2020年广东省湛江市中考数学试卷含答案解析
广东省湛江市2020年(春秋版)中考数学试卷(I)卷

广东省湛江市2020年(春秋版)中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七上·北京期中) 如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A . 点A与点BB . 点B与点CC . 点B与点DD . 点A与点D2. (2分)如图所示的四个图形中,∠1和∠2不是同位角的是()A .B .C .D .3. (2分)(2016·南京) 为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A . 0.7×105B . 7×104C . 7×105D . 70×1034. (2分)(2013·来宾) 如图是由六个大小相同的小正方体组成的几何体,它的主视图是()A .B .C .D .5. (2分) (2019九上·北京期中) 已知锐角∠AOB如图,①在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;②分别以点C,D为圆心,CD长为半径作弧,交于点M,N;③连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A . ∠COM=∠CODB . 若OM=MN,则∠AOB=20°C . MN∥CDD . MN=3CD6. (2分)(2018·宜宾模拟) 已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A .B .C .D .7. (2分) (2017·竞秀模拟) 将不等式4x﹣3<1的解集表示在数轴上,正确的是()A .B .C .D .8. (2分) (2019八下·大石桥期中) 如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;② BG=GC;③ AG∥CF;④∠GAE=45°.则正确结论的个数有()A . 1B . 2C . 3D . 49. (2分)如图1,在正方形铁皮上剪下一个扇形和一个半径为1cm的圆形,使之恰好围成图2所示的一个圆锥,则圆锥的高为()A . cmB . 4cmC . cmD . cm10. (2分)(2017·河北模拟) 绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A . 4mB . 5mC . 6mD . 8m二、填空题 (共6题;共7分)11. (1分)若xm﹣yn=(x+y2)(x﹣y2)(x2+y4),则m=________,n=________.12. (1分)三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:甲厂78999111314161719乙厂779910101212121314丙厂77888121314151617根据表格可以判断三个厂家的广告分别利用了统计中________(填写平均数、中位数、众数)进行宣传。
广东省2020年中考数学试题(word版,含答案)二四

2020年广东省初中毕业生学业考试数 学学校: 班级: 姓名: 得分:说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A.15B.5C.-15D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×910B.0.4×1010C.4×910D.4×1010 3.已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒D.20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线11(0)y k x k =≠与双曲线22(0)k y k x=≠ 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( )题7图A.(-1,-2)B.(-2,-1)C.(-1,-1)D.(-2,-2) 8.下列运算正确的是( )A.223a a a += B.325·a a a = C.426()a a = D.424a a a +=9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①ABF ADF S S =△△;②4CDF CBF S S =△△;③2ADF CEF S S =△△; ④2ADF CDF S S =△△,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是720︒,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则a b ÷ 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知431a b ÷=,则整式863a b ÷-的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:21|7|(1)3π-⎛⎫---+ ⎪⎝⎭.18.先化简,再求值211(x 4)22x x ⎛⎫+÷- ⎪-+⎝⎭,其中.19.学校团委组织志愿者到图书馆整理一批新进的图书。
2020年广东省湛江市中考数学真题试卷

2020年广东省湛江市中考数学真题试卷一、选择题(本大题共12小题,每小题3分,共36分)1、-5的相反数是…………………………………………………………………………()A.-5B.5C.1 5-D.152、四边形的内角和为………………………………………………………………………()A.180︒B.360︒C.540︒D.720︒3、数据1,2,4,4,3的众数是…………………………………………………………()A.1B.2C.3D.44、下面四个几何体中,主视图是四边形的几何体共有…………………………………()A.1个B.2个C.3个D.4个5、第六次人口普查显示,湛江市常住人口数约为6990000人,数据6990000用科学记数法表示为………………………………………………………………………………()A.569.910⨯B.70.69910⨯C.66.9910⨯D.76.9910⨯6、在下列图形中,既是轴对称图形,又是中心对称图形的是………………………()7、下列计算正确的是……………………………………………………………………()A235a a a⋅=B.2a a a+=C.235()a a=D.23(1)1a a a+=+8、不等式的解集2x≤在数轴上表示为…………………………………………………()9、甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分A.B.C.D.A B C D别是22220.65,0.55,0.50,0.45S S S S ====乙甲丙丁,则射箭成绩最稳定的是……( )A .甲B .乙C .丙D .丁10、如图,直线,AB CD 相交于点,//E DF AB ,若100AEC ∠=︒,则D ∠等于…( ) A .70︒ B .80︒ C .90︒ D .100︒11、化简22a b a b a b---的结果是………………………………( ) A .a b + B .a b - C .22a b - D .1 12、在同一坐标系中,正比例函数y x =与反比例函数2y x=的图象大致是…………( )二、填空题(本大题共8小题,每小题4分,其中17~20小题每空2分,共32分) 13、分解因式:23_______________x x +=. 14、已知130∠=︒,则1∠的补角的度数为 度.15、若2x =是关于x 的方程2310x m +-=的解,则m 的值为 . 16、如图,,,A B C 是⊙O 上的三点,30BAC ∠=︒,则______BOC ∠=度.17、多项式2235x x -+是 次 项式. 18、函数3y x =-中自变量x 的取值范围是 ,当4x =时,函数值_____y =.19、如图,点,,,B C F E 在同直线上,12,,1____BC EF ∠=∠=∠(填“是”可“不是”)2∠的对顶角,要使△ABC ≌△DEF,还需添加一个条件,可以是 (只需写出一个) 20.若:23443556326,54360,5432120,6543360A A A A =⨯==⨯⨯==⨯⨯⨯==⨯⨯⨯=, …,观察前面计算过程,寻找计算规律计算37____________A =(直接写出计算结果),并比较341010_____A A (填“>”或“<”或“=”)三、解答题(本大题共8小题,其中21~22每小题7分,23~24每小题10分,25~28 每小题12分,共82分) 21、计算:9(2011)2π--︒+-.22、如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为(3,5),(4,3)A B --, (1,1)-.(1)作出△ABC 向右平移5个单位的△111A B C ;(2)作出△ABC 关于x 轴对称的△222A B C ,并写出点2C 的坐标.23、一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4.(1)随机摸取一个小球,求恰好摸到标号为2的小球的概率;(2)随机摸取一个小球然后放回,再随机摸取一个小球,求两次摸取的小球的标号的和为5的概率.24、五一期间,小红到美丽的世界地质公园湖光岩参加社会实践活动,在景点P处测得景点B位于南偏东45︒方向;然后沿北偏东60︒方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A与B之间的距离.(结果精确到0.1米)25、某中学为了了解学生的体育锻炼情况,随机抽查了部分学生一周参加体育锻炼的时间,得到下面的条形统计图,根据图形解答下列问题:(1)这次抽查了名学生;(2)所抽查的学生一周平均参加体育锻炼多少小时?(3)已知该校有1200名学生,估计该校有多少名学生一周参加体育锻炼的时间超过6小时?26、某工厂计划生产,A B两种产品共10件,其生产成本和利润如下表:A种产品B种产品成本(万元∕件) 3 5利润(万元∕件) 1 2(1)若工厂计划获利14万元,问,A B两种产品应分别生产多少件?(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)条件下,哪种方案获利最大?并求最大利润.27、如图,在Rt △ABC 中,90C ∠=︒,点D 是AC 的中点,且90A CDB ∠+∠=︒, 过点,A D 作⊙O ,使圆心O 在AB 上,⊙O 与AB 交于点E . (1)求证:直线BD 与⊙O 相切;(2)若:4:5,6AD AE BC ==,求⊙O 的直径.28、如图,抛物线2y x bx c =++的顶点为(1,4)D --,与y 轴交于点(0,3)C -,与x 轴 交于,A B 两点(点A 在点B 的左侧). (1)求抛物线的解析式;(2)连接,,AC CD AD ,试证明△ACD 为直角三角形;(3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以,,,A B E F 为顶点的 的四边形为平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在, 请说明理由.。
广东省2020年中考数学试题(WORD版,有答案)二四

2020年广东中考数学试题 学校: 班级: 姓名: 得分:一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13C . 3.14-D .22.据有关部门统计,2020年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是 A . B . C . D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为A .12B .13C .14D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是A .30°B .40°C .50°D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m < B .94m ≤ C .94m > D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 . 12. 分解因式:=+-122x x .13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一) 17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。
广东省湛江市2020年(春秋版)中考数学试卷(II)卷

广东省湛江市2020年(春秋版)中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020八上·遂宁期末) 在实数,3,0,0.5中,最小的数是()A .B . 3C . 0D . 0.52. (2分) (2019七上·孝感月考) 下列变形正确的是()A . -2(x-2) = -2x-4B . 5(x-1)-x = 5x-1- xC . 6x +(7-2x) = 6x-7+2xD . 2(x+2)-(x-1) = 2x+4-x+13. (2分)若|a-2008|+(b-2009)2=0,则a-b=()A . 1B . -1C . 0D . ±14. (2分)匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),则对应的这个容器的形状为()A .B .C .D .5. (2分) (2018七下·花都期末) 如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为()A . ∠1=∠2B . ∠1=2∠2C . ∠1=3∠2D . ∠1=4∠26. (2分)如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟不落在花圃上的概率为()A .B .C .D .7. (2分)如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形的对应角相等”这一性质,由作图所得条件,判定三角形全等运用的方法是()A . SASB . ASAC . AASD . SSS8. (2分)如图,圆锥的侧面展开图是半径为4,圆心角为90°的扇形,则该圆锥的底面周长为()A . πB . 2πC . 8πD . 169. (2分) (2019九上·惠州期末) 如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1 ,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1 ,则点A的对应点A2的坐标是()A . (5,2)B . (1,0)C . (3,﹣1)D . (5,﹣2)10. (2分)如图,在中,AB=AC=8,∠A=36°,BD平分交AC于点D,则AD=()A . 4B . 4 -4C . -4 +4D . 4 -4或-4 +4二、填空题 (共8题;共8分)11. (1分)将7 270 000用科学记数法表示为________.12. (1分) (2015八上·卢龙期末) 分解因式a3﹣6a2+9a=________.13. (1分)(2013·南通) 已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是________.14. (1分)(2017·合肥模拟) 如图,在矩形ABCD中,∠B的平分线BE与AD交于点E,∠BED的平分线EF 与DC交于点F,若AB=9,DF=2FC,则BC=________.(结果保留根号)15. (1分) (2019八上·北京期中) 如图,等腰三角形ABC的底边BC长为2,面积是4,腰AC的垂直平分线 EF分别交AC,AB边于E,F 点,若点D 为BC边的中点,点M 为线段EF上一动点,则△CDM 周长的最小值为________。
广东省湛江市2019-2020学年中考数学第三次调研试卷含解析

广东省湛江市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧»BC的长是( )A .2πB .3π C .4π D .6π 2.规定:如果关于x 的一元二次方程ax 2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程x 2+2x ﹣8=0是倍根方程; ②若关于x 的方程x 2+ax+2=0是倍根方程,则a=±3; ③若关于x 的方程ax 2﹣6ax+c=0(a≠0)是倍根方程,则抛物线y=ax 2﹣6ax+c 与x 轴的公共点的坐标是(2,0)和(4,0); ④若点(m ,n )在反比例函数y=4x的图象上,则关于x 的方程mx 2+5x+n=0是倍根方程. 上述结论中正确的有( ) A .①②B .③④C .②③D .②④3.对于反比例函数y=﹣,下列说法不正确的是( ) A .图象分布在第二、四象限 B .当x >0时,y 随x 的增大而增大 C .图象经过点(1,﹣2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 24.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时5.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为A.40海里B.60海里C.70海里D.80海里6.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC 交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为()A.83B.8 C.43D.67.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间8.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣349.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.10000x﹣10=14700(140)0x+B.10000x+10=14700(140)0x+C.10000(140)0x-﹣10=14700xD.10000(140)0x-+10=14700x10.实数a,b,c在数轴上对应点的位置如图所示,则下列结论中正确的是()A .a+c >0B .b+c >0C .ac >bcD .a ﹣c >b ﹣c11.如图,在△ABC 中,EF ∥BC ,AB=3AE ,若S 四边形BCFE =16,则S △ABC =( )A .16B .18C .20D .2412.下列运算正确的是( ) A .(a 2)4=a 6B .a 2•a 3=a 6C .236⨯=D .235+=二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知点11(,)A x y ,22(,)B x y 在二次函数2(1)1y x =-+的图象上,若121x x >>,则1y __________2y .(填“>”“<”“=”)14.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3h ,若静水时船速为26km/h ,水速为2km/h ,则A 港和B 港相距_____km . 15.分解因式:2x 2﹣8=_____________16.已知a 、b 满足a 2+b 2﹣8a ﹣4b+20=0,则a 2﹣b 2=_____.17.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______. 18.如图,边长为的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a (0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润? 20.(6分)如图1,经过原点O 的抛物线y=ax 2+bx (a≠0)与x 轴交于另一点A (32,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.21.(6分)学了统计知识后,小红就本班同学上学“喜欢的出行方式”进行了一次调查,图(1)和图(2)是她根据采集的数据绘制的两幅不完整的统计图,请根据图中提供的信息解答以下问题:(1)补全条形统计图,并计算出“骑车”部分所对应的圆心角的度数.(2)若由3名“喜欢乘车”的学生,1名“喜欢骑车”的学生组队参加一项活动,现欲从中选出2人担任组长(不分正副),求出2人都是“喜欢乘车”的学生的概率,(要求列表或画树状图)22.(8分)已知反比例函数的图象经过三个点A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>1.(1)当y1﹣y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程).23.(8分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD、小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,然后沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:3,(斜坡的铅直高度与水平宽度的比),经过测量AB=10米,AE=15米,求点B到地面的距离;求这块宣传牌CD的高度.(测角器的高度忽略不计,结果保留根号)24.(10分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处,如图1,已知折痕与边BC交于点O,连接AP、OP、OA.若△OCP与△PDA的面积比为1:4,求边CD的长.如图2,在(Ⅰ)的条件下,擦去折痕AO、线段OP,连接BP.动点M在线段AP上(点M 与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP 于点E.试问当动点M、N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.25.(10分)如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.求证:△ABC≌△AED;当∠B=140°时,求∠BAE的度数.26.(12分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC的周长为_____.27.(12分)如图,在边长为1个单位长度的小正方形组成的12×12网格中建立平面直角坐标系,格点△ABC(顶点是网格线的交点)的坐标分别是A(﹣2,2),B(﹣3,1),C(﹣1,0).(1)将△ABC绕点O逆时针旋转90°得到△DEF,画出△DEF;(2)以O为位似中心,将△ABC放大为原来的2倍,在网格内画出放大后的△A1B1C1,若P(x,y)为△ABC中的任意一点,这次变换后的对应点P1的坐标为.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为601180π⨯=13π.故选B.点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.2.C【解析】分析:①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设2x=21x,得到1x•2x=221x=2,得到当1x=1时,2x=2,当1x=-1时,2x=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m,n)在反比例函数y=4x的图象上,得到mn=4,然后解方程m2x+5x+n=0即可得到正确的结论;详解:①由2x -2x-8=0,得:(x-4)(x+2)=0, 解得1x =4,2x =-2, ∵1x ≠22x ,或2x ≠21x , ∴方程2x -2x-8=0不是倍根方程;故①错误;②关于x 的方程2x +ax+2=0是倍根方程, ∴设2x =21x , ∴1x •2x =221x =2, ∴1x =±1, 当1x =1时,2x =2, 当1x =-1时,2x =-2, ∴1x +2x =-a=±3, ∴a=±3,故②正确; ③关于x 的方程a 2x -6ax+c=0(a≠0)是倍根方程, ∴2x =21x ,∵抛物线y=a 2x -6ax+c 的对称轴是直线x=3, ∴抛物线y=a 2x -6ax+c 与x 轴的交点的坐标是(2,0)和(4,0), 故③正确; ④∵点(m ,n )在反比例函数y=4x的图象上, ∴mn=4, 解m 2x +5x+n=0得 1x =2m -,2x =8m-, ∴2x =41x , ∴关于x 的方程m 2x +5x+n=0不是倍根方程; 故选C .点睛:本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键. 3.D 【解析】 【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解. 【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y 随x 的增大而增大,故本选项正确;C.∵,∴点(1,−2)在它的图象上,故本选项正确;D. 若点A (x 1,y 1),B (x 2,y 2)都在图象上,,若x 1<0< x 2,则y 2<y 1,故本选项错误. 故选:D. 【点睛】考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键. 4.C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1010×360×24=3.636×106立方米/时,故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.D【解析】分析:依题意,知MN=40海里/小时×2小时=80海里,∵根据方向角的意义和平行的性质,∠M=70°,∠N=40°,∴根据三角形内角和定理得∠MPN=70°.∴∠M=∠MPN=70°.∴NP=NM=80海里.故选D.6.D【解析】分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.详解: 如图,连接OB,∵BE=BF,OE=OF,∴BO⊥EF,∴在Rt△BEO中,∠BEF+∠ABO=90°,由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,∴∠BAC=∠ABO,又∵∠BEF=2∠BAC,即2∠BAC+∠BAC=90°,解得∠BAC=30°,∴∠FCA=30°,∴∠FBC=30°,∵FC=2,∴∴,∴6,故选D.点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键. 7.A【解析】【分析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=1(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>1.∴该停靠点的位置应设在点A;故选A.【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.8.B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.9.B【解析】【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【详解】解:设第一批购进x件衬衫,则所列方程为:10000x +10=()147001400x+.故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.10.D【解析】分析:根据图示,可得:c<b<0<a,c a b>>,据此逐项判定即可.详解:∵c<0<a,|c|>|a|,∴a+c<0,∴选项A不符合题意;∵c<b<0,∴b+c<0,∴选项B不符合题意;∵c<b<0<a,c<0,∴ac<0,bc>0,∴ac<bc,∴选项C不符合题意;∵a>b,∴a﹣c>b﹣c,∴选项D符合题意.故选D.点睛:此题考查了数轴,考查了有理数的大小比较关系,考查了不等关系与不等式.熟记有理数大小比较法则,即正数大于0,负数小于0,正数大于一切负数. 11.B 【解析】【分析】由EF ∥BC ,可证明△AEF ∽△ABC ,利用相似三角形的性质即可求出S △ABC 的值. 【详解】∵EF ∥BC ,∴△AEF ∽△ABC , ∵AB=3AE , ∴AE :AB=1:3, ∴S △AEF :S △ABC =1:9, 设S △AEF =x , ∵S 四边形BCFE =16, ∴1169x x =+,解得:x=2, ∴S △ABC =18, 故选B .【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键. 12.C 【解析】 【分析】根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可. 【详解】A 、原式=a 8,所以A 选项错误;B 、原式=a 5,所以B 选项错误;C 、原式===C 选项正确;D D 选项错误. 故选:C . 【点睛】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.12y y >抛物线()2y x 11=-+的对称轴为:x=1, ∴当x>1时,y 随x 的增大而增大. ∴若x 1>x 2>1 时,y 1>y 2 . 故答案为> 14.1. 【解析】 【分析】根据逆流速度=静水速度-水流速度,顺流速度=静水速度+水流速度,表示出逆流速度与顺流速度,根据题意列出方程,求出方程的解问题可解. 【详解】解:设A 港与B 港相距xkm , 根据题意得:3262262x x+=+- , 解得:x=1,则A 港与B 港相距1km . 故答案为:1. 【点睛】此题考查了分式方程的应用题,解答关键是在顺流、逆流过程中找出等量关系构造方程. 15.2(x+2)(x ﹣2) 【解析】 【分析】先提公因式,再运用平方差公式. 【详解】 2x 2﹣8, =2(x 2﹣4), =2(x+2)(x ﹣2). 【点睛】考核知识点:因式分解.掌握基本方法是关键. 16.1 【解析】 【分析】利用配方法把原式化为平方和的形式,根据偶次方的非负性求出a 、b ,计算即可.a 2+b 2﹣8a ﹣4b+20=0, a 2﹣8a+16+b 2﹣4b+4=0, (a ﹣4)2+(b ﹣2)2=0 a ﹣4=0,b ﹣2=0, a=4,b=2, 则a 2﹣b 2=16﹣4=1, 故答案为1. 【点睛】本题考查了配方法的应用、非负数的性质,掌握完全平方公式、偶次方的非负性是解题的关键. 17.23【解析】 【分析】根据概率的概念直接求得. 【详解】解:4÷6=23. 故答案为:23.【点睛】本题用到的知识点为:概率=所求情况数与总情况数之比. 18.24m + 【解析】 【详解】因为大正方形边长为4m +,小正方形边长为m ,所以剩余的两个直角梯形的上底为m ,下底为4m +,所以矩形的另一边为梯形上、下底的和:4m ++m=24m +.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)甲种服装最多购进75件,(2)见解析. 【解析】 【分析】(1)设甲种服装购进x 件,则乙种服装购进(100-x )件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W 的表达式,然后针对a 的不同取值范围进行讨论,分别确定其进货方案. 【详解】(1)设购进甲种服装x 件,由题意可知:80x+60(100-x )≤7500,解得x≤75答:甲种服装最多购进75件, (2)设总利润为W 元,W=(120-80-a )x+(90-60)(100-x ) 即w=(10-a )x+1.①当0<a <10时,10-a >0,W 随x 增大而增大,∴当x=75时,W 有最大值,即此时购进甲种服装75件,乙种服装25件; ②当a=10时,所以按哪种方案进货都可以; ③当10<a <20时,10-a <0,W 随x 增大而减小.当x=65时,W 有最大值,即此时购进甲种服装65件,乙种服装35件. 【点睛】本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x 表示出利润是关键. 20.(1)y=2x 2﹣3x ;(2)C (1,﹣1);(3)(4564,316)或(﹣316,4564).【解析】 【分析】(1)由直线解析式可求得B 点坐标,由A 、B 坐标,利用待定系数法可求得抛物线的表达式; (2)过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,可设出C 点坐标,利用C 点坐标可表示出CD 的长,从而可表示出△BOC 的面积,由条件可得到关于C 点坐标的方程,可求得C 点坐标;(3)设MB 交y 轴于点N ,则可证得△ABO ≌△NBO ,可求得N 点坐标,可求得直线BN 的解析式,联立直线BM 与抛物线解析式可求得M 点坐标,过M 作MG ⊥y 轴于点G ,由B 、C 的坐标可求得OB 和OC 的长,由相似三角形的性质可求得OMOP的值,当点P 在第一象限内时,过P 作PH ⊥x 轴于点H ,由条件可证得△MOG ∽△POH ,由OM MG OGOP PH OH==的值,可求得PH 和OH ,可求得P 点坐标;当P 点在第三象限时,同理可求得P 点坐标. 【详解】(1)∵B (2,t )在直线y=x 上, ∴t=2, ∴B (2,2),把A 、B 两点坐标代入抛物线解析式可得:42293042a b a b +=⎧⎪⎨+=⎪⎩,解得:23a b =⎧⎨=-⎩, ∴抛物线解析式为223y x x =-;(2)如图1,过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,∵点C 是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB=12CD•OE+12CD•BF=12(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.设MB交y轴于点N,如图2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中,∵∠AOB=∠NOB,OB=OB,∠ABO=∠NBO,∴△AOB≌△NOB(ASA),∴ON=OA=32,∴N(0,32),∴可设直线BN解析式为y=kx+32,把B点坐标代入可得2=2k+32,解得k=14,∴直线BN的解析式为1342y x=+,联立直线BN和抛物线解析式可得:2134223y xy x x⎧=+⎪⎨⎪=-⎩,解得:22xy=⎧⎨=⎩或384532xy⎧=-⎪⎪⎨⎪=⎪⎩,∴M(38-,4532),∵C (1,﹣1),∴∠COA=∠AOB=45°,且B (2,2), ∴OB=22,OC=2, ∵△POC ∽△MOB , ∴2OM OBOP OC==,∠POC=∠BOM , 当点P 在第一象限时,如图3,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥x 轴于点H ,如图3 ∵∠COA=∠BOG=45°,∴∠MOG=∠POH ,且∠PHO=∠MGO , ∴△MOG ∽△POH ,∴2OM MG OGOP PH OH=== ∵M (38-,4532),∴MG=38,OG=4532,∴PH=12MG=316,OH=12OG=4564,∴P (4564,316);当点P 在第三象限时,如图4,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥y 轴于点H ,同理可求得PH=12MG=316,OH=12OG=4564, ∴P (﹣316,4564);综上可知:存在满足条件的点P ,其坐标为(4564,316)或(﹣316,4564).【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C 点坐标表示出△BOC 的面积是解题的关键,在(3)中确定出点P 的位置,构造相似三角形是解题的关键,注意分两种情况.21.(1)补全条形统计图见解析;“骑车”部分所对应的圆心角的度数为108°;(2)2人都是“喜欢乘车”的学生的概率为12.【解析】【分析】(1)从两图中可以看出乘车的有25人,占了50%,即可得共有学生50人;总人数减乘车的和骑车的人数就是步行的人数,根据数据补全直方图即可;要求扇形的度数就要先求出骑车的占的百分比,然后再求度数;(2)列出从这4人中选两人的所有等可能结果数,2人都是“喜欢乘车”的学生的情况有3种,然后根据概率公式即可求得.【详解】(1)被调查的总人数为25÷50%=50人;则步行的人数为50﹣25﹣15=10人;如图所示条形图,“骑车”部分所对应的圆心角的度数=1550×360°=108°;(2)设3名“喜欢乘车”的学生表示为A、B、C,1名“喜欢骑车”的学生表示为D,则有AB、AC、AD、BC、BD、CD这6种等可能的情况,其中2人都是“喜欢乘车”的学生有3种结果,所以2人都是“喜欢乘车”的学生的概率为12.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)m=1;(2)点P坐标为(﹣2m,1)或(6m,1).【解析】【分析】(1)先根据反比例函数的图象经过点A(﹣4,﹣3),利用待定系数法求出反比例函数的解析式为y=,再由反比例函数图象上点的坐标特征得出y1==,y2==,然后根据y1﹣y2=4列出方程﹣=4,解方程即可求出m的值;(2)设BD与x轴交于点E.根据三角形PBD的面积是8列出方程••PE=8,求出PE=4m,再由E (2m,1),点P在x轴上,即可求出点P的坐标.【详解】解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(﹣4,﹣3),∴k=﹣4×(﹣3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),C(6m,y2),∴y1==,y2==,∵y1﹣y2=4,∴﹣=4,∴m=1,经检验,m=1是原方程的解,故m的值是1;(2)设BD与x轴交于点E,∵点B(2m,),C(6m,),过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,∴D(2m,),BD=﹣=,∵三角形PBD的面积是8,∴BD•PE=8,∴••PE=8,∴PE=4m ,∵E (2m ,1),点P 在x 轴上,∴点P 坐标为(﹣2m ,1)或(6m ,1).【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键.23.(1)2;(2)宣传牌CD 高(20﹣3m . 【解析】试题分析:(1)在Rt △ABH 中,由tan ∠BAH=BH AH33BAH=30°,于是得到结果BH=ABsin ∠BAH=1sin30°=1×12=2;(2)在Rt △ABH 中,AH=AB .cos ∠BAH=1.cos30°3.在Rt △ADE 中,tan ∠DAE=DEAE,即tan60°=15DE,得到3B 作BF ⊥CE ,垂足为F ,求出3+12,于是得到DF=DE ﹣EF=DE ﹣32.在Rt △BCF 中,∠C=90°﹣∠CBF=90°﹣42°=42°,求得∠C=∠CBF=42°,得出3,即可求得结果.试题解析:解:(1)在Rt △ABH 中,∵tan ∠BAH=BH AH333,∴∠BAH=30°,∴BH=ABsin ∠BAH=1sin30°=1×12=2. 答:点B 距水平面AE 的高度BH 是2米;(2)在Rt △ABH 中,AH=AB .cos ∠BAH=1.cos30°3.在Rt △ADE 中,tan ∠DAE=DEAE,即tan60°=15DE,∴3,如图,过点B 作BF ⊥CE ,垂足为F ,∴3,DF=DE ﹣EF=DE ﹣32.在Rt △BCF 中,∠C=90°﹣∠CBF=90°﹣42°=42°,∴∠C=∠CBF=42°,∴3,∴CD=CF ﹣3+12﹣(32)=20﹣3.答:广告牌CD 的高度约为(20﹣324.(1)10;(2)25.【解析】【分析】(1)先证出∠C=∠D=90°,再根据∠1+∠3=90°,∠1+∠2=90°,得出∠2=∠3,即可证出△OCP∽△PDA;根据△OCP与△PDA的面积比为1:4,得出CP=12AD=4,设OP=x,则CO=8﹣x,由勾股定理得x2=(8﹣x)2+42,求出x,最后根据AB=2OP即可求出边AB的长;(2)作MQ∥AN,交PB于点Q,求出MP=MQ,BN=QM,得出MP=MQ,根据ME⊥PQ,得出EQ=12 PQ,根据∠QMF=∠BNF,证出△MFQ≌△NFB,得出QF=12QB,再求出EF=12PB,由(1)中的结论求出PB=228445+=,最后代入EF=12PB即可得出线段EF的长度不变【详解】(1)如图1,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴∠1+∠3=90°,∵由折叠可得∠APO=∠B=90°,∴∠1+∠2=90°,∴∠2=∠3,又∵∠D=∠C,∴△OCP∽△PDA;∵△OCP与△PDA的面积比为1:4,∴,∴ CP=12AD=4设OP=x,则CO=8﹣x,在Rt△PCO中,∠C=90°,由勾股定理得x2=(8﹣x)2+42,解得:x=5,∴AB=AP=2OP=10,∴边CD的长为10;(2)作MQ∥AN,交PB于点Q,如图2,∵AP=AB,MQ∥AN,∴∠APB=∠ABP=∠MQP.∴MP=MQ,∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=PQ.∵MQ∥AN,∴∠QMF=∠BNF,∴△MFQ≌△NFB.∴QF=FB,∴EF=EQ+QF=12(PQ+QB)=12PB,由(1)中的结论可得:PC=4,BC=8,∠C=90°,∴228445+=EF=125∴在(1)的条件下,当点M、N在移动过程中,线段EF的长度不变,它的长度为5【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、勾股定理、等腰三角形的性质,关键是做出辅助线,找出全等和相似的三角形25.(1)详见解析;(2)80°.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解析】【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【详解】证明:(1)∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE ,在△ABC 和△AED 中,BC ED ACB ADE AC AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△AED (SAS );解:(2)当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE 中,∠BAE=540°﹣140°×2﹣90°×2=80°.【点睛】考点:全等三角形的判定与性质.26.11【解析】【分析】将x=2代入方程找出关于m 的一元一次方程,解一元一次方程即可得出m 的值,将m 的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论.【详解】将x=2代入方程,得:1﹣1m+3m=0,解得:m=1.当m=1时,原方程为x 2﹣8x+12=(x ﹣2)(x ﹣6)=0,解得:x 1=2,x 2=6,∵2+2=1<6,∴此等腰三角形的三边为6、6、2,∴此等腰三角形的周长C=6+6+2=11.【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质27. (1)见解析;(2)见解析,(﹣2x ,﹣2y).【解析】【分析】(1)利用网格特点和旋转的性质画出点A 、B 、C 的对应点D 、E 、F ,即可得到△DEF ;(2)先根据位似中心的位置以及放大的倍数,画出原三角形各顶点的对应顶点,再顺次连接各顶点,得到△A 1B 1C 1,根据△A 1B 1C 1结合位似的性质即可得P 1的坐标.【详解】(1)如图所示,△DEF即为所求;(2)如图所示,△A1B1C1即为所求,这次变换后的对应点P1的坐标为(﹣2x,﹣2y),故答案为(﹣2x,﹣2y).【点睛】本题主要考查了位似变换与旋转变换,解决问题的关键是先作出图形各顶点的对应顶点,再连接各顶点得到新的图形.在画位似图形时需要注意,位似图形的位似中心可能在两个图形之间,也可能在两个图形的同侧.。
广东省湛江市2020年(春秋版)中考数学试卷D卷

广东省湛江市2020年(春秋版)中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)已知|a﹣1|=5,则a的值为()A . 0B . ﹣4C . 6或﹣4D . ﹣6或42. (2分)如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A . 70B . 80C . 90D . 1003. (2分)如图所示的几何体的俯视图是()A .B .C .D .4. (2分)(2020·遵化模拟) 55万用科学记数法表示为()A . 5.5×106B . 5.5×105C . 5.5×104D . 5.5×1035. (2分) (2014九上·临沂竞赛) 下列图形中既是中心对称图形,又是轴对称图形的是()A . 等边三角形B . 等腰三角形C . 平行四边形D . 线段6. (2分) (2019七上·榆次期中) 下列运算正确的是()A . (-3)3=9B . (-2)×(-3)=6C . -5-1=-4D . -21÷(-7)=-37. (2分)如图,折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处.已知AB=,∠B=30°,则DE的长是()A .B . 6C . 4D . 28. (2分)如果不等式组的解集是x<2,那么m的取值范围是A . m=2B . m>2C . m<2D . m≥29. (2分)为了解某小区居民的日用电情况,居住在该小区的一名同学随机抽查了15户家庭的日用电量,结果如下表:则关于这15户家庭的日用电量,下列说法错误的是()A . 众数是6度B . 平均数是6.8度C . 极差是5度D . 中位数是6度10. (2分)下列命题中,正确命题的序号是()①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形③对角线互相垂直且相等的四边形是菱形④任何三角形都有外接圆,但不是所有的四边形都有外接圆A . ①②B . ②③C . ③④D . ①④11. (2分)如图,AB是⊙O的直径,∠ABC=30°,则∠BAC的度数为()A . 90°B . 60°C . 45°D . 30°12. (2分)某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为()A . 48(1﹣x)2=36B . 48(1+x)2=36C . 36(1﹣x)2=48D . 36(1+x)2=4813. (2分)(2016·平房模拟) 小明为准备体育中考,每天早晨坚持锻炼,某天他慢跑到江边,休息一会后快跑回家,能大致反映小明离家的距离y(m)与时间x(s)的函数关系图象是()A .B .C .D .14. (2分)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A . 2B . 3C . 4D . 5二、填空题. (共6题;共6分)15. (1分) (2017八上·罗平期末) 若分式的值为零,则x的值等于________.16. (1分) (2020九下·重庆月考) 若正多边形的一个外角是72°,则该正多边形的内角和是________。
广东省湛江市2020年中考数学试卷(II)卷

广东省湛江市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·深圳模拟) 下列计算正确的是A . 3a+2b=5abB . (-3a2b)2=-6a4b2C . +=4D . (a-b)2=a2-b22. (2分)分式有意义的条件是()A . x≠0B . y≠0C . x≠0或y≠0D . x≠0且y≠03. (2分) (2019九上·平房期末) 下列运算一定正确的是()A .B .C .D .4. (2分)(2019·河池模拟) 一组数据:5,7,10,5,7,5,6.这组数据的中位数和众数()A . 7和10B . 7和5C . 7和6D . 6和55. (2分) (2020七下·宁波期中) 在下列运算中,正确的是()A . (x﹣y)2=x2﹣y2B . (a+2)(a﹣3)=a2﹣6C . (a+2b)2=a2+4ab+4b2D . (2x﹣y)(2x+y)=2x2﹣y26. (2分) (2020八上·安陆期末) 点P(m,-2)与点P1(-4,n)关于x轴对称,则m,n的值分别为()A . ,B . ,C . ,D . ,7. (2分)(2017·洛阳模拟) 如图是由大小相同的小正方体搭成的几何体的主视图和左视图,搭成这样的几何体最多需要a个这样的小正方体,则a=()A . 16B . 12C . 9D . 88. (2分)(2017·岳阳) 观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,…,根据这个规律,则21+22+23+24+…+22017的末位数字是()A . 0B . 2C . 4D . 69. (2分)将正方形ABCD绕点A按逆时针方向旋转30°,得正方形AB1C1D1 , B1C1交CD于点E,AB=,则四边形AB1ED的内切圆半径为()A .B .C .D .10. (2分)如图,已知:∠MON=30o ,点A1、A2、A3在射线ON上,点B1、B2、B3…..在射线OM上,△A1B1A2. △A2B2A3、△A3B3A4……均为等边三角形,若OA1=l,则△A6B6A7的边长为()A . 6B . 12C . 32D . 64二、填空题 (共6题;共6分)11. (1分) (2019七上·泰兴期中) 若规定a*b=5a+2b-1,则(-5)*6的值为________.12. (1分)(2017·武汉模拟) 计算: + =________.13. (1分)如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为________14. (1分) (2020九上·遂宁期末) 一个不透明的口袋中有四个完全相同的小球,把它们分别标号为,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是________.15. (1分)(2017·徐汇模拟) 如图,在△ABC中,∠ACB=α(90°<α<180°),将△ABC绕着点A逆时针旋转2β(0°<β<90°)后得△AED,其中点E、D分别和点B、C对应,联结CD,如果CD⊥ED,请写出一个关于α与β的等量关系的式子________.16. (1分) (2016九上·海盐期中) 已知抛物线y=x2﹣(k+1)x+4的顶点在x轴上,则k的值是________.三、解答题 (共8题;共78分)17. (5分) (2016七下·宝坻开学考) 解方程:.18. (5分)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于D,AE平分∠BAD,交BC于E,在△ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使得BM=2DE,连接ME①求证:ME⊥BC;②求∠EMC的度数.19. (11分) (2017八上·济南期末) 某社区从不同住宅楼中随机选取了200名居民,调查社区居民双休日的学习状况,并将得到的数据制成扇形统计图(如图1)和频数分布直方图(如图2).(1)在这个调查中,200名居民双休日在家学习的有________人(2)在这个调查中,在图书馆等场所学习的居民学习时间的平均数和众数分别是多少?(3)估计该社区2 000名居民双休日学习时间不少于4小时的人数.20. (10分)(2017·桂林模拟) 某校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球,一个篮球各需多少元?(2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?21. (10分) (2017九上·钦州期末) 如图,AB是⊙O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF、EO,若DE=2 ,∠DPA=45°.(1)求⊙O的半径;(2)求图中阴影部分的面积.22. (15分) (2017九上·桂林期中) 如图,一次函数的图象与反比例函数的图象交于第一象限C,D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).(1)利用图中条件,求反比例函数的解析式和m的值;(2)求△DOC的面积.(3)双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.23. (7分)(2017·岳阳模拟) 在△ABC中,CA=CB,在△AED中,DA=DE,点D,E分别在CA,AB上.(1)如图①,若∠ACB=∠ADE=90°,则CD与BE的数量关系是________;(2)若∠ACB=∠ADE=120°,将△AED绕点A旋转至如图②所示的位置,则CD与BE的数量关系是________;,(3)若∠ACB=∠ADE=2α(0°<α<90°),将△AED绕点A旋转至如图③所示的位置,探究线段CD与BE 的数量关系,并加以证明(用含α的式子表示).24. (15分)(2017·永康模拟) 已知,抛物线y=ax2+bx+4 与x轴交于点A(﹣3,0)和B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)如图1,若点D为CB的中点,将线段DB绕点D旋转,点B的对应点为点G,当点G恰好落在抛物线的对称轴上时,求点G的坐标;(3)如图2,若点D为直线BC或直线AC上的一点,E为x轴上一动点,抛物线y=ax2+bx+4对称轴上是否存在点F,使以B,D,F,E为顶点的四边形为菱形?若存在,请求出点F的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10、答案:略二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共78分)17-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22、答案:略23-1、23-2、23-3、24-1、24-2、24-3、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广东省湛江市中考数学试卷
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.9的相反数是( )
A .﹣9
B .9
C .19
D .−19
2.一组数据2,4,3,5,2的中位数是( )
A .5
B .3.5
C .3
D .2.5
3.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )
A .(﹣3,2)
B .(﹣2,3)
C .(2,﹣3)
D .(3,﹣2)
4.若一个多边形的内角和是540°,则该多边形的边数为( )
A .4
B .5
C .6
D .7
5.若式子√2x −4在实数范围内有意义,则x 的取值范围是( )
A .x ≠2
B .x ≥2
C .x ≤2
D .x ≠﹣2
6.已知△ABC 的周长为16,点D ,E ,F 分别为△ABC 三条边的中点,则△DEF 的周长为
( )
A .8
B .2√2
C .16
D .4
7.把函数y =(x ﹣1)2+2图象向右平移1个单位长度,平移后图象的的数解析式为( )
A .y =x 2+2
B .y =(x ﹣1)2+1
C .y =(x ﹣2)2+2
D .y =(x ﹣1)2﹣3 8.不等式组{
2−3x ≥−1,x −1≥−2(x +2)的解集为( ) A .无解 B .x ≤1 C .x ≥﹣1 D .﹣1≤x ≤1
9.如图,在正方形ABCD 中,AB =3,点E ,F 分别在边AB ,CD 上,∠EFD =60°.若
将四边形EBCF 沿EF 折叠,点B 恰好落在AD 边上,则BE 的长度为( )
A .1
B .√2
C .√3
D .2
10.如图,抛物线y =ax 2+bx +c 的对称轴是x =1,下列结论:
①abc >0;②b 2﹣4ac >0;③8a +c <0;④5a +b +2c >0,
正确的有( )
A .4个
B .3个
C .2个
D .1个
二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.
11.分解因式:xy ﹣x = .
12.如果单项式3x m y 与﹣5x 3y n 是同类项,那么m +n = .
13.若√a −2+|b +1|=0,则(a +b )2020= .
14.已知x =5﹣y ,xy =2,计算3x +3y ﹣4xy 的值为 .
15.如图,在菱形ABCD 中,∠A =30°,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则∠EBD 的度数为 .#DLQZ
16.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪
下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为 m .
17.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等
待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC =90°,点M ,N 分别在射线BA ,BC 上,MN 长度始终保持不变,MN =4,E 为MN 的中点,点D 到BA ,BC 的距离分别为4和2.在此滑动过程中,猫
与老鼠的距离DE的最小值为.#DLQZ
三、解答题(一)(本大题3小题,每小题6分,共18分)
18.先化简,再求值:(x+y)2+(x+y)(x﹣y)﹣2x2,其中x=√2,y=√3.
19.某中学开展主题为“垃圾分类知多少”的调查活动,调查问卷设置了“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,要求每名学生选且只能选其中一个等级,随机抽取了120名学生的有效问卷,数据整理如下:
等级非常了解比较了解基本了解不太了解人数(人)247218x (1)求x的值;
(2)若该校有学生1800人,请根据抽样调查结果估算该校“非常了解”和“比较了解”
垃圾分类知识的学生共有多少人?
20.如图,在△ABC中,点D,E分别是AB、AC边上的点,BD=CE,∠ABE=∠ACD,BE与CD相交于点F.求证:△ABC是等腰三角形.#DLQZ
四、解答题(二)(本大题3小题,每小题8分,共24分)
21.已知关于x,y的方程组{ax+2√3y=−10√3,
x+y=4
与{
x−y=2,
x+by=15
的解相同.
(1)求a,b的值;
(2)若一个三角形的一条边的长为2√6,另外两条边的长是关于x的方程x2+ax+b=0的解.试判断该三角形的形状,并说明理由.
22.如图1,在四边形ABCD中,AD∥BC,∠DAB=90°,AB是⊙O的直径,CO平分∠
BCD .
(1)求证:直线CD 与⊙O 相切;
(2)如图2,记(1)中的切点为E ,P 为优弧AE
̂上一点,AD =1,BC =2.求tan ∠APE 的值.
23.某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类
摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?
(2)该社区拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.
五、解答题(三)(本大题2小题,每小题10分,共20分)
24.如图,点B 是反比例函数y =8x (x >0)图象上一点,过点B 分别向坐标轴作垂线,垂
足为A ,C .反比例函数y =k x (x >0)的图象经过OB 的中点M ,与AB ,BC 分别相交于点D ,E .连接DE 并延长交x 轴于点F ,点G 与点O 关于点C 对称,连接BF ,BG .
(1)填空:k = ;
(2)求△BDF 的面积;
(3)求证:四边形BDFG 为平行四边形.
25.如图,抛物线y =
3+√3x 2+bx +c 与x 轴交于A ,B 两点,点A ,B 分别位于原点的左、右
两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=√3CD.(1)求b,C的值;
(2)求直线BD的函数解析式;
(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ 相似时,请直接写出所有满足条件的点Q的坐标.
2020年广东省湛江市中考数学试卷
参考答案
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.A ; 2.C ; 3.D ; 4.B ; 5.B ; 6.A ; 7.C ; 8.D ; 9.D ; 10.B ;
二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案填写在答题卡相应的位置上.
11.x (y ﹣1); 12.4; 13.1; 14.7; 15.; 16.13; 17.;。