酰基硫脲金属簇合物的研究和发展概况
新二茂铁酰基硫脲化合物生物活性的研究

新二茂铁酰基硫脲化合物生物活性的研究【摘要】目的:探讨二茂铁酰基硫脲化合物的植物生长调节作用及抑菌活性。
方法:目标化合物配置成溶液,用“培养皿法”和“打孔法”研究其调节植物生长作用和抑菌活性。
结果:目标化合物对受试种子的萌芽及根苗的生长有不同程度的促进活性,浓度在10-0.01mg/L,效果较2,4-D好;对铜绿假单胞菌、大肠杆菌均有抑制作用,效果较其对伤寒杆菌的抑制作用强,浓度在100mg/L。
结论:目标化合物具有促进植物生长及体外抑菌活性。
【关键词】二茂铁酰基硫脲;生物活性酰基硫脲类化合物是一类非常重要的化合物,具有极好的杀虫、抑菌和调节植物生长等生物活性。
有资料显示芳基取代硫脲衍生物活性显著〔1〕,因此引起了众多研究者的关注。
二茂铁衍生物具有低毒性,亲油性、芳香性且抗炎、抑菌,并可作为植物生长调节剂,能在生物酶作用下参与各种代谢〔2〕,在医学、生物学领域有着广泛的应用前景。
为实现活性成分的优化叠加, 拓宽和提高原单个分子的生物活性,根据新药研究中的等排体原理与活性拼接的原则,将芳基硫脲基团与二茂铁酰基基团有机地结合,合成了两个新的二茂铁酰基硫脲化合物〔3〕,通过对其生物活性进行检测。
实验结果证实这种新合成的二茂铁酰基硫脲化合物有良好的调节植物生长作用及抑菌作用。
新合成的二茂铁酰基硫脲化合物结构式如下:化合物〈I〉化合物〈II〉1 实验部分1.1 实验材料1.1.1 仪器、试剂无菌金属打孔器、培养皿。
两个新合成的二茂铁酰基硫脲化合物均用文献1方法合成,实验所用其它试剂均为分析纯。
1.1.2 供试种子及菌种小麦、大豆、绿豆、苜蓿草样品化合物浓度 100 10 1.0 0.10.01 0.001苗根苗根苗根苗根苗根苗根化合物Ⅰ0 0 0.9 2.0 1.0 3.3 1.4 2.9 1.1 2.7 0.5 1.1 化合物Ⅱ0.3 0.2 1.0 2.2 1.3 2.6 0.9 3.2 0.9 3.0 0.4 1.2 2,4-D 0 0.1 0 0.2 0 0.2 0 0.2 0 0.2 0 0.1蒸馏水 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2 1.0 2.2表2化合物对小麦发芽率的影响浓度样品浓度100 10 1.00.1 0.01苜蓿草绿豆苜蓿草绿豆苜蓿草绿豆苜蓿草绿豆苜蓿草绿豆化合物Ⅰ0 0 21.8 83.6 35.8 80.0 31.683.6 28.4 81.8化合物Ⅱ0 0 28.8 76.4 29.5 76.4 21.476.4 33.3 67.32,4-D ———67.3 ———81.8 ——蒸馏水 30.0 70.9 30.0 70.9 30.0 70.9 30.070.9 30.0 70.9表4化合物对苜蓿草苗高的影响浓度样品浓度100 10 1.00.1 0.01大豆绿豆大豆绿豆大豆绿豆大豆绿豆大豆绿豆化合物Ⅰ0 0.4 1.6 0.9 1.4 0.9 1.2 0.8 1.3 1.2化合物Ⅱ0 0.3 1.7 1.1 1.6 1.1 1.4 1.1 1.4 1.32,4-D ——0 0.5 —— 1.2 0.95 ——蒸馏水 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.8 1.1 0.82.2 抑菌活性研究表6化合物的抑菌活性样品金黄色葡萄球菌白色葡萄球菌大肠杆菌铜绿假单胞菌伤寒杆菌化合物Ⅰ10 8 14 16 10化合物Ⅱ0 7 13 16 11空白0 9 8 8 83 讨论3.1 植物生长调节活性研究目前广泛使用的植物生长调节剂种类很多,大致可分为营养元素类和非营养元素类[7]。
N,N--N’-酰基硫脲钴(II)、铜(II)配合物的合成及结构表征

Synthesis and structural characterization of cobalt(II)and copper(II)complexes with N ,N -disubstituted-N 0-acylthioureasBeatriz O’Reilly a ,Ana M.Plutín a ,Hiram Pérez b ,Osmar Calderón a ,Raúl Ramos a ,Roberto Martínez c ,Rubén A.Toscano c ,Julio Duque d ,Humberto Rodríguez-Solla e ,Roberto Martínez-Alvarez f ,Margarita Suárez a ,⇑,Nazario Martín f ,⇑aLaboratorio de Síntesis Orgánica,Facultad de Química,Universidad de La Habana,10400La Habana,CubabDepartamento de Química Inorgánica,Facultad de Química,Universidad de La Habana,10400La Habana,Cuba cInstituto de Química,Universidad Autónoma de México,Ciudad Universitaria,México,D.F.,Mexico dDepartamento de Análisis Estructural ,Instituto de Ciencias y Tecnología de los Materiales,Universidad de La Habana,10400La Habana,Cuba eDepartamento de Química Orgánica e Inorgánica,Facultad de Química,Universidad de Oviedo,33071Oviedo,Spain fDepartamento de Química Orgánica I,Facultad de Ciencias Químicas,Universidad Complutense de Madrid,28040Madrid,Spaina r t i c l e i n f o Article history:Received 23November 2011Accepted 7February 2012Available online 14February 2012Keywords:Acylthiourea derivatives Co(II)complexes Cu(II)complexes Crystal structurea b s t r a c tA new complexes of Co(II)and Cu(II)with N ,N -disubstituted-N 0-acylthioureas have been prepared and characterized by elemental analysis,and spectroscopic techniques.The structure of N ,N -diethyl-N 0-fur-oylthiourea and Co(II)complexes with N ,N -diethyl-N 0-furoyl-and N ,N -diethyl-N 0-benzoylthiourea were determined by X-ray crystallography.The structural data reveal that the acylthiourea moiety adopts a cis conformation in the crystal and the complexes show a slightly distorted square-planar geometry.Ó2012Elsevier Ltd.All rights reserved.1.IntroductionThe coordination chemistry of polyfunctional ligands,capable to realize different coordination modes with metal cations,is of the utmost interest for the design and synthesis of new selective complexing agents and analytical reagents [1].The reasons allow-ing such ligands to bind metal ions in the various specific ways are intimately connected with basic chemical concepts such as the nature of chemical bonding and the isomerism of coordination compounds,as well as the influence of the ligand structure on the regio-and stereoselectivity of bond formation [2].Acylthioureas are versatile ligands capable of binding to a wide variety of metal ions in different coordination modes to form stable complexes [3].The complexing ability of acylthiourea derivatives has been reported in several papers since oxygen,nitrogen and sul-fur donor atoms of this multiple site reactive systems provide a huge number of bonding possibilities [4–12].In the majority of their structurally characterized complexes,they act as bidentate O,S-monoanionic ligands [13].The structural chemistry of square-planar bis-chelates of ben-zoylthioureas with d 8or d 9ions such as Ni(II),Pd(II),Pt(II),or Cu(II)is dominated by cis isomers [14,15],and only a few crystal struc-tures of trans isomers have been elucidated [16].Photochemical cis/trans isomerization has been studied recently on Pt(II)and Pd(II)acylthiourea complexes,showing that the trans iso-mers are thermodynamically unstable and readily re-form the cis com-pounds [17].Exclusively facial coordination is observed for tris-chelates of benzoylthioureas with Ru(III),Rh(III),and Co(III)[18].On the other hand,the biological activity of complexes with thio-urea derivatives has been successfully screened for various biologi-cal actions.Both the ligands and their metal complexes display a wide range of biological activity including antibacterial,antimalarial or antifungal properties.The existence of metal ions bonded to bio-logically active compounds may enhance their activities [19].In previous works we have determined the structure of some ligands related to those used in the present work [20],and we have also studied the corresponding complexes with Ni(II)and Cu(II)[21].In these cases,the metal atom is coordinated by the S and O atoms of two acylthioureate ligands in a distorted square–planar geometry.The two O and two S atoms are mutually cis to each other.Both complexes contain acylthiourea as a bidentate ligand in differ-ent environments for each metal atom.Furthermore,we have also determined the structure of acylthiourea Co(III)complexes [22].0277-5387/$-see front matter Ó2012Elsevier Ltd.All rights reserved.doi:10.1016/j.poly.2012.02.008⇑Corresponding authors.E-mail addresses:msuarez@fq.uh.cu (M.Suárez),nazmar@quim.ucm.es (N.Martín).The Co(III)atom is coordinated by the S and O atoms of three acy-lthiourea ligands in a slightly distorted octahedral geometry.Surprisingly,although there are several reports about ben-zoylthiourea complexes with transition metals[23],a survey of the literature shows that remarkably little has been published con-cerning the crystal and molecular structure of transition metal complexes with furoylthioureas[24].In continuation of our studies in the search for multiple site reactive systems able to form stable complexes with transition metals,in this paper we describe the synthesis of new Co(II)and Cu(II)complexes with acylthioureas.In addition,we elucidate the molecular structure of the ligand N,N-diethyl-N0-furoylthiourea (1a),but also the Co(II)complexes2a and2c coordination com-pounds by means of X-ray crystallography.2.Results and discussionThe N,N-disubstituted-N0-acylthioureas1a–h(L)used as ligands in this work were synthesized by the procedure previously reported in the literature[20a].They were obtained as crystalline solids in good yields.Scheme1shows the pathway for the synthe-sis of Co(II)and Cu(II)complexes.The chelates were obtained by reacting ethanolic solutions of acylthiourea1with the correspond-ing metal acetates.The coordination between the acylthiourea derivative and the metal proceeded by an exchange reaction,which involved deproto-nation of the acylthioureido group of the ligands during the com-plexes formation.After achieving of a neutral medium by addition of a NaOH solution,the resulting complexes2were sepa-rated from the reaction mixture as colored crystalline solids.Filtra-tion and further washed with acetone were sufficient enough to afford pure and stable compounds in73–84%yields(See Section 4).The molecular structures of these compounds were investigated by electron impact mass spectrometry(EI-MS),IR spectroscopy and by elemental analysis.To determine the structure of the acy-lthiourea complexes,a comparative analysis on the basis of the spectroscopic data corresponding to both free and coordinated ligands with metallic ions has been carried out.Regarding the infrared spectra,chelates of N,N-disubstituted-N0-furoylthioureas(2a,b,e)and N,N-substituted-N0-benzoylthioureas (2c,d,f–h)display strong bands in the region of1500–1100cmÀ1. The bands that center near1500,1400and1100cmÀ1,can be attributed to absorptions of the CO,CN and CS groups respectively engaged in partial double bonds and confirm the complex forma-tion,while those bands are absent in IR spectra of the free ligands. In the infrared spectra of the pristine ligands,the N–H stretching vibration is observed in the3000cmÀ1region as a broad band.This band disappears upon metal complex formation.No absorptions were detected in the range between1700and1600cmÀ1where the uncoordinated ligands exhibit C@O stretching vibrations. Deprotonation induces delocalization and the C@O stretching vibration frequency decreases by ca.180cmÀ1,in agreement with the literature[25].This band shift confirms coordination through the oxygen atom.A thionyl(C@S)vibration band appears at1219 and1227cmÀ1for compounds1.This band shifts to lower values (around1090cmÀ1)for metallic compounds as a result of the coor-dination of the metal with the sulfur atom.The results of elemental analyses of the complexes correspond to stoichiometry for metal:ligand in1:2M ratios.These values are in agreement with the molecular weight values that could be found for the coordination compounds by mass spectrometry. The most important peaks in the mass spectra of the metal com-plexes are listed in Table1.For the N,N-disubstituted-N0-furoylthioureas complexes(2a,b,e) the main fragmentation observed in these chelates is the CO–N bond cleavage with charge retention on the carbonyl group,yield-ing the furoyl cation(m/z=95)which is the base peak.The base peaks for the N,N-dialkyl-N0-benzoylthiourea complexes(2c,d,f–h)correspond either to the molecular ion or to the[M+H]+ion.An-other major peaks result from the cleavage of the chelate with retention of the charge on the free ligand.The Ar–CO+fragment ions appear with a rather low relative intensity.Unlike to the ben-zoylthiourea chelates,the decomposition pathway of N,N-substituted-N0-furoylthiourea complexes results to molecular ions of low intensity(see Table1).The X-ray crystal structure determination of acylthiourea deriv-atives have been important,not only giving a better understanding on the nature of binding of these compounds but also for elucidat-ing their conformations and helping to explore new ligands.The X-ray structure of N,N-diethyl-N0-benzoylthiourea(1c,L2)has been previously reported[26].Here,we report the molecular structure of N,N-diethyl-N0-furoylthiourea(1a,L1)which crystallizes as monoclinic with space group P21/n.Fig.1shows the atom numbering scheme for ligand1a.Selected bond lengths and angles are given in Table2.The crystal structure of1a ligand consists of two independent molecules A and B per asymmetric unit,which do not quite have the same conformation.The conformation of the molecules with134 B.O’Reilly et al./Polyhedron36(2012)133–140respect to the thiocarbonyl and carbonyl groups are twisted,as reflected by the torsion angles O1–C1–N1–C2and C1–N1–C2–S1 ofÀ10.19(2)°andÀ88.10(2)°for molecule A,andÀ12.2(1)°and À100.2(1)°for B,respectively.The dihedral angle between the O1–C1–N1and S1–C2–N1planes is87.1(4)°for molecule A,and 73.4(4)°for molecule B.The atoms corresponding to the thioureido group[C(@S)N(H)C(@O)]of the molecule A are virtually super-imposable upon those of the molecule B,as indicated in Fig.2.However,the main difference between the molecules relate to the orientation of furan rings.This conformational difference is quantified in the dihedral angle of4.8°between the O1B–C1B–high,which is also an indication that the molecules A and B differ in terms of the relative orientations of the furan rings.The main bond lengths of the compound are within the ranges obtained for similar compounds[27].The bond lengths and angles in the thiourea moiety are typical for thiourea derivatives,both C2–S1and C1–O1bonds show a typical double-bond character. Also,in both molecules the C–N bonds are shorter than a normal single C–N bond length(1.469Å),indicating a double bond charac-ter(see Table2).As a result of this effect,hybridization on nitrogen atoms changes from sp3to sp2.These results are confirmed by bondTable1Mass spectral data of complexes2a–h.Complex Significant peaks in the EI mass spectra[m/z(%relative abundance)]-diethyl-N0-furoylthiourea(1a)showing the atom labeling.Both independent molecules are shownare omitted for clarity.2.Overlay diagram of the molecule A(shown in red)and the molecule(shown in blue)for1a ligand.(For interpretation of the references to colourlegend,the reader is referred to the web version of this article.)B.O’Reilly et al./Polyhedron36(2012)133–140135ferent,as reflected by the corresponding torsion angles O–C–N–C 12.48(4)°[26];7.58(17)°[28]and C–N–C–NÀ80.79(3)°[26];7.58(17)°[28].Unlike the structure previously reported at lower temperature[29],the structure1a do not show disorder in the fur-an ring,which is also observed in other related furoylthiourea structures[24a,30].A packing diagram of the ligand is shown in Fig.3.In the crystalFig. 3.Crystal packing for N,N-diethyl-N0-furoylthiourea,viewed along[001]. Hydrogen bonds are shown as dashed lines.Table3Hydrogen bond geometry(Å,°)for N,N-diethyl-N0-furoylthiourea ligand(1a).D–HÁÁÁA d(D–H)d(DÁÁÁA)d(HÁÁÁA)D–HÁÁÁAN1A–H1AÁÁÁO1B a0.86 2.913(3) 2.12153.4N1B–H1BÁÁÁO1A b0.86 2.921(2) 2.09163.0C4A–H4AÁÁÁS1B c0.93 3.743(7) 2.85161.0 Symmetry codes:aFig. 4.Molecular structure of Co(II)complexes2a and2c showing the atom labeling.The molecules are shown with thermal ellipsoids at the50%probability level.Hydrogen atoms are omitted for clarity.136 B.O’Reilly et al./Polyhedron36(2012)133–140ecules are only linked by weak intermolecular C–HÁÁÁO hydrogen bonds forming infinite chains expanding along the b axis,in which furan atom C8in the molecule at(x,y,z)acts as a hydrogen-bond donor,via H8,to furan atom O2at the molecule at(Àx,y+½,Àz). Intermolecular hydrogen-bonding C8–H8ÁÁÁO2parameters are: C8–O2=3.373(6)Å,H8–O2=2.59Å,and a C8–H8ÁÁÁO2angle of 143°.The packing diagram of2c complex shows four molecules per unit cell.Unlike the furoyl analog2a,in the crystal structure of Co(II)benzoyl complex there is no intermolecular D–HÁÁÁA interac-tions(see Fig.6).As expected,the intermolecular hydrogen bonding between NH and carbonyl oxygen that was observed for the free ligands is sis of new complexes of Co(II)and Cu(II)which were obtained as crystalline solids in good yields.The X-ray crystallographic charac-terization shows that the thioureido ligands coordinate with the metals through the oxygen and sulfur atoms.The acylthiourea moiety adopts a cis conformation and the complexes exhibit a slightly distorted square–planar geometry.4.Experimental4.1.GeneralAll reagents were purchased with reagent grade and were used without further purification.Solvents were dried and used freshly distilled unless otherwise specifically indicated.Thin layer chro-matography(TLC)was performed on0.25mm silica gel pre-coated plastic sheets(40Â80mm)(PolygramÒSIL G/UV254,Macherey& Nagel,Düren,Germany)using benzene/methanol(9/1)as eluent. Infrared spectra were recorded in the4000–400cmÀ1range on a Nicolet FT Magna–IR750FT/IR spectrometer using KBr pellets. Mass spectra were obtained with a Hewlett–Packard5989A spec-trometer.Melting points were determined on a Stuart Scientific (UK)apparatus and are uncorrected.Elemental analyses were car-ried out on a Carlo Erba MOD1106instrument.Single crystals suitable for X-ray diffraction were obtained by slow evaporation of CH2Cl2–methanol(1:1)solution of compound 1a and CHCl3:n-hexane(3:1)solutions of the complexes2a and2c.Single crystal X-ray data were collected on a Bruker Smart Apex CCD diffractometer up to2h max50.7°with graphite-monochroma-tized Mo K a radiation(k=0.71073ÅA0)using the/and x scans.The structures were solved by direct and conventional Fourier methods using SHELXS[34].Full-matrix least-squares refinements were based on F2.All non-hydrogen atoms were refined anisotropically;geo-metrically placed hydrogen atoms were refined with a‘riding mod-el’using SHELXL[34].ORTEP-3[35],MERCURY[36]programs were used for the molecular graphics.WINGX program package[37]was used to prepare material for publication.Further details concerning data collection and refinement are given in Table5.4.2.Synthesis of N,N-dialkyl-N0-acylthioureas(1)Detailed descriptions of synthetic experimental and character-ization data for the ligands have been reported elsewhere[20].A solution of an appropriately acylchloride(30mmol)in acetone (50mL)was added dropwise to a suspension of KSCN(0.01mol) in acetone(30mL).The mixture was stirred until a precipitate ap-peared(ammonium chloride),which indicates the formation of the respective organic isothiocyanate.To the resulting solution was added slowly and with constant stirring,the corresponding amine(40mmol)dissolved in acetone.The solution was cooled in an ice-water bath and the stirring was continued at room temper-ature for2–9h,until the reaction was completed(the progress of the reaction was monitored by TLC).The reaction mixture was then poured into600mL of cold water.The solid N,N-substituted-N0-acy-lthioureas were collected byfiltration andfinally purified by recrys-tallization from ethanol.The identity of the products was confirmed by comparing their melting points and NMR data with those re-ported in the literature[20](see Supplementary material).4.3.Synthesis of the complexes2a-hA solution of the metal acetate[M(OAc)2ÁnH2O(M=Cu,Co,) (n=1for Cu and n=4for Co)](2.0mmol)in a minimal amount of ethanol,was added dropwise to a solution of the corresponding N,N-dialkyl-N0-acylthiourea1(2.0mmol),dissolved in30mL of ethanol at room temperature.The resulting mixture was stirredTable4Selected bond lengths(Å)and angles(°)for the complexes2a and2c.2a complex Bond lengthsCo1–O1 1.859(2)Co1–O3 1.869(2)Co1–S1 2.137(1)Co1–S2 2.145(1)C1–N2 1.333(4)C11–N4 1.333(5)C2–N2 1.305(4)C12–N4 1.314(4)C1–S1 1.718(4)C11–S2 1.739(4)Bond anglesO3–Co1–S1178.38(10)O1–Co1–S2178.93(10)O1–Co1–O384.79(10)O3–Co1–S294.80(8)O1–Co1–S195.32(8)S1–Co1–S285.05(4)2c complex Bond lengthsCo1–O1 1.859(2)Co1–O2 1.861(2)Co1–S1 2.1377(8)Co1–S2 2.109(7)C1–N2 1.341(3)C13–N3 1.339(4)C2–N1 1.325(3)C14–N3 1.316(3)C1–S1 1.726(3)C13–S2 1.748(8)Bond anglesO2–Co1–S1176.56(8)O1–Co1–S2173.89(2)O1–Co1–O285.76(8)O1–Co1–S194.67(6)O2–Co1–S294.3(2)S2–Co1–S185.60(19)Fig.5.Crystal packing of2a complex,viewed along[010]direction.Only onecomponent of disorder is shown.Hydrogen bonds are shown by dashed lines.B.O’Reilly et al./Polyhedron36(2012)133–140137for30min.The pH was adjusted to7using1M NaOH solution.The precipitated complexes werefiltered and washed with dry acetone.4.3.1.Bis(N,N-diethyl-N0-furoylthioureato)cobalt(II)(2a)Yield:76%.Pink solid;mp:226–228°C.IR(KBr)m=3050,3015, 1580,1512,1409,1070cmÀ1.MS-EI m/z(%):509(10),226(16), 198(9),116(11),95(100),72(28),58(13),44(20).Elemental analysis Anal.Calc.for C20H26CoN4O4S2(509.07):C,47.15;H, 5.14;N,11.00;S,12.59.Found:C,47.03;H,5.19;N,11.05;S, 12.64%.4.3.2.Bis(N,N-dibenzyl-N0-furoylthioureato)cobalt(II)(2b)Yield:80%.Pink neon solid;mp:200–202°C.IR(KBr)m=3058, 3030,1580,1514,1410,1069cmÀ1.MS-EI m/z(%):757(12),350 (9),95(100),91(17),65(13),39(8).Elemental analysis Anal.Calc. for C40H34CoN4O4S2(757.14):C,63.40;H,4.52;N,7.39;S,8.46. Found:C,63.28;H,4.59;N,7.44;S,8.51%.4.3.3.Bis(N,N-diethyl-N0-benzoylthioureato)cobalt(II)(2c)Yield:81%.Pink neon;mp:190–193°C.IR(KBr):m=3060,2975, 1584,1523,1411,1169cmÀ1.MS-EI m/z(%):530(100),235(27), 105(3).Elemental analysis Anal.Calc.for C24H30CoN4O2S2 Crystal packing of2c complex,viewed along[100]direction.Only one component of disorder isTable5Summary of crystal data and refinement parameters for compounds1a,2a and2c.Compound1a2a2cEmpirical formula C10H14N2O2S C20H26CoN4O4S2C24H30CoN4O2S2Formula weight226.29509.5529.57Temperature(K)298(2)298(2)298(2)Wavelength(Å)0.710730.710730.71073Crystal system monoclinic monoclinic monoclinicSpace group P21/n P21P21/nUnit cell dimensionsa(Å)7.2380(7)8.094(1)10.4575(7)b(Å)20.656(2)8.889(1)18.4935(11)c(Å)15.7265(15)16.424(1)13.3268(8)b(°)92.046(2)92.885(1)104.4190(10)V(Å3)2349.8(4)1180.16(18)2496.2(3)Z824D calc(mg mÀ3) 1.279 1.434 1.409Absorption coefficient(mmÀ1)0.2590.9370.883F(000)9605301108Crystal size(mm)30.39x0.25x0.20.24Â0.23Â0.180.26Â0.23Â0.09h range for data collection(°) 1.63to25.35 2.48to25.33 2.29to25.35Index rangesÀ86h68À96h69À126h612À246k624À106k610À216k622À186l618À196l619À126l616 Reflections collected429398244373Independent reflections(R int)3284(0.0371)4318(0.0268)4570(0.0449)Absorption correction Semi-empirical from equivalents Semi-empirical from equivalents Goodness-of-fit on F2 1.019 1.011 1.016Final R indices[I>2r(I)]R1=0.0503;wR2=0.1170R1=0.0388wR2=0.0872R1=0.0431;wR2=0.0973 Largest diff.peak and hole(eÅ)À30.275andÀ0.1910.448andÀ0.1720.469andÀ0.381Absolute structure parameter[38]À0.032(18)(529.58):C,54.43;H,5.71,N,10.58;S,12.11.Found:C,54.30;H, 5.67,N,10.69;S,12.16%.4.3.4.Bis(N,N-dibenzyl-N0-benzoylthioureato)cobalt(II)(2d)Yield:84%.Pink neon solid;mp:194–196°C.IR(KBr):m=3060, 3028,1582,1514,1409,1072cmÀ1.MS-EI m/z(%):778(100),448 (26),359(41),196(30),105(1).Elemental analysis Anal.Calc.for C44H38CoN4O2S2(777.18):C,67.94;H,4.92;N,7.20;S,8.24.Found: C,67.87;H,4.89;N,7.30;S,8.27%.4.3.5.Bis(N,N-diphenyl-N0-furoylthioureato)copper(II)(2e)Yield:73%.Lime green solid;mp:300–302°C.IR(KBr): m=3046,3012,1576,1509,1400,1065cmÀ1.MS-EI m/z(%):705 (5),322(18),169(7),95(100),77(10),39(15).Elemental analysis Anal.Calc.for C36H26CuN4O4S2(705.07):C,61.22;H,3.71;N,7.93; S,9.08.Found:C,61.10;H,3.76;N,7.98;S,9.13%.4.3.6.Bis(N,N-diphenyl-N0-benzoylthioureato)copper(II)(2f)Yield:73%.Green solid;mp:220–221°C.IR(KBr):m=3061, 3028,1588,1512,1421,1255cmÀ1.MS-EI m/z(%):726(100), 395(23),331(42),212(30),195(3),105(34).Elemental analysis calcd(%)for C40H30CuN4O2S2(725.11)C,66.14;H,4.16;N,7.71;S, 8.83.Found:C,66.02;H,4.11;N,7.76;S,8.88.4.3.7.Bis(N,N-dibenzyl-N0-benzoylthioureatocopper(II)(2g)Yield:83%.Lime green solid;mp:160–162°C.IR(KBr): m=3061,3028,1588,1512,1421,1255cmÀ1.MS-EI m/z(%):781 (100),448(27),359(29),196(12),105(2).Elemental analysis Anal. Calc.for C44H38CuN4O2S2(781.17):C,67.54;H,4.89;N,7.16;S, 8.20.Found:67.42;H,4.86;N,7.22;S,8.52%.4.3.8.Bis(N,N-diethyl-N0-benzoylthioureatocopper(II)(2h)Yield:82%.Lime green solid;mp:110–115°C.IR(KBr): m=3059,2979,1585,1493,1413,1168cmÀ1.MS-EI m/z(%):534 (100),235(25),105(3).Elemental analysis Anal.Calc.for C24H30CuN4O2S2(533.11):C,53.96;H,5.66;N,10.49;S,12.00. Found:C,53.84;H,5.62;N,10.60;S,12.05%.AcknowledgementsThis work was supported by the MICINN of Spain(Project CT2008-00795/BQU,Consolider-Ingenio2010C-07-25200)and CTQ2009-07758.M.Suárez is grateful to SAB2010-0132from Min-isterio de Educación de España.The authors thank the Instituto de Química,UNAM,México,for allowing the X-ray data collection. Appendix A.Supplementary dataCCDC689278,689308and755315contains the supplementary crystallographic data for complex1a,2a,and2c,respectively. These data can be obtained free of charge via /conts/retrieving.html,or from the Cambridge Crystallo-graphic Data Centre,12Union Road,Cambridge CB21EZ,UK; fax:+441223336033;or e-mail:deposit@.Supple-mentary data associated with this article can be found,in the on-line version,at doi:10.1016/j.poly.2012.02.008.References[1]A.D.Garnovskii,E.V.Sennikova,B.I.Kharisov,Open Inorg.Chem.J.3(2009)1.[2](a)L.Fanfoni, A.Meduri, E.Zangrando,S.Castillon, F.Felluga, ani,Molecules16(2011)1804;(b)S.Rodríguez-Escrich,L.Sola,C.Jimeno,C.Rodríguez-Escrich,M.A.Pericás,Adv.Synth.Catal.350(14–15)(2008)2250.[3]K.R.Koch,Coord.Chem.Rev.216–217(2001)473.[4](a)L.Beyer,E.Hoyer,J.Liebscher,H.Hartmann,Monatsh.Chem.110(1979)167;(b)L.Gomes,L.Santos,B.Schroeder,Ch.Wagner,J.N.Low,Acta Crystallogr.,Sect.E63(2007)m953;(c)S.Bourne,O.Hallale,K.Koch,Cryst.Growth Des.5(2005)307;(d)H.Arslan,U.Flörke,N.Külcü,E.Kayhan,Turk.J.Chem.30(2006)429.[5]A.Rodenstein,D.Creutzburg,P.Schmiedel,J.Griebel,L.Hennig,R.Kirmse,Z.Anorg.Allg.Chem.634(2008)2811.[6](a)M.Dhandapani,M.A.Kandhaswamy,V.Srinivasan,Cryst.Res.Technol.40(2005)805;(b)L.Gomes,L.Santos,B.Schroeder,Ch.Wagner,J.N.Low,Acta Crystallogr.,Sect.E63(2007)m956.[7](a)A.Rodenstein,J.Griebel,R.Richter,R.Kirmse,Z.Anorg.Allg.Chem.634(2008)867;(b)H.Arsalan,N.Külcü,U.Flörke,Trans.Met.Chem.28(2003)816.[8]W.Henderson,B.K.Nicholson,C.E.F.Rickard,Inorg.Chim.Acta320(2001)101.[9]V.Z.Vassileva,P.P.Petrova,Croatica Chem.Acta78(2005)295.[10]B.H.Abdullah,Asian J.Chem.9(2007)3903.[11]H.Arslan,U.Flörke,N.Külcü,M.F.Emen,J.Coord.Chem.59(2006)223.[12]J.C.Bruce,N.Revaprasadu,K.R.Koch,New J.Chem.31(2007)1647.[13](a)A.N.Westra,S.A.Bourne,C.Esterhuysen,K.R.Koch,Dalton Trans.(2005)2162;(b)W.Zhou,Y.Wen,L.Qiu,Y.Zhang,Z.Yu,J.Mol.Struct.749(2005)89.[14]M.Kampf,R.Richter,S.Gerber,R.Kirmse,Z.Anorg.Allg.Chem.630(2004)1437.[15](a)H.Arslan,U.Flörke,N.Külcü,Z.Kristallogr.New Cryst.Struct.219(2004)409;(b)F.Emen,U.Flörke,N.Külcü,H.Arslan,Acta Crystallogr.,Sect.E59(2003)m582;(c)G.Avsar,H.Arslan,H.J.Haupt,N.Külcü,Turk.J.Chem.27(2003)281;(d)H.Arslan,D.Vanderveer,F.Emen,N.Külcü,Z.Kristallogr.New Cryst.Struct.218(2003)479;(e)S.Orysyk,V.Bon,V.Pekhnyo,Acta Crystallogr.,Sect.E65(2009)m1059.[16](a)K.Koch,S.Bourne,J.Mol.Struct.441(1998)11;(b)W.Hernández,E.Spodine,A.Vega,R.Richter,J.Griebel,R.Kirmse,U.Schroeder,L.Beyer,Z.Anorg.Allg.Chem.630(2004)1381.[17]D.Hanekom,J.M.McKenzie,N.M.Derix,K.R.Koch,mun.(2005)767.[18]N.Huy,U.Abram,Inorg.Chem.46(2007)5310.[19](a)R.Del Campo,J.J.Criado,E.Garcia,M.R.Hermosa,A.Jiménez-Sánchez,J.L.Manzano,E.Monte,E.Rodríguez-Fernández,F.Sanz,J.Inorg.Biochem.89 (2002)74;(b)T.J.Egan,K.R.Koch,P.L.Swan,C.Clarkson,D.A.Van Schalkwyk,P.J.Smith,J.Med.Chem.47(2004)2926;(c)W.Zhou,Y.Wen,L.Xie,X.Cheng,J.Inorg.Biochem.99(2005)1314;(d)A.Rodger,K.K.Patel,K.J.Sanders,M.Datt,C.Sacht,M.J.Hannon,J.Chem.Soc.,Dalton Trans.(2002)3656;(e)H.Arslan,N.Duran,G.Borekci,C.O.Koray,C.Akbay,Molecules14(2009)519;(f)T.Egan,K.Koch,P.Swan,C.Clarkson,D.Van Schalkwyk,P.Smith,J.Med.Chem.47(2004)2926.[20](a)A.Plutin,H.Márquez,M.Morales,M.Sosa,L.Morán,Y.Rodríguez,M.Suárez,C.Seoane,N.Martín,Tetrahedron56(2000)1533;(b)H.Pérez,Y.Mascarenhas,O.Estévez-Hernández,S.Santos Jr.,J.Duque,Acta Crystallogr.,Sect.E64(2008)o513;(c)H.Pérez,Y.Mascarenhas,O.Estévez-Hernández,S.Santos Jr.,J.Duque,ActaCrystallogr.,Sect.E64(2008)o695;(d)O.Estévez-Hernández,J.Duque,H.Pérez,S.Santos Jr.,Y.Mascarenhas,Acta Crystallogr.,Sect.E65(2009)o929.[21](a)H.Pérez,R.S.Corrêa,J.Duque,A.M.Plutín,B.O’Reilly,Acta Crystallogr.,Sect.E64(2008)m916;(b)H.Pérez,R.S.Corrêa,A.M.Plutín,O.Calderón,J.Duque,Acta Crystallogr.,Sect.E65(2009)m242;(c)H.Pérez, C.C.P.da Silva, A.M.Plutín, C.A.de Simone,J.Ellena,ActaCrystallogr.,Sect.E67(2011)m504;(d)H.Pérez, C.C.P.da Silva, A.M.Plutín, C.A.de Simone,J.Ellena,ActaCrystallogr.,Sect.E67(2011)m621.[22](a)H.Pérez,Y.Mascarenhas,A.M.Plutín,R.de Souza Corrêa,J.Duque,ActaCrystallogr.,Sect.E64(2008)m503;(b)H.Pérez,R.S.Corrêa,A.M.Plutín,B.O’Reilly,J.Duque,Acta Crystallogr.,Sect.E64(2008)m733.[23]R.del Campo,J.J.Criado,R.Gheorghe,F.J.González,M.R.Hermosa,F.Sanz,J.L.Manzano,E.Monte,E.Rodríguez-Fernández,J.Inorg.Biochem.98(2004)1307.[24](a)O.Estévez-Hernández,J.Duque,E.Reguera,J.Sulfur Chem.32(2011)213;(b)O.Estévez-Hernández,E.Otazo-Sánchez,J.L.Hidalgo-Hidalgo de Cisneros,I.Naranjo-Rodríguez,E.Reguera,Spectrochim.Acta Part A64A(2006)961.[25]M.Mikami,I.Nakagawa,T.Shimanouchi,Spectrochim.Acta Part A25(1969)365.[26]M.Bolte,L.Fink,Private DC214315,2003.[27]H.Pérez,R.S.Corrêa,A.M.Plutín,A.Álvarez,Y.Mascarenhas,Acta Crystallogr.,Sect.E67(2011)o647.[28]L.R.Gomes,L.M.N.B.F.Santos,J.P.Coutinho, B.Schröder,J.Low,ActaCrystallogr.,Sect.E66(2010)o870.[29]A.R.L.Fraga,A.Collins,G.Forte,A.Rescifina,F.Punzo,J.Mol.Struct.929(2009)174.[30]H.Pérez,R.S.Corrêa,A.M.Plutín,B.O’Reilly,M.B.Andrade,Acta Crystallogr.,Sect.C68(2012)o19.[31]J.Bernstein,R.E.Davis,L.Shimoni,N.-L.Chang,Angew Chem.,Int.Ed.Engl.34(1995)1555.B.O’Reilly et al./Polyhedron36(2012)133–140139。
硫脲与过渡金属螯合-解释说明

硫脲与过渡金属螯合-概述说明以及解释1.引言1.1 概述概述部分可以引入硫脲与过渡金属螯合这一主题的重要性和广泛应用。
硫脲是一种含有硫醚键和尿素键的化合物,在配位化学中具有重要的地位。
过渡金属是一类具有未填充的d轨道的元素,具有出色的催化活性和独特的性质。
硫脲作为一种双稀键键合配体,与过渡金属形成稳定的络合物,具有广泛的应用价值。
本文将重点探讨硫脲与过渡金属之间的配位化学反应,分析其结构和性质,探讨影响其螯合效率的因素,并展望其在有机合成和材料科学领域的潜在应用。
通过深入研究硫脲与过渡金属的相互作用机制,可以为新型配位化合物的设计和合成提供重要的参考和指导。
1.2 文章结构文章结构部分应包括对整篇文章的结构和内容安排进行详细说明,可以包括以下内容:本文分为引言、正文和结论三个部分。
在引言部分中,将介绍硫脲与过渡金属螯合的基本概念,并说明文章的研究目的。
在正文部分中,将详细阐述硫脲的结构和性质、过渡金属的特点,以及硫脲与过渡金属螯合反应的相关内容。
在结论部分中,将总结影响硫脲与过渡金属螯合的因素、讨论其应用前景和意义,并对整篇文章进行总结性说明。
通过这样的结构布局,读者可以清晰地了解到本文所涉及的内容范围和主要研究方向,帮助他们更好地理解文章的主题和观点。
1.3 目的:本文旨在探讨硫脲与过渡金属之间的螯合反应,通过对硫脲和过渡金属的结构、性质以及螯合反应机制进行详细分析,揭示硫脲与过渡金属之间的相互作用规律。
通过深入研究硫脲与过渡金属的相互作用,可以为相关领域的研究提供理论基础和实验依据,为新型配位化合物的设计和合成提供参考,有助于拓展硫脲类化合物在催化、材料和生物领域的应用前景,促进相关领域的发展和进步。
2.正文2.1 硫脲的结构和性质硫脲是一种含有硫原子和脲基团的有机化合物,化学式为CS(NH2)2。
硫脲具有以下结构特点:1. 硫脲分子中含有硫原子,硫原子是一种电负性较高的元素,具有较强的亲电性。
N,N--N’-酰基硫脲钴(II)、铜(II)配合物的合成及结构表征英文论文翻译

N,N--N’-酰基硫脲钴(II)、铜(II)配合物的合成及结构表征摘要:制备了新的N,N-二取代基-N’-酰基硫脲钴(II)、铜(II)配合物,并通过元素分析、谱学技术对产物进行了表征。
采用X-射线单晶技术测定了N,N-二乙基-N’-呋喃甲酰硫脲配体及N,N-二乙基-N’-呋喃甲酰硫脲和N,N-二乙基-N’-苯酰硫脲的钴(II)配合物的单晶结构。
配合物结构数据表明,酰基硫脲部分采用顺式构象,总体呈稍微扭曲的正方形平面几何。
关键词:酰基硫脲衍生物Co(II)配合物Cu(II)配合物晶体结构1. 介绍具有多官能团的配体的能够与金属阳离子以多种模式配合,设计和合成新的选择性配位试剂和分析试剂引起人们极大的研究兴趣[1]。
配体与金属离子能以特定多样的方式结合,其原因与化学基本概念如化学键的性质和配位化合物的异构的密切相关,当然,配体的结构对成键的区域选择性、立体选择性也有重要影响[2 ]。
酰基硫脲是一类灵活通用的配体,能够结合多种金属离子并形成稳定的配合物[ 3 ]。
酰基硫脲衍生物的配位能力已有报道,配体中包含氧、氮和硫供体原子,提供大量的成键可能性[4–12 ]。
在已结构表征的配合物中,大部分为O、S双齿的负一价阴离子配体[ 13 ]。
在正方形平面的苯酰硫脲与d8、d9离子(如镍(II)、钯(II)、铂(II)、和Cu(II)等)形成双螯合物中,顺式异构体占主导地位[14,15],反式异构体极少[ 16 ]。
近来对Pt(II)、Pd(II)酰基硫脲配合物的光化学顺反异构化研究表明,反式异构体在热力学上是不稳定的,并且容易重新形成顺式化合物[17]。
而在三配体螯合的苯酰硫脲Ru(III)、Rh(III)、Co(III)化合物中,则呈现独特的面式配位[18]。
另一方面,硫脲衍生物配合物的生物活性也面向多种生物作用被筛选出来。
配体及其金属配合物均显示出广泛的生物活性,包括抗菌、抗疟疾和抗真菌特性。
金属离子的存在,往往会使配体的生物活性获得提高[ 19 ]。
酰氨基硫脲及其杂环衍生物的研究进展

张 自义等 m 以 吗 啉 丙 酰 肼 与 芳 基 异 硫 氰 酸 酯
进 行 反 应 , 成 了 1(- 啉 丙 酰 基 )4取 代 氨 基 硫 脲 合 -p吗 一一
类 化合 物 ( 8 。抗 结 核 实 验 表 明 , 中部 分 化 合 物 图 ) 其 对 H。R v病 毒有 明显 的抑制 作 用 。
环化合 物研究 发 展迅猛 l 。酰氨基 硫 脲 由酰 基硫 脲 发 2 ]
展 而 来 ,8 7年 第 一 个 酰 基 硫 脲 类 化 合 物 问 世 , 渐 17 逐
引起 了人们 对酰 基硫 脲 以及酰氨 基硫 脲及 其衍 生物 极
大 的兴 趣 。 多 年 来 , 氨 基 硫 脲 及 其 杂 环 衍 生 物 研 究 酰
成 的 2萘 酰 基 氨 基 硫 脲 ( 5 也 具 有 较 好 的 抗 菌 活 一 图 )
性。
1 2 3 抗 病 毒 活 性 ..
哒嗪酮 类 杂环 化合 物具 有 多种 生 物活性 , 在农 药 、
医 药 领 域 应 用 广 泛 。 研 究 发 现 ,一 基 - ,一 氢 一一 1芳 1 4二 6甲 基 一一 嗪 酮 一一 肼 对 烟 草 花 叶 病 毒 有 很 强 的 抑 制 作 4哒 3酰
45 0 . 。
o S o
张 自义 等 由异 烟酰 肼 与 卤代芳 酰基 异 硫氰 酸酯
出发 , 合得 到几 种 1异 烟 酰 肼一一 卤 酰基 氨 基硫 脲 缩 一 4芳
化 合 物 ( 7 , 分 析 该 类 化 合 物 具 有 抗 结 核 病 菌 的 图 )经 作 用 , 比 1酰基一一 基 氨基 硫 脲 的抗 结 核 性 能更 明 且 一 4芳
显 , 中以芳 基对 位 为碘 取代 基 时 的活性 最 强 。 其
硫脲类化合物研究概述

2)应 用 于 医 药领 域 。硫 脲 类 化合 物 在 医 药 领 域也 表 现 出广 泛 的 生 物 活 性 ,如抗 结核 、抗 肿瘤 、抗
第3 期
翟智卫 硫 脲类 化合物研 究概述
必 要对 硫 脲 类化 合 物 以往 的研 究 状 况做 概 括介 绍 , 以方便 以后 的研 究 工 作者 快 速 了解 其 发展 进程 。下 面 就 从几 个方 面来 概述 硫脲 类 化合 物 的发 展情 况 。
1 硫脲类化合物 的分 类
之 所 以称 为硫 脲 类 化 合物 是 因为 其具 有硫 脲 的基 本结 构( 图1 示 1 如 所 。根 据 与其 基 本 结构相 连 基 团 的 不 同 ,可 以将硫 脲 类 化合 物 分 为 :硫脲 、酰基 硫脲 、氨基 硫脲 、缩 氨 基 硫脲 等 4 。其 中,硫 脲 、酰基 硫 类
第2 卷 第3 1 期 2I年9 0 1 月
洛阳理工学院学报( 然科学版) 自
J u n l f u y n n t u e f S in e n e h o0 y Na u a S in e d t n o r a o o a gI si t c c d T c n 1g ( t r I ce c i o ) L t o e a E i
催化 、橡 胶 防老 化 等领 域 。
1)应 用于农 药领 域 。硫 脲 类化 合 物 具有广 泛 的 生物活 性 ,如 杀 虫 、除草 、 杀菌 、植 物 生长 调节 等 , 从2 世纪6 年代 以来就 受到 了人 们 的高度 关注 。硫脲 类化 合物 托布 津和 甲基托 布津 早 在2 世 纪6 年代就 已 O 0 0 0
酰基硫脲化合物的合成及其植物生测

2016年第8期(下半月)农民致富之友 Nong Min Zhi Fu Zhi You60科研◎农业科学硫脲衍生物不仅是重要有机合成中间体,而且可用作杀虫剂[1]、除草剂[2]和植物生长调节剂,而取代芳酸、胺类化合物、氨基吡啶化合物有上述某种生物活性。
研究同时含有两种基团化合物生物活性,固-液相转移催化法合成三个系列二十八个目标化合物,对化合物进行生理活性初步研究。
1 材料与方法1.1 仪器电热熔点测定仪;元素分析仪;红外光谱仪(KBr 压片);核磁共振仪(TMS 为内标,DMSO-d 6为溶剂);质谱仪;WMK–02型电热恒温培养箱;GXZ 型智能光照培养箱。
1.2 目标化合物的制备称取2.2mmol 邻氯苯酚,加入氢氧化钠,搅拌至55~60℃,加0.02mol 氯乙酸,加50%NaOH ,pH=9~10,至85~90℃,反应3h ,加NaOHpH9~10至反应完毕,不断搅拌加浓HCI 至pH≈1,冷却,抽滤,水洗,乙醇-水重结晶得白色针状晶体,m.p.140~141℃。
将0.02mol 的取代苯氧乙酸加入烧瓶中,加10ml 新蒸二氯亚砜,65~75℃反应4h ,减压蒸出剩余氯化亚酰,得取代苯氧乙酰氯。
所得酰氯不经分离,加20ml 二氯甲烷,0.03mol 硫氰酸铵,搅拌,加0.5g PEG-600,搅拌反应1~2h ,得黄色油状液体。
所得中间体不经分离,搅拌加0.01mol 芳胺,反应1h ,产物倾入混合物,静置,产生大量沉淀,过滤,饱和NaHCO 3洗涤,干燥,DMF ∕乙醇∕水混合溶剂重结晶,得目标化合物。
2 结果与讨论2.1 目标化合物IR 、1H NMR 及元素分析结果对红外光谱IR 数据分析:在3370~3430 cm -1之间有一宽而强吸收峰,为羧基上O —H 伸缩振动吸收峰,由于形成分子内或分子间氢键,所以,较一般O —H 振吸收峰向低波方向移动[2];在3190~3270 cm -1范围有一强而宽吸收峰,此峰为O =CNHC =S 中氮氢及吡啶环氮氢吸收峰。
硫脲催化剂的合成-概述说明以及解释

硫脲催化剂的合成-概述说明以及解释1.引言1.1 概述硫脲催化剂是一类重要的有机催化剂,其在有机合成领域具有广泛的应用和重要的前景。
硫脲催化剂可以促进各种碳-碳键和碳-氮键的形成和断裂反应,催化剂本身具有高效、低成本和环境友好等特点,因此备受研究者们的关注。
在有机合成中,硫脲催化剂被广泛应用于不对称合成、环状化合物的构建、碳-氮键的形成等重要有机转化反应中。
通过合理选择催化剂的结构和反应条件,可以有效地控制反应的立体选择性和高效性能,实现高收率和高选择性的目标。
硫脲催化剂的合成方法有多种途径,常见的包括传统的有机合成方法和金属有机化学方法。
在传统的有机合成方法中,常用的合成策略包括催化剂的直接合成、多步合成和衍生反应等。
而金属有机化学方法则是利用金属作为催化剂的衍生物进行催化反应。
这些方法各有优缺点,在实际应用中需根据具体情况进行选择。
总的来说,硫脲催化剂的合成是有机合成领域的重要研究内容之一。
通过合理选择催化剂的结构和反应条件,可以实现高效、高选择性的有机转化反应,为有机化学合成的发展提供了有力支持。
对硫脲催化剂的合成方法的深入研究和探索,将为有机合成领域的发展提供新的思路和创新。
1.2 文章结构文章结构部分的内容可以包括以下信息:本文将按照以下结构进行叙述:第一部分是引言,分为三个小节。
首先是概述,简要介绍硫脲催化剂的背景和意义。
其次是文章结构,说明本文的组织框架和各部分的内容。
最后是目的,明确本文旨在阐述硫脲催化剂的合成方法及其重要性。
第二部分是正文,包括两个小节。
首先是硫脲催化剂的定义和应用,详细介绍硫脲催化剂的基本概念和广泛应用领域。
其次是硫脲催化剂的合成方法,具体介绍目前已知的合成硫脲催化剂的多种方法及其原理、优缺点。
通过对不同方法的比较和分析,可以更好地理解硫脲催化剂的合成过程和相关技术。
最后一部分是结论,分为两个小节。
首先是硫脲催化剂的重要性和前景,总结硫脲催化剂在化学合成中的重要作用,并展望其未来的发展前景。