正弦波逆变蓄电池回馈放电装置的设计

合集下载

小型风力发电系统正弦波逆变器设计

小型风力发电系统正弦波逆变器设计

灏忓瀷椋庡姏鍙戠數绯荤粺姝e鸡娉㈤€嗗彉鍣ㄨ璁?鎴风敤灏忓瀷椋庡姏鍙戠數鏈虹殑杈撳嚭鐢靛帇鍌ㄥ瓨鍦?4 V銆?2 V鎴?8V绛夌殑钃勭數姹犱腑锛岃繖灏变娇璁稿浜ゆ祦鐢靛櫒鏃犳硶鐩存帴閰嶅浣跨敤銆備负浜嗚В鍐宠繖涓€闂锛屽氨闇€瑕佸湪灏忓瀷椋庡姏鍙戠數绯荤粺涓厤缃€嗗彉鍣紝灏嗙洿娴佺數鍙樹负220 v锛?0 Hz鐨勪氦娴佺數杈撳嚭锛屼互婊¤冻浜ゆ祦鐢靛櫒鐨勯渶瑕併€傛寮︽尝閫嗗彉鎶€鏈湪椋庡姏鍙戠數绯荤粺涓槸涓€涓瀬鍏跺叧閿殑鎶€鏈紝瀹冩壙鎷呯潃灏嗙洿娴佺數璋冨埗鎴愮ǔ鍘嬬ǔ棰戠殑浜ゆ祦鐢电洿鎺ヤ緵缁欒礋杞芥垨瀹夊叏骞惰仈鍒颁氦娴佺數缃戠殑浠诲姟銆傜敱浜庡皬鍨嬮鍔涘彂鐢电郴缁熶娇鐢ㄧ殑宸ュ喌鍗佸垎澶嶆潅锛岄€嗗彉鍣ㄤ綔涓虹郴缁熺殑鏈€鏈竴绾у彉鎹㈣缃紝鍏跺搧璐ㄧ殑濂藉潖鐩存帴褰卞搷鏁翠釜鍙戠數绯荤粺鐨勬姇璧勫拰鎬ц兘銆傚洜姝わ紝姝e鸡娉㈤€嗗彉鎶€鏈殑鎬ц兘鐩存帴鍐冲畾鐫€椋庡姏鍙戠數绯荤粺鐨勬帹骞垮拰搴旂敤銆? 绯荤粺璁捐1锛? 绯荤粺鏋勬垚鍙婇€嗗彉鍣ㄤ富鐢佃矾1锛?锛? 绯荤粺鏋勬垚灏忓瀷椋庡姏鍙戠數绯荤粺閫嗗彉鍣ㄤ富瑕佺粍鎴愬寘鎷細涓荤數璺€佽緭鍏ョ數璺€佽緭鍑虹數璺€佹帶鍒剁數璺€佽緟鍔╃數婧愬拰淇濇姢鐢佃矾锛屽叾鍩烘湰缁撴瀯銆?閫嗗彉涓荤數璺緭鍏ヤ负鐩存祦鐢电敱钃勭數姹犳彁渚涖€傝緭鍑虹數璺竴鑸寘鎷緭鍑烘护娉㈢數璺紝瀵逛簬寮€鐜帶鍒剁殑閫嗗彉绯荤粺锛岃緭鍑洪噺涓嶇敤鍙嶉鍒版帶鍒剁數璺紝闈㈠浜庨棴鐜帶鍒剁殑閫嗗彉绯荤粺锛岃緭鍑洪噺杩樿鍙嶉鍒版帶鍒剁數璺€傛帶鍒剁數璺殑鍔熻兘鏄寜瑕佹眰浜х敓鍜岃皟鑺備竴绯诲垪鐨勬帶鍒惰剦鍐叉潵鎺у埗閫嗗彉寮€鍏崇鐨勫閫氬拰鍏虫柇锛屼粠鑰岄厤鍚堥€嗗彉涓荤數璺畬鎴愰€嗗彉鍔熻兘銆傚湪閫嗗彉绯荤粺涓紝鎺у埗鐢佃矾鍜岄€嗗彉鐢佃矾鍏锋湁鍚屾牱鐨勯噸瑕佹€с€傝緟鍔╃數婧愮殑鍔熻兘鏄皢閫嗗彉鍣ㄧ殑杈撳叆鐢靛帇鍙樻崲鎴愰€傚悎鎺у埗鐢佃矾宸ヤ綔鐨勭洿娴佺數鍘嬨€備繚鎶ょ數璺富瑕佸疄鐜拌繃鍘嬫瑺鍘嬩繚鎶ゃ€佽繃杞戒繚鎶ゃ€佽繃娴佸拰鐭矾淇濇姢銆?锛?锛? 涓荤數璺? 鎴风敤椋庡姏鍙戠數绯荤粺涓昏鐢ㄦ埛鏄タ閮ㄥ亸杩滃湴鍖虹殑鍐滅墽姘戯紝閭i噷鐜姣旇緝鎭跺姡锛屾妧鏈潯浠剁浉瀵硅杽寮便€傚洜姝ゆ墍閫夋嫇鎵戠粨鏋勫繀椤荤ǔ瀹氬彲闈狅紝鎶€鏈浉瀵规瘮杈冩垚鐔燂紱鑰冭檻鍒伴偅閲岀殑缁忔祹鏉′欢锛屾嫇鎵戠粨鏋勪篃蹇呴』鍏锋湁鎴愭湰浣庛€佹晥鐜囬珮鐨勭壒鐐广€傜患鍚堣€冭檻涓婅堪鍥犵礌锛屼富鐢佃矾閲囩敤鍗曞悜鐢靛帇婧愰珮棰戠幆鑺傞€嗗彉鐢佃矾锛岃鐢佃矾缁撴瀯涓昏閲囩敤楂橀璁捐鎬濇兂锛岀渷鎺変簡浣撶Н搴炲ぇ涓旂閲嶇殑宸ラ鍙樺帇鍣紝闄嶄綆浜嗘暣涓€嗗彉鐢佃矾鐨勫櫔澹帮紝鑰屼笖璇ョ數璺叿鏈夊彉鎹㈡晥鐜囪緝楂樸€佽緭鍑虹數鍘嬬汗娉㈠皬绛夌壒鐐广€? 瀹冨寘鎷洿娴佸崌鍘嬮儴鍒嗗拰鐩翠氦鍙樺寲涓ら儴鍒嗐€傚叾涓洿娴佸崌鍘嬮儴鍒嗕负鎺ㄦ尳鐢佃矾缁撴瀯锛岀洿浜ゅ彉鍖栭噰鐢ㄥ叏妗ラ€嗗彉缁撴瀯銆備富鐢佃矾銆?鐢佃矾涓殑涓や釜寮€鍏崇VQ1銆乂Q2鎺ュ湪甯︽湁涓績鎶藉ご鐨勫彉鍘嬪櫒鍒濈骇涓ょ锛屽湪鐢佃矾宸ヤ綔涓紝涓や釜寮€鍏崇浜ゆ浛瀵奸€氾紝鍦ㄥ対鏁板潎涓篘鐨勭粫缁勪袱绔垎鍒舰鎴愮浉浣嶇浉鍙嶇殑鏂规尝鐢靛帇锛屾鐢佃矾鍙互鐪嬫垚瀹屽叏瀵圭О鐨勪袱涓崟绔婵€鍙樻崲鍣ㄧ粍鍚堣€屾垚銆傜敱浜庤緭鍑虹數鍘嬩负楂樺帇锛屾墍浠ラ噰鐢ㄤ簡鍏ㄦˉ鏁存祦鐢佃矾锛屼互闄嶄綆姣忎釜鏁存祦绠$殑鍙嶅悜鎵垮彈鐢靛帇锛孷D1銆乂D2銆乂D3銆乂D4涓烘暣娴佷簩鏋佺锛孡銆丆涓鸿緭鍑烘护娉㈢數鎰熷拰婊ゆ尝鐢靛銆傞€嗗彉鍣ㄥ悓涓€妗ヨ噦鐨勪笂涓嬩袱涓紑鍏冲櫒浠朵氦鏇块€氭柇锛屽苟澶勪簬浜掕ˉ宸ヤ綔鏂瑰紡锛屽嵆鍔熺巼绠1鍜孷2浜掕ˉ銆乂3鍜孷4浜掕ˉ锛孷1鍜孷3鍦ㄧ浉浣嶄笂鐩稿樊180°鐢佃搴︺€傞€嗗彉鍣ㄥ姛鐜囧紑鍏崇閲囩敤浜哛CVD缂撳啿鐢佃矾锛岀紦鍐茬數璺IGBT鐨勫畨鍏ㄥ伐浣滆捣鐫€閲嶈浣滅敤锛屽畠鍙互鏈夋晥鍦版姂鍒跺紑閫氭椂娴秾鐢垫祦鍜屽叧鏂椂娴秾鐢靛帇銆傞噰鐢≧CVD缂撳啿鐢佃矾鍙互浣跨紦鍐茬數闃诲澶э紝閬垮紑浜嗗紑閫氭椂IGBT鍔熻兘鍙楅樆鐨勯棶棰橈紱涔熷洜鍏舵梺璺簡鐢甸樆涓婄殑鍏呯數鐢垫祦锛屽厠鏈嶄簡杩囧啿鐢靛帇銆?锛? 鎺у埗鐢佃矾璁捐閫嗗彉鐢垫簮鎺у埗鐢佃矾閲囩敤浜?鐗囬泦鎴愯剦瀹借皟鍒剁數璺姱鐗嘢G3524锛屼竴鐗囩敤鏉ヤ骇鐢烶WM娉紝鎺у埗鎺ㄦ尳鍗囧帇鐢佃矾锛涘彟涓€鐗囦笌姝e鸡鍑芥暟鍙戠敓鑺墖ICL8 038杩炴帴鏉ヤ骇鐢烻PWM娉紝鎺у埗鍏ㄦˉ閫嗗彉鐢佃矾銆傞泦鎴愯姱鐗囨瘮鍒嗙珛鍏冨櫒浠舵帶鍒剁數璺叿鏈夋洿绠€鍗曘€佹洿鍙潬鐨勭壒鐐瑰拰鏄撲簬璋冭瘯鐨勪紭鐐广€傝搫鐢垫睜涓洿娴佺數鍘嬬粡杩囨帹鎸界數璺繘琛屽崌鍘嬶紝鍦ㄧ洿娴佺幆涓婂緱鍒颁竴涓鍚堣姹傜殑鐩存祦鐢靛帇330 V宸﹀彸(50 Hz锛?20 V浜ゆ祦杈撳嚭鏃?銆備负淇濊瘉绯荤粺鍙潬杩愯锛岄槻姝富鐢佃矾瀵规帶鍒剁數璺殑骞叉壈锛岄噰鐢ㄤ富銆佹帶鐢佃矾瀹屽叏闅旂鐨勬柟娉曪紝鍗抽┍鍔ㄤ俊鍙风敤鍏夎€﹂殧绂伙紝鍙嶉淇″彿鐢ㄥ彉鍘嬪櫒闅旂銆係PWM娉㈠舰鍙戠敓鐢佃矾銆?瑕佸緱鍒癝PWM娉紝蹇呴』寰楀埌涓€涓箙鍊煎湪1锝?锛? V锛屾寜姝e鸡瑙勫緥鍙樺寲鐨勯澶存尝锛屽皢瀹冨姞鍒癝G3524鍐呴儴锛屽苟涓庨敮榻挎尝姣旇緝锛屽氨鍙緱鍒版寮﹁剦瀹借皟鍒舵尝銆傛寮︽尝鐢靛帇ua鐢卞嚱鏁板彂鐢熷櫒ICL8038浜х敓銆傛寮︽尝鐨勯鐜囩敱R2銆丷3鍜孋1鏉ュ喅瀹氾紝f=0锛?5锛?R2+R3)C1锛屼负璋冭瘯鏂逛究锛屽皢R2鍙奟3閮界敤鍙皟鐢甸樆锛孯1鐢ㄦ潵璋冩暣姝e鸡娉㈠け鐪熷害銆傚湪瀹為獙涓祴寰楀綋f=50 Hz鏃讹紝R2+R3=9锛? kΩ锛屽叾涓瑿1=0锛?2 μF銆傛寮︽尝淇″彿浜х敓鍚庝竴璺粡杩囩簿瀵嗗叏娉㈡暣娴侊紝寰楀埌棣掑ご娉c銆傚彟涓€璺粡杩囨瘮杈冨櫒寰楀埌涓庢寮︽尝鍚岄鐜囷紝鍚岀浉浣嶇殑鏂规尝ub锛寀c 涓? V鍩哄噯鐢靛帇缁忚繃鍔犳硶鍣ㄥ悗寰楀埌ud銆倁d杈撳叆鍒癝G3524鐨?鍙疯剼锛?鑴氫笌9鑴氱浉杩烇紝杩欐牱ud鍜岄敮榻挎尝灏嗗湪SG3524鍐呴儴鐨勬瘮杈冨櫒杩涜姣旇緝浜х敓SPWM娉c銆傚皢寰楀埌鐨勪袱璺┍鍔ㄤ俊鍙峰姞鍒伴┍鍔ㄧ數璺殑鍏夎€﹀師杈癸紝灏卞彲浠ュ疄鐜版寮﹁剦瀹借皟鍒躲€?锛? 淇濇姢鐢佃矾杩囨祦淇濇姢鏄埄鐢⊿G3524鐨?0鑴氬姞楂樼數骞冲皝閿佽剦鍐茶緭鍑虹殑鍔熻兘銆傚綋10鑴氫负楂樼數骞虫椂锛孲G3524鐨?1鑴氬強14鑴氫笂杈撳嚭鐨勮剦瀹借皟鍒惰剦鍐插氨浼氱珛鍗虫秷澶辫€屾垚涓洪浂銆傝繃娴佷俊鍙峰彇鑷數娴佷簰鎰熷櫒锛岀粡鏁存祦鍚庡緱鍒扮數娴佷俊鍙凤紝鍔犺嚦杩囨祦淇濇姢鐢佃矾涓娿€傝繃娴佷俊鍙风粡杩囩簿瀵嗘暣娴佸姞鑷崇數鍘嬫瘮杈冨櫒LM339鐨勫悓鐩哥銆傚綋杩囨祦淇″彿浣垮悓鐩哥鐢靛钩姣斿弽鐩哥鍙傝€冪數骞抽珮鏃讹紝姣旇緝鍣ㄥ皢杈撳嚭楂樼數骞筹紝鍒欎簩鏋佺灏嗕粠鍘熸潵鐨勫弽鍚戝亸缃姸鎬佽浆鍙樹负姝e悜瀵奸€氾紝骞舵妸鍚岀浉绔數浣嶆彁鍗囦负楂樼數骞筹紝杩欎竴鍙樺寲灏嗕娇寰楃數鍘嬫瘮杈冨櫒涓€鐩寸ǔ瀹氳緭鍑洪珮鐢靛钩灏侀攣鑴夊啿锛屽垯DC—DC鐢佃矾鍋滄宸ヤ綔銆傚湪姝e父鐘舵€佷笅锛屾瘮杈冨櫒杈撳嚭闆剁數骞筹紝涓嶅奖鍝岲C—DC鐢佃矾宸ヤ綔銆傝繃娴佷繚鎶ょ數璺€?2 瀹為獙缁撴灉鍒嗘瀽涓轰簡楠岃瘉涓婅堪璁捐鐨勫彲琛屾€э紝鍦? kW椋庡姏鍙戠數瀹為獙骞冲彴涓婅繘琛岃瘯楠屻€傞噰鐢ㄧ洿娴佺數鏈烘ā鎷熼鍔涙満锛屽彂鐢垫満浣跨敤姘哥鍚屾鍙戠數鏈猴紝鐢?鍙?2 V锛?00 Ah鐨勮搫鐢垫睜杩涜涓插苟鑱旀瀯鎴愯搫鐢垫睜缁勶紝绔數鍘?8 V銆傝緭鍏ユ护娉㈢數瀹癸細450 V锛? 000μF锛岃緭鍑烘护娉㈢數鎰燂細8 mH锛屾护娉㈢數瀹癸細4锛? μF銆傞噰鐢?00 W鐧界偨鐏场浣滀负闃绘€ц礋杞藉拰闃绘姉瑙掍负20°鐨勬劅鎬ц礋杞芥潯浠朵笅瀵归€嗗彉鍣ㄨ緭鍑烘尝褰㈣繘琛屽垎鏋愶紝銆?瀵瑰疄楠岀粨鏋滆繘琛屽垎鏋愶紝閫嗗彉鍣ㄨ緭鍑虹數鍘嬩负220±5 V锛岄鐜?0 Hz±0锛?锛咃紝THD<5锛咃紝鐗瑰埆鏄湪钃勭數姹犵數鍘嬪湪42—53 V娉㈠姩鏃朵粛鐒惰兘杈冨ソ鐨勪繚鎸佽緭鍑烘尝褰€? 缁撹閫氳繃瀹為獙瀹為檯娴嬭瘯浜嗘寮︽尝閫嗗彉鍣ㄧ殑鎬ц兘锛屼粠瀹為獙缁撴灉鏉ョ湅锛岀數璺伐浣滅ǔ瀹氾紝杈撳嚭鐢靛帇娉㈠舰骞虫粦锛屾姉骞叉壈鑳藉姏寮猴紝鍏锋湁杈冨ソ鐨勬寮﹀害銆傛湰鏂囨墍璁捐鐨勯噰鐢?鐗囬泦鎴愯剦瀹借皟鍒剁數璺姱鐗囧垎鍒帶鍒舵帹鎸界數璺拰鍏ㄦˉ閫嗗彉鐢佃矾锛屼互鍙婇€氳繃SPWM鎺у埗鏂规硶璁捐鐨勯€嗗彉鐢垫簮鎴愭湰浣庛€佺粨鏋勭畝鍗曘€佺ǔ瀹氭€ч珮銆佹槗浜庡競鍦哄寲锛岄€傚悎鐗у尯銆佹捣宀涖€侀€氫俊鍩虹珯绛夊伐鍐靛鏉傘€佺敤鐢甸噺杈冨皬鐨勫湴鍖轰娇鐢ㄧ殑灏忓瀷椋庡姏鍙戠數绯荤粺銆。

TL494正弦波逆变电源设计

TL494正弦波逆变电源设计

TL494正弦波逆变电源设计————————————————————————————————作者:————————————————————————————————日期:21. TL494正弦波逆变电源设计1.1 概述:TL494本身就是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于单端正激双管室、半桥式、全桥式开关电源.TL494有SO—16和PDIP—16两种封装形式,以适应不同场合的要求。

次课程设计我所设计的是TL494正弦波逆变电路,其电路的主要功能是:1)逆变就是将直流变为交流.由波形发生器产生50Hz、幅度可变的正弦波,与锯齿波比较后,再通过PWM电路,输出SPWM 波,经过驱动电路逆变电路,再经过高频变压器与滤波电路输出50Hz的正弦波。

2)电路由主电路与控制电路组成,主电路主要环节:高频逆变电路、滤波环节。

控制电路主要环节:正弦信号发生电路、脉宽调制PWM、电压电流检测单元、驱动电路。

3)功率变换电路中的高频开关器件采用IGBT或MOSFET. 4)系统具有完善的保护这是本次课程设计中要设计的电路的概况,其实总的来说用TL494为主要元件实现的正弦波逆变电路控制器具有构思新颖、电路简单、成本低廉以及控制过程稳定等特点,在很多工业控制场合可获得广泛的应用。

~ - 1 - ~1。

2 系统总体方案的确定:通过对设计内容和设计要求的具体分析,我把电路分别设计成两部分:一是主电路,即是采用高频逆变电路和高频变压器的组合来实现,其中的滤波电路则是采用的线路滤波的方式,高频逆变电路由于其要求的特殊性我采用了电压型半桥逆变电路和高频开关IGBT相连接的方法,并且和高频变压器的组合可以高效的实现直流电向交流电的逆变过程。

第二部分控制电路,当然是采用集成芯片TL494来实现,主要原因在于主电路的电流逆变过程中控制电路各单元的复杂性,而TL494本身包含了开关电路控制所需的全部功能和全部脉宽调制电路,同时片内置有线性误差放大器和其他驱动电路等,因此便可以同时实现:正弦信号发生单元、脉宽调制PWM单元、电压电流检测单元和驱动电路单元。

正弦波逆变器设计方案

正弦波逆变器设计方案

逆变器建议删除该贴!! | 收藏| 回复| 2008-03-15 12:18:15楼主搞正弦波,难度最大的就是要生产稳定的SPWM波,还有就是要有合理的电压调整电流,电流检测.很多在网上都介绍些用单片机,分立元件等.其实不用哪么麻烦的.主要一个U3990加一个IR2110,4 个IRF460,两个滤波器就可以做成一款精度误差为2%的纯正弦波电源.在这里详细原理图我就不发了,我发一些提示性的东西给大家;U3990:U3988是数字化的、功能完善的正弦波单相逆变电源 / UPS 主控芯片,它不仅可以输出高精度的SPWM正弦波脉冲序列,还可以实现稳压、保护、市电/逆变自动切换、充电控制等功能,并且具备LED指示灯驱动、蜂鸣器控制、逆变桥控制引脚,从而可以利用该芯片组成一个完整的逆变电源/UPS系统,用该芯片控制的逆变桥输出,既可以是传统的工频变压器结构,也可以是高频升压后的直接逆变结构.为方便生产过程中的调试,该芯片还具备测试模式,在该模式下,所有的保护功能、市电切换、充电控制均不起作用,仅工作在可以稳压的逆变状态,为最基本的调试和测试提供了方便.U3988 的内部构成主要有:正弦波发生器、双极性调制脉冲产生逻辑、50Hz(或 60Hz) 时基、电压反馈/短路检测、正弦波峰值调压稳压单元、外部扩展的保护响应逻辑、市电过零脉冲过滤、市电电压测量、电池电压测量、逆变控制、充电控制、指示灯控制、蜂鸣器控制、抗干扰自恢复单元构成.整个电路封装成一个18引脚IC(DIP18),其内部结构框图如图一所示:图二是U3988的引脚图.VDD是芯片的电源引脚,接单一+5V;GND是地;OSC1、OSC2是时钟引脚,接20MHz晶振;OUTA、OUTB是正弦波SPWM脉冲序列的输出引脚,这两个引脚输出的信号一般要通过死区控制电路才能送到逆变桥;OUTG是逆变桥使能控制输出,该引脚输出低电平时允许逆变桥工作,输出高电平时则禁止逆变桥工作;AV_CK是逆变输出电压反馈引脚,该引脚接受的是模拟量输入,逆变桥最终输出的正弦波交流电压通过反馈电路送到该引脚,由芯片对逆变输出电压实现稳压、调压和短路检测;BT_CK是电池电压测量引脚,是模拟量输入引脚,电池电压经过电阻降压送到该引脚,由芯片对电池实现欠压保护、充电检测,若不需要使用该引脚,可以直接接+5V;AC_CK是市电电压测量引脚,这也是模拟量输入引脚,市电电压经过降压、整流、滤波、电阻分压后,送到该引脚,芯片会根据该引脚电压的变化,判断市电是否异常,并决定是否进行市电/逆变切换;若不需要使用该引脚,也可以直接接+5V;ACPLUS引脚是市电检测输入,芯片由此引脚的高低电平判断市电的有无;有市电时要将该引脚拉成低电平,对于检测市电的电路,如果为了提高响应速度而不采用滤波电容,也是允许的,虽然在该引脚的低电平信号中含有过零脉冲,但并不会使U3988频繁地进入逆变状态,因为在芯片的内部有过零脉过滤逻辑;AC/DC引脚是市电/逆变控制输出,输出高电平时为市电,输出低电平时为逆变;CHARG引脚是充电控制输出,高电平有效;LED_L引脚是逆变/欠压指示输出,低电平时表示逆变状态,闪烁时表示欠压;LED_P引脚是保护指示输出,当检测到短路或者外部的扩展保护时,芯片停止逆变,进入保护状态,此时指示灯闪烁;PROT引脚是扩展保护输入引脚,高电平有效,用户可以通过外部的或门逻辑实现过流、过温等保护输入 ,该引脚在逆变和市电状态都可以响应外部的保护请求;BEEP/TEST是双向引脚,正常工作时是蜂鸣器控制输出引脚,通过三极管驱动电磁式蜂鸣器,当在芯片加电的瞬间,该引脚是输入引脚,用来检测外部TEST跳线的状态;关于该引脚的详细用法,将在后面介绍;NC引脚是空余的引脚,一定要接到高电平.在逆变状态下,OUTA、OUTB引脚输出的是双极性的SPWM脉冲序列,见图三所示:OUTA 输出的SPWM脉冲序列,经过逆变后对应正弦波的正半周;OUTB输出的SPWM脉冲序列,对应正弦波的负半周.逆变输出电压反馈引脚的作用是测量逆变输出的交流电压,根据测量值计算输出电压的误差并对输出电压值作出调整.当输出电压升高时,该引脚的电压也随之升高,芯片内部的调压电路会降低输出电压,反之,当该引脚的电压降低时,芯片会升高输出电压.该引脚采用的峰值电压取样法,如图四所示:图中的虚线标识就是芯片的取样点,峰值取样的优点是测量值准确、对电压变化反应迅速.在大多数情况下对于发生偏离的输出电压,芯片可以在1-5个交流电周期内调整完毕,为了降低正弦波形的失真度、保证波形的完整性,这种调整是在下一个交流电周期起作用的.该引脚也可以测量整流滤波后的直流电压(平均值),只是因为滤波电容的存在,使芯片对输出电压的变化反应迟钝.加在AV_CK 引脚上的电压必须是实时的,不能是静态的电压.例如:在某一应用中为了能够调节逆变输出电压,在该引脚施加了一个固定的直流电压,这个电压是可以调节的,但不是输出电压的反馈,这种情况是不允许的(但不会损坏芯片),因为这个电压不是反馈回来的,芯片始终会认为这个值偏高(或偏低),从而会一直做出相反的调整,直到把输出电压调到了最低(或最高),才会停止.芯片的调压 / 稳压范围大约是最高输出电压的50%-100%.该引脚能够测量的电压范围是 0-5V,为了保护该引脚不会因为过压而损坏,要在该引脚串接一只10K的电阻(特别重要).该引脚是以4.5V作为稳压基准的.AV_CK引脚同时还要检测输出电压的短路情况,短路检测的周期是100uS检测一次,同时检测的还有扩展保护引脚,但是在输出电压过零点的前后10度范围内不进行上述检测,在这段时间内,芯片要检测电池电压和市电电压以及市电状态.BT_CK引脚对电池电压检测的动作阀值:该引脚的电压低于1.9V为欠压保护;低于2V为欠压告警;低于2.4V时开始充电(在有市电时),高于2.8V时停止充电.充电控制引脚CHARG的动作带有10秒钟的延迟.并且每次上电芯片都尝试对电池进行充电.AC_CK引脚对市电电压检测的动作阀值:该引脚电压低于1.9V或者高于2.4V表示市电异常,芯片会自动转入逆变;该引脚带有施密特触发特性,在市电高于2V或者低于2.3V时,芯片才认为市电正常.蜂鸣器控制引脚BEEP/TEST是具有两个功能的双向引脚,它的外围电路建议如图五所示:正常情况下,跳线器TEST是断开的,由BEEP/TEST引脚输出的蜂鸣信号通过R3、C1、D1、Q1驱动电磁蜂鸣器发声;在芯片加电启动的过程中,若芯片检测到TEST跳线短接,就会进入测试状态.在测试状态,芯片不理会各种保护信号和市电状态,始终处在可以稳压、调压的逆变状态.图五中的R1为TEST跳线提供高电平上拉,R2是为了及时释放掉C3上的电压,保证跳线未短接时BEEP/TEST引脚是低电平.改变跳线后要对芯片重新加电.蜂鸣器采用不同长度的发声来代表芯片的状态:市电/逆变切换时短鸣一声;电池欠压告警时以3秒钟的间隔短鸣;欠压、短路、扩展保护时以1秒的间隔短鸣;进入测试状态时短鸣两声. PCB布线时要注意的问题:一.时钟引脚要接一20MHz的普通晶振,晶体的两个引脚还要各接一只外部电容,尽管没有外部电容C,振荡电路也能起振,但为了工作稳定和避免干扰,最好采用15-30PF的电容; 二.三个模拟量测量引脚BT_CK、AC_CK、AV_CK的线条要尽可能短,并且能与地平行或者被地包围,以减小干扰;三.U3988的+5V供电和地线要单独到走电源,不要从其它的电路单元分支过来,这样可以把芯片受到的干扰降到最低程度;U3988芯片有两个系列:50Hz和60Hz.每个系列又有不同的版本变化,用户可以从芯片型号的后缀字符加以区分.如:U3988T5-50表示50Hz系列的T5版本,U3988T5-60表示60Hz系列的T5版本.目前U3988提供的版本是T8.RI2110;在功率变换装置中,根据主电路的结构,起功率开关器件一般采用直接驱动和隔离驱动两种方式.美国IR公司生产的IR2110驱动器,兼有光耦隔离和电磁隔离的优点,是中小功率变换装置中驱动器件的首选.IR2110引脚功能及特点简介内部功能如图4.18所示:LO(引脚1):低端输出COM(引脚2):公共端Vcc(引脚3):低端固定电源电压Nc(引脚4): 空端Vs(引脚5):高端浮置电源偏移电压VB (引脚6):高端浮置电源电压HO(引脚7):高端输出Nc(引脚8): 空端VDD(引脚9):逻辑电源电压HIN(引脚10): 逻辑高端输入SD(引脚11):关断LIN(引脚12):逻辑低端输入Vss(引脚13):逻辑电路地电位端,其值可以为0VNc(引脚14):空端IR2110的特点:(1)具有独立的低端和高端输入通道.(2)悬浮电源采用自举电路,其高端工作电压可达500V.(3)输出的电源端(脚3)的电压范围为10—20V.(4)逻辑电源的输入范围(脚9)5—15V,可方便的与TTL,CMOS电平相匹配,而且逻辑电源地和功率电源地之间允许有 V的便移量.(5)工作频率高,可达500KHz.(6)开通、关断延迟小,分别为120ns和94ns.(7)图腾柱输出峰值电流2A.桥电路驱动原理IR2110内部功能由三部分组成:逻辑输入;电平平移及输出保护.如上所述IR2110的特点,可以为装置的设计带来许多方便.尤其是高端悬浮自举电源的设计,可以大大减少驱动电源的数目,即一组电源即可实现对上下端的控制.高端侧悬浮驱动的自举原理:IR2110驱动半桥的电路如图所示,其中C1,VD1分别为自举电容和自举二极管,C2为VCC 的滤波电容.假定在S1关断期间C1已经充到足够的电压(VC1 VCC).当HIN为高电平时如图4.19 :VM1开通,VM2关断,VC1加到S1的栅极和源极之间,C1通过VM1,Rg1和栅极和源极形成回路放电,这时C1就相当于一个电压源,从而使S1导通.由于LIN与HIN是一对互补输入信号,所以此时LIN为低电平,VM3关断,VM4导通,这时聚集在S2栅极和源极的电荷在芯片内部通过Rg2迅速对地放电,由于死区时间影响使S2在S1开通之前迅速关断.当HIN为低电平时如图4.20:VM1关断,VM2导通,这时聚集在S1栅极和源极的电荷在芯片内部通过Rg1迅速放电使S1关断.经过短暂的死区时间LIN为高电平,VM3导通,VM4关断使VCC经过Rg2和S2的栅极和源极形成回路,使S2开通.在此同时VCC经自举二极管,C1和S2形成回路,对C1进行充电,迅速为C1补充能量,如此循环反复./play/4356/1.html/html/zipaitoupai/list_5_6.html。

蓄电池放电能量回馈控制主电路元器件参数的设计

蓄电池放电能量回馈控制主电路元器件参数的设计

馈给电网 ,并且使流入电网的电流为正弦波 ,对电网 没有谐波干扰 [ 1 ] .
本文所研制的新型放电装置的主电路结构如图 1所示. 关于该放电装置的工作原理请查阅参考文 献 [ 1 ] ,在此不再重复阐述.
图 1中的 T5 ~T8 及其反并联二极管共 同组成 单相 PWM 整流逆变电路 , Lf 、Cf 用于滤去 PWM 整 流电路产生的高频开关噪声 , R2 和 CJ 2 用于抑制交 流输出合闸浪涌电流.
第 17卷第 4期 湖 南 工 程 学 院 学 报 Vo1. 17. No. 4 2007 年 12月 Jo u rna l of Hunan In stitu te o f Engineerin g Dec. 2007
蓄电池放电能量回馈控制主电路元器件参数的设计
易映萍 , 姚为正
(上海理工大 学 电气 学院 ,上海 200093)
摘 要 : 提出采用双级变换电路的方法 ,研制出一种新型的单相有源逆变蓄电池回馈放电装置 ,主要介 绍了第二级变换电路 —PWM 整流逆变能量回馈主电路参数的设计方法 ,对从事蓄电池放电技术研究的 工程技术人员具有较高的参考价值. 关键词 : 蓄电池 ; PWM 整流逆变 ;能量回馈 ;参数 ;设计 ; 中图分类号 : TM 912 文献标识码 : A 文章编号 : 1671 - 119X (2007) 04 - 0015 - 03
当输入功率最大 、输出电压最小时 , 输出交流电
流 (有效值 )达到最大
Ism = (792 0 ×95 % ×9 2% ) / 190 = 36. 2 (A) ( 2) 因为输出电流为正弦波 ,其最大峰值为 :
Ismp = 36. 2 ×1. 414≈ 51 (A )
( 3)

PWM蓄电池充放电系统的设计

PWM蓄电池充放电系统的设计
a r e a n a l y z e d i n t h i s p a p e r . T h e w o r k i n g p r i n c i p l e o f t w o b s a i c D C / D C c h o p p e r c i r c u i t - B u c k c h o p p e r a n d
B o o s t c h o p p e r a r e a n a l y z e d i n t h i s p a p e r . B s a e d o n t h e t w o b s a i c c h o p p e r s , a r e v e r s i b l e D C / D C c h o p p e r c i r c u i t i s d e s i ne g d , t h e c o n s t a n t c u r r e n t a n d c o n s t a n t v o l t a g e c o n t r o l m o d e l f o r c h a r g e i s b u i l d , a n d t h e s i m u l a t i o n r e s u l t i s g i v e n . T h e d e s i n g o f c o n t r o l h a r d w a r e o f s y s t e m b s a e d o n 8 0 C 1 9 6 K C m i c r o p r o c e s s o r i s a n a l y z e d c o m p l e t e l y i n t h i s p a p e r . T h e d e s i n g m e t h o d o f s y s t e m s o f t w a r e i s i n t r o d u c e d B s a e d o n t h e m o d e l s i m u l a t i o n , t h e m e t h o d o f s e l e c t i n g p a r a m e t e r s o f d i g i t a l P I c o n t r o l l e r , a n d t h e r e s u l t s o f s i m u l a t i o n a r e g i v e n , a n d s o m e i m p o t r a n t h a r d w a r e

正弦波逆变蓄电池回馈放电装置的设计

正弦波逆变蓄电池回馈放电装置的设计

该装置 是取代 传 统 放 电装 置 的理 想产 品, 别适 用 特
于 电力行业 2 0 或 l O 2V l V直 流系 统蓄 电池放 电。
2 系统 结构及工作原理
正弦 渡逆 变蓄 电池 回馈 放 电装置 的 系统结构 如
源逆变放 电装置 具有 体 积 和 噪声 大 、 流输 出功 率 交 因数 小 、 电网的谐波 污染严 重 、 对 交流失 电后保 护 困 难以及放 电电流 交流 纹 波 系数 大 等 缺 点 , 因此 很 少 采用 ; 电阻放 电装 置 虽 然 结构 简 单 、 本 低, 放 电 成 但 电流控 制 困难 , 法精确 计算 蓄 电池的容 量 。 且将 无 并
ivre r nrd cd n t o to to a i utaea ay e .A p ooy e ma ua trda cr ig t h m n etr eito ue .a d i vn rl a s meh d m dcr i r n lzd rttp c n fcue codn o te
图 1所示 。D / C DC变 换 电路 为升 压 电路 , 蓄 电池 将
电压变换 成 P WM 整 流 逆 变 电路 所 需 要 的直 流 电
压。 同时实 现蓄 电池 恒流 放 电控 制 ;WM 整流 逆变 P 电路将 蓄 电 池 释 放 的 能 量变 换 成 交 流 电 回送 给 电
f 1 lⅫ J o n i r t。 x ’ i  ̄ g Unv s y a ei ’ n 7 0 6 ,C ia 2 a 1 0 1 h n ; .X j P w , o .Xih n 6 0 0 hn a i o  ̄ C .L - l a g 4 1 0 。C i c a; 3 I n n I s tt o n e i ,Xa ga 1 1 1 C ia】 . [ a n t u e fE ne  ̄ - u i r g i tn 4 1 0 _ h n n

单相正弦波逆变电源设计说明

单相正弦波逆变电源摘要:本单相正弦波逆变电源的设计,以12V蓄电池作为输入,输出为36V、50Hz的标准正弦波交流电。

该电源采用推挽升压和全桥逆变两级变换,在控制电路上,前级推挽升压电路采用SG3525芯片控制,闭环反馈;逆变部分采用驱动芯片IR2110进行全桥逆变,采用U3990F6完成SPWM的调制,后级输出采用电流互感器进行采样反馈,形成双重反馈环节,增加了电源的稳定性;在保护上,具有输出过载、短路保护、过流保护、空载保护等多重保护功能电路,增强了该电源的可靠性和安全性;输出交流电压通过AD637的真有效值转换后,再由STC89C52单片机的控制进行模数转换,最终将电压值显示到液晶12864上,形成了良好的人机界面。

该电源很好的完成了各项指标,输入功率为46.9W,输出功率为43.6W,效率达到了93%,输出标准的50Hz正弦波。

关键词:单相正弦波逆变 DC-DC DC-AC SPWMAbstract: The single-phase sine wave inverter power supply design, battery as a 12V input and output for the 36V, 50Hz standard AC sine wave. The use of push-pull power booster and two full-bridge inverter transform,in the control circuit, the pre-boost push-pull circuit using SG3525 chip control,closed-loop feedback;inverter driver IC IR2110 in part to the use of full-bridge inverter using SPWM modulation U3990F6 completed,level after the use of current transformer output sampling feedback. The feedback link in the formation of a double and increase the stability of power.In protection, with output overload, short circuit protection, overcurrent protection, the protection of multiple no-load protection circuit, which enhancing the reliability of the power supply and safety.AC voltage output of the AD637 True RMS through conversion, and then from the control of single-chip STC89C52 analog-digital conversion, the final value of the voltage to the liquid crystal display 12864 on the formation of a good man-machine interface. The completion of the power good indicators, input power to 46.9W, output power of 43.6W,the efficiency reached 93%, 50Hz sine wave output standards. Key words: Single-phase sine wave inverter DC-DCDC-ACSPWM目录1.系统设计41.1设计要求41.2总体设计方案41.2.1设计思路41.2.2方案论证与比较51.2.3系统组成82.主要单元硬件电路设计92.1DC-DC变换器控制电路的设计 92.2DC-AC电路的设计102.3 SPWM波的实现 102.4 真有效值转换电路的设计112.5 保护电路的设计122.5.1 过流保护电路的设计 122.5.2 空载保护电路的设计132.5.3 浪涌短路保护电路的设计142.5.4 电流检测电路的设计152.6 死区时间控制电路的设计152.7 辅助电源一的设计152.8 辅助电源二的设计152.9 高频变压器的绕制172.10 低通滤波器的设计183.软件设计183.1 AD转换电路的设计183.2液晶显示电路的设计 194.系统测试204.1测试使用的仪器204.2指标测试和测试结果214.3结果分析245.结论25参考文献25附录1 使用说明25附录2 主要元器件清单25附录3 电路原理图与印制板图28 附录4 程序清单391.系统设计1.1设计要求制作车载通信设备用单相正弦波逆变电源,输入单路12V直流,输出220V/50Hz。

基于STM32的正弦波逆变器设计与研究

现代电子技术Modern Electronics TechniqueJun.2023Vol.46No.122023年6月15日第46卷第12期0引言逆变器是一种能把直流电源转变成定频定压或调频调压交流电源的转换器,广泛应用于家用电器设备、照明、电动工具等场所。

纯正弦波逆变器是通过控制半导体功率开关器件的导通和关断,将直流电能转化为交流电能。

如晶闸管(SCR )、可关断晶闸管(GTO )、大功率晶体管(GTR )、绝缘双极性晶体管(IGBT )和功率场效应管(MOSFET )等电力电子器件,较多用于此类电路。

纯正弦波逆变器的波形类似交流电源,以平滑的线上升和下降,虽然价格比普通的逆变器更昂贵,但它们在给精密电子设备仪器供电方面,可靠性和稳定性更好[1]。

改型波逆变器产生类似于上下楼梯的波形,以模仿纯交流电的波形,并且可以运行大多数家用小工具,但可能会遇到诸如“电子噪声”之类的问题,这些问题可能导致某些项目无法满负荷运行。

更重要的是,敏感的电子设备需要纯正弦波才能正常工作,如果尝试使用修改后的波来运行它们,可能会造成永久性损坏。

1设计与研究基础逆变技术的研究源于1931年。

第一台感应加热逆变器诞生于1948年,由美国西屋电气公司研制生产。

晶闸管(SCR )的发明为正弦波逆变器提供了更好的发展空间。

从20世纪70年代起,GTO 、BJT 、MOSFET 、DOI :10.16652/j.issn.1004⁃373x.2023.12.019引用格式:夏威,刘文胜.基于STM32的正弦波逆变器设计与研究[J].现代电子技术,2023,46(12):109⁃116.基于STM32的正弦波逆变器设计与研究夏威,刘文胜(惠州市技师学院电子工程系,广东惠州516003)摘要:逆变器是一种能把直流电源转变成定频定压或调频调压交流电源的转换器,广泛应用于家用电器设备、照明、电动工具等方面。

文中设计一种基于STM32的纯正弦波逆变器,并分析用于系统控制部分的正弦脉冲宽度调制(SPWM )技术。

单相正弦波逆变蓄电池回馈放电装置IGBT驱动电路的设计

易映 萍 , 侯文 , 蒋玲 ( 海理 工大 学计算机 与电气工程 学院 , 上 上海 2 0 9 ) 0 0 3
摘 要 : 出采 用双级 变换 电路 的 方 法 , 制 出一种 新 型的 单相 有 源逆 变蓄 电池 回馈 放 电装 置 , 提 研 主要介 绍 了本放 电装置 中 IB G T器件 的驱 动 电路 的设 计 , 对从 事 电力 电子技 术 特 别是 对 从 蓄 电池放 电技 术研 究的 工程技 术人 员
维普资讯
<电气开关》 2 0 . o3 (0 8 N . )
文章编 号 :0 4—2 9 2 0 ) 3— 0 5— 2 10 8 X( 0 8 0 0 2 0
单 相 正 弦 波 逆 变 蓄 电池 回馈 放 电装 置 IB G T驱 动 电路 的 设 计
具有较 高的参考价值 。 关键 词 : 电池 ; B 驱动 电路 ; 计 蓄 I T; G 设
中图分 类号 : M 1 T 92 文献 标识 码 : B
Байду номын сангаас
De in o i e Cic i fS n l — h s i e W a e sg fDrv r u to i ge-p a e S n v
I e t r Ba t r e a k ic a gng nv r e te y Fe db c D s h r i
Y igp n HOU n, I NG L n /Yn -ig, We JA ig
( hnh i nvri f c neadT cnlg ,h nh i 0 0 3 C ia S ag a U iesyo i c n eh ooy Sa ga 2 0 9 ,hn ) t Se
维普资讯
《 电气开关》 2 0 . o3 (0 8 N . )

200W正弦波逆变电源的设计方法

200W正弦波逆变电源的设计方法郑文兵【摘要】提出了一种基于数字控制的具有高频链的200 W正弦波逆变电源的设计方法.正弦波逆变电源由一种新的全桥移相DC/DC软开关变换器和DC/AC周波变换器级联构成.介绍并分析了全桥移相DC/DC变换器软开关的实现方法和设计注意事项,以及全桥移相DC/DC变换器一个开关周期内的6个电路拓扑变换过程.提出了一种基于瞬时无功功率理论实现DC/AC周波变换器的新的控制方法,并给出了其控制原理框图.最后利用PSIM软件对整体电路进行了仿真,仿真结果表明符合理论分析的结果.【期刊名称】《上海电力学院学报》【年(卷),期】2011(027)004【总页数】7页(P327-332,367)【关键词】正弦波逆变电源;软开关;瞬时无功理论;数字控制【作者】郑文兵【作者单位】上海电力学院电力与自动化工程学院,上海200090【正文语种】中文【中图分类】TP17;TP331.212 V铅酸蓄电池是我国电力系统中使用量较大的一种蓄电池,由12 V铅酸蓄电池组构成的110 V或220 V中小容量直流系统普遍存在电池老化、特性不均衡等问题,大大缩短了电池的寿命,影响了电力系统的安全可靠运行.另外,废弃的铅酸蓄电池也对环境造成了很大污染.目前,通常的解决办法是对由12 V铅酸蓄电池组进行活化处理,即对整个蓄电池组不断进行恒电流充放电,直至铅酸蓄电池的特性恢复正常为止.在这一过程中,依靠由高频开关电源构成的整流器可以较好地实现恒电流充电,但放电却需依靠直流电阻实现.由于在放电过程中蓄电池组的直流电压不断下降,它不可能实现恒电流放电,因此蓄电池组活化效果很不好,而且还伴随有大量的功率损耗(由直流电阻造成).由12 V铅酸蓄电池组构成的110 V或220 V中小容量直流系统的容量最大,约为200 AH,即每节电池最大约为12 V 200 AH.活化电流约为20 A.活化功率约为12 V×20 A=240W.因此,用一个具有恒电流放电特性的逆变电源来对单个12 V铅酸蓄电池进行活化处理具有非常重大的现实意义.为了实现节能目标,在放电时必须将12 V铅酸蓄电池所储存的电能放回交流系统中,而该逆变电源的输入侧是直流系统,输出侧是交流系统,输入输出不共地,因此该逆变电源需要隔离.此外,要实现恒电流放电特性,就需要将逆变电源输出侧接入380 V三相交流系统中,因为只有三相交流系统才能实现恒电流特性.文献[1]至文献文献[6]提出采用全桥DC/DC变换器实现逆变电源的隔离;文献[7]提出可以用三相全桥DC/ AC周波变换器实现正弦波逆变.文献[8]介绍了一种全新的数字信号处理器(DSP) TMS320F28035,它能完全满足DC/DC变换器和三相DC/AC正弦波逆变器装置的控制要求.1 200W正弦波逆变电源的主电路设计200 W正弦波逆变电源的主电路采用如图1所示的全桥高频逆变器,它由全桥DC/DC变换器和全桥DC/AC周波变换器级联而成.全桥DC/ DC变换器由S1~S4等功率开关组成,全桥DC/ AC周波变换器由S5~S10等功率开关组成.前级的全桥DC/DC变换器先将蓄电池的直流电压以恒流放电的方式,经过高频变压器变换成隔离的500 V的高压后送到全桥DC/AC周波变换器的直流母线上,再将其变换成所需要的稳定正弦交流输出电压.全桥DC/DC变换器与全桥DC/AC周波变换器之间采用高频变压器隔离.图1 主电路拓扑结构1.1 全桥DC/DC变换器元器件参数选择由于全桥DC/DC变换器的输入侧为12 V的蓄电池,因此功率开关S1~S4可选用50 V和50 A,型号为RFP50N05L的低压低阻的大电流MOSFET功率开关,电感L d为2 mH的平波电感,阻挡电容C b用于隔直,防止高频变压器饱和,可选用容量为0.1μF的安规电容.C1和C2为缓冲电容,可选用容量为0.04μF的无感电容.1.2 全桥DC/AC周波变换器元器件参数选择由于三相全桥DC/AC周波变换器的输入侧为500 V的直流电压,因此功率开关S5~S10可选用900 V和1.7 A小电流、型号为IRFBF20PBF的MOSFET功率开关,由三相电感L f和电容C f组成交流滤波器,L f为1.2 mH,C f为3μF.直流母线上的电容C0起滤波和缓冲作用,由两个400 V和470μF电容串联组成,并带有均压电阻.1.3 高频变压器的设计高频变压器的设计方法是先求出磁芯窗口面积A W与磁芯有效截面积A e的乘积A P(A P=A W× A e,称磁芯面积乘积),然后根据A P值,查表找出所需磁材料的编号.本文选用EE65的铁氧体磁芯,工作频率为20 kHz.变压器原副边采用直径为0.15 mm的多股漆包线,变比为5∶250(匝).2 DC/DC变换器的工作模式为了降低由S1~S4功率开关、变压器,以及D1和D2组成的全桥DC/DC变换器的功率损耗,采用一种叫做“全桥相移ZVZCS技术”的新型软开关技术,其特点是:滞后桥臂的开关管S3和S4实现零电流关断,并不再并联电容,以避免开通时电容释放的能量加大造成损耗;领先桥臂仍和以前一样,利用开关管S1和S2上面并联电容C1和C2的方法实现零电压软开关状态(ZVS),以提高整个电路的效率.为了使滞后臂上的两个开关管以零电流方式工作,必须对主电路进行改动.当超前桥臂的开关管S1关断、S2的二极管续流时,变压器两端电压为零,变压器原副边电路独立,变换器工作在零状态,此时原边电流I P处于自由状态,并开始减小.为了保证在零状态时原边的电流减小到零,必须在漏感上加一个反电压,使电路中的电流迅速减小,因此只要在原边加入一个阻断电压源V X即可.当原边电流I P正向流过时,该电压极性为正;当I P反向流过时,该电压极性为负.通过加入这一阻断电压源就可使原边电流衰减到零.阻断电压源最简单的方法就是用一个电容C b来实现.当斜对角的两只开关管S1和S4同时导通时,I P给C b充电;当斜对角的两只开关管S2和S3同时导通时,I P给C b放电.而在零状态时,电容C b的电压保持不变,其极性刚好与I P相同,起到给I P复位的作用.ZVZCS变换器的基本拓朴结构如图2所示.图2 ZVZCS变换器的基本拓朴结构这种新型变换器每半个周期有6个工作模式,工作波形如图3所示,每管的占空比约为50%.图3 全桥移相ZVZCS变换器工作过程波形2.1 拓扑变换1(t0,t1)当t=t0时,S1和S4处于导通状态,D5也导通,变压器初级电流为正,输入功率通过变压器输出.在t1≥t≥t0时刻内,饱和电感一直处于饱和状态.其等效电路如图4所示.图4 拓扑变换1等效电路设开始电流值为I0,阻挡电容的峰值电压为U cbm.2.2 拓扑变换2(t1,t2)当t≥t1时,电路工作就进入模式2.在此期间,S1截止,S4和D5继续维持导通状态,变压器初级电流仍然为正,此时对C1充电,对C2放电,与之发生谐振,最终使S2的电压为零,并通过S2续流.在t=t2时刻,S2零电压开通.其等效电路如图5所示.图5 拓扑变换2等效电路其初始条件为:U c1(t1)=0,U c2(t1)=U in,I p (t1)=I p(t0)=I1.根据此时电路的拓扑图可推导出此模式中的变压器初级电流和电容的电压方程如下(因为此时间极短并且C b比C1和C2大的多,故设U cb1的值不变).当t≥t1时,则有:2.3 拓扑变换3(t2,t3)当U c2(t)=0时,D2开始导通,此时S2可以以零电压方式开通.因为D2开始导通后S2被开通,但S2中并没有电流流过,I P是由D2流过,所以S2是零电压开通.S2和S1驱动信号之间的死区时间为t d>(t2-t1),即t d>2CU in/I1,只要死区时间能满足这一条件,那么S2就可以零电压方式开通,否则就会在开关管上有较大的损耗.由于D2导通后D5和D6均处于导通状态,U ab=0,此时初级电流在变压器初级回路中处于自由运行状态,L s仍然处于饱和状态.在此期间U cb(t)完全加在L k上.其电路拓朴图如图6所示.图6 拓扑变换3等效电路其初始条件为:U cb(t2)近似等于U cb1,I P(t2) =I2.由此可得:当t=t3,电路中的电流减小为零时,将结束该模式进入下一个工作状态.由于主回路中只有变压器的漏感存在,因此阻挡电压U cb迅速将主回路的电流I P回复到零.饱和电感L s退出饱和状态,呈现出很大的电感量.2.4 拓扑变换4(t3,t4)当主回路中的电流减小到零时,电流继续向反方向增加,但主电路中的电流被保持在零状态,因为此时饱和电感已经退出饱和状态变为不饱和,呈现一个远大于漏感L k的电感量以阻挡反向电流的增加,因此阻挡电容上的电压完全加在饱和电感上.此时的等效电路图如图7所示.阻挡电容上的电压保持不变,S4仍导通,但由于主电路中没有电流流过,所以开关管S4中的电流为零.图7 拓扑变换4等效电路2.5 拓扑变换5(t4,t5)在t4时刻,开关管S4关断,此条件为零电流状态下关断.经过一个死区时间后开关管S3开通.此时阻挡电容上的电压不变,主电路中的电流仍为零.其等效电路如图8所示.图8 拓扑变换5等效电路2.6 拓扑变换6(t6,t7)在t5时刻开关管S3开通,但由于此时饱和电感L s尚未饱和,I P经过一定的滞后再迅速上升,在阻断电容和输入电压的共同作用下饱和电感很快又进入饱和区.因为有一定的电流滞后,所以使开关管S3的开通损耗大大降低.在t6时刻,I P达到输出电流在主回路的折合值,变压器副边出现电压,电源再次向负载输送能量,电容C b的电压U cb由正向负逐渐减小,进入下半个对称的周期.此时等效电路图如图9所示.图9 拓扑变换6等效电路由于此过程很短,因此可认为U cb(t)不变.由此可得到变压器初级绕组电流为:由DC/DC变换器的6个拓扑状态变换过程的分析可以看出,当给定了饱和电感的数值后,通过合理选择电容C1,C2,C b的容量,肯定存在满足DC/DC变换器软开关工作的条件,通常来说高频变压器都存在一定的漏感,因此可以用高频变压器的漏感来代替饱和电感L s.3 DC/AC周波变换器的控制方法全桥DC/AC周波变换器由S5~S10构成.采用三相变换器而不采用单相变换器的原因在于系统需要实现恒流放电,只有三相周波变换器才能保证在各个时间段内输出一个恒定的功率.正弦波脉宽调制(SPWM)控制主要着眼于使逆变器输出电压尽量接近于正弦波,电流跟踪控制则直接考虑输出电流是否按正弦变化.为了达到最优的瞬时功率控制,本文采用瞬时无功功率理论来实现.基于瞬时无功功率理论的检测方法有p-q法和i p-i q法.本文采用p-q法[7],因为控制的目的是实现恒定目标功率的输出.通过数字锁相技术可以得到代表A相电压的瞬时相位特性cosωt,并将蓄电池的电压U和放电电流I的乘积作为p-q算法中的,并令=0.其控制算法如图10所示.图10 改进的p-q算法得到所要求的控制电流信号i af,i bf,i cf后,再与全桥DC/AC周波变换器的输出电流i a,i b,i c分别进行比较,然后应用滞环比较控制方法就能够得到所要求的三相正弦输出.TMS320F28035微处理器是32位定点数字信号处理器,具有C28xTM内核、60MIPS的操作能力、单3.3 V电源,以及16路ADC模数转换通道和14路PWM脉宽调制等丰富的片内资源,完全能够满足本方案所提出的系统控制要求.通过三相交流电压电流检测回路和蓄电池直流电压电流检测回路,DSP可以通过相应的驱动电路实现上述的控制策略,以及恒输入电流的正弦波输出.4 电路仿真采用电路仿真软件PSIM对整体电路进行仿真实验,实验结果如图11至图13所示.由图11可以看出,12 V蓄电池工作在基本接近恒流放电状态,完全满足蓄电池恒流放电的要求;由图12可以看出,周波变换器的直流输入电压维持在582 V左右,表明DC/DC变换器和周波变换器工作均处于稳定状态;由图13可以看出,周波变换器工作状态符合设计要求.图11 12 V电池的电压和放电电流波形图12 周波变换器的输入电压波形图13 周波变换器的输出电压电流波形5 结论(1)为了满足蓄电池的恒流放电要求,在对全桥DC/DC变换器进行控制时必须增加输入电流的检测回路,并加入输入电流的控制;(2)在低压大电流情况下使用MOSFET的全桥DC/DC变换器,采用ZVSZCS (零电压零电流)软开关技术比ZVSZVS(零电压零电压)软开关技术可以明显减少开关损耗;(3)可利用高频变压器的漏感代替饱和电感,以降低成本,但会增加变压器绕制的难度;(4)使用隔直流电容可以解决高频变压器由于直流偏置产生的饱和问题;与工频变压器相比,采用高频变压器可以减少逆变电源的体积;(5)高频变压器绕组采用多股软铜漆包线可以明显改善变压器的性能;采用变压器驱动MOSFET不仅可以降低驱动成本,而且可以提高驱动电路的可靠性;(6)全桥DC/AC周波变换器采用瞬时无功功率理论的p-q法能够减少控制的复杂性;采用瞬时无功功率理论可轻松解决全桥DC/AC周波变换器与系统电网的并网问题,实现能量反馈到电网中,在降低能源消耗的同时可以减少损耗;(7)采用32位定点数字信号处理器TMS320F28035可以实现灵活的控制策略. (编辑胡小萍)【相关文献】[1]HAMADA S,KANAZAWA T,OGINO Y,et al.A new constant frequency phase-shifted PWM zero-voltage switching DC/DC converter incorporating non-controlled saturable reactors[J].IEEE Transactions on Magnetics,1989,25(5):3 991-3 993. [2]REDIR,SOKAL N O,BALOGH L.A novel soft-switching full-bridge dc/dc converter:analysis,design considerations and experimental results at1.5 kW,100 kHz[C]//PESC’90 Record,1990:162-172.[3]MASSERANT B J,SHRIVER J L,STUART T A.A 10 kW DC/DC converter using IGBTs with active snubbers[J].IEEE Trans.AES,1993,29(3):857-865.[4]CHEN K,STUART T.A study of IGBT turn-off behavior and switching loss for zero-voltage zero-current switching[C]// IEEE APEC,1992:411-418.[5]阮新波,严仰光.移相控制零电压开关PWM变换器的分析[J].电力电子技术,1998(2):1-4.[6]阮新波,严仰光.全桥变换器的控制策略[C]//第十二届中国电源学会电源技术年会论文集,1997:138-145.[7]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,1998:209-244.[8]KOJABADIH M,BIN Yu,GADOURAL IA,et al.A novel DSP based current-controlled PWM strategy for single phase grid connected inverter[J].IEEE Transactions on Power Electronics,2006,21(4):985-993.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档