、解:(1)图中有 5 个等腰三角形,EF=BE+C,F ∵△ BEO≌△ CFO,且这两个三角形均为等腰三角形,可得EF=EO+FO=BE+;CF(2)还有两个等腰三角形,为△ BEO、△ CFO,如下图所示:∵ EF∥BC,∴∠ 2=∠3,又∵∠ 1=∠2,∴∠1=∠3,∴△ BEO为等腰三角形,在△ CFO中,同理可证.∴EF=BE+CF存在.(3)有等腰三角形:△ BEO、△ CFO,此时EF=BE-CF,∵如下图所示:OE∥BC,∴∠ 5=∠6,又∠ 4=∠5,∴∠ 4=∠ 6,∴,△ BEO是等腰三角形,在△ CFO中,同理可证△ CFO是等腰三角形,此时EF=BE-CF,6、解:在△ ABD和△ ACE中,∵AB=AC,∠DAB=∠CAE=90°AD=AE,∴△ ABD≌△ ACE(SAS),∴∠ E=∠ ADB.∵∠ ADB=180°- ∠BDC=18°0 -124°=56°,∴∠ E=56°.7、解:OE=O.F证明:正方形ABCD的对角线AC,BD交于点O,∴OA=O,B ∠ OAB=∠OBE=4°5 ,AC⊥ BD.∵∠AOF+∠FOB=∠EOB+∠FOB=90°,∴∠ AOF=∠EOB.在△ AOF和△ BOE中∠OAB=∠OBE,OA=O,B ∠ AOF=∠ EOB,∴△ AOF≌△ BOE (ASA).∴OE=O.F。

相关文档
最新文档