高考数学知识梳理复习题6

合集下载

高考复习-三角函数6

高考复习-三角函数6

φ
基础知识梳理
2.用五点法画 =Asin(ωx+φ)一 用五点法画y= 用五点法画 + 一 个周期内的简图 用五点法画y= 用五点法画 =Asin(ωx+φ)一个 + 一个 周期内的简图时,要找五个关键点, 周期内的简图时,要找五个关键点, 如表所示. 如表所示
基础知识梳理
ωx+φ + 0
π 2
课堂互动讲练
“第一点”(即图象上升时与 x 轴的 第一点” 即图象上升时与 交点)为 交点 为 ωx+φ= 0; 第二点”(即图象的 + = ; 第二点” 即图象的 “ π 峰点” 为 “峰点”)为 ωx+φ= ; 第三点”(即图 + = “第三点” 即图 2 轴的交点)为 象下降时与 x 轴的交点 为 ωx+ φ= π; + = ; 第四点” 即图象的 谷点” 为 即图象的“ “第四点”(即图象的“谷点”)为 ωx+φ + 3π 第五点” = ;“第五点”为 ωx+φ= 2π. + = 2
课堂互动讲练
π ∴f(x)= 2sin(2x+ )+ 1 的对称轴方程 = + + 6 为 π 1 x= + kπ, k∈Z. = , ∈ 6 2
名师点评】 值时, 【名师点评】 在确定 φ 值时,也可 用五点法确定,往往以寻找“五点法” 用五点法确定,往往以寻找“五点法”中 φ 的第一零点(- 作为突破口. 的第一零点 - , 0)作为突破口.具体如 作为突破口 ω 下:
课堂互动讲练
例3 已 知 函 数 f(x) = Asin(ωx +φ)+b(ω>0, + , π |φ|< )的图象的 的图象的 2 一部分如图所 示:
课堂互动讲练
(1)求f(x)的表达式; 求 的表达式; 的表达式 (2)试写出 试写出f(x)的对称轴方程. 的对称轴方程. 试写出 的对称轴方程

2020届高考数学一轮复习第六篇平面向量与复数专题6.4复数练习含解析

2020届高考数学一轮复习第六篇平面向量与复数专题6.4复数练习含解析

专题6.4 复 数【考试要求】1.通过方程的解,认识复数;2.理解复数的代数表示及其几何意义,理解两个复数相等的含义;3.掌握复数代数表示式的四则运算,了解复数加、减运算的几何意义. 【知识梳理】 1.复数的有关概念内容 意义 备注复数的概念形如a +b i(a ∈R ,b ∈R )的数叫复数,其中实部为a ,虚部为b若b =0,则a +b i 为实数;若a =0且b ≠0,则a +b i 为纯虚数复数相等a +bi =c +di ⇔a =c 且b =d(a ,b ,c ,d∈R)共轭复数a +bi 与c +di 共轭⇔a =c 且b =-d(a ,b ,c ,d∈R)复平面建立平面直角坐标系来表示复数的平面叫做复平面,x 轴叫实轴,y 轴叫虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,各象限内的点都表示虚数复数的模设OZ →对应的复数为z =a +b i ,则向量OZ →的长度叫做复数z =a +b i 的模|z |=|a +b i|=a 2+b 22.复数的几何意义复数集C 和复平面内所有的点组成的集合是一一对应的,复数集C 与复平面内所有以原点O 为起点的向量组成的集合也是一一对应的,即 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).(2)复数z =a +b i(a ,b ∈R )平面向量OZ →.3.复数的运算设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则(1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ;(2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd +(bc -ad )ic 2+d 2(c +d i≠0).【微点提醒】 1.i 的乘方具有周期性 i n=⎩⎪⎨⎪⎧1,n =4k ,i ,n =4k +1,-1,n =4k +2,-i ,n =4k +3(k ∈Z ).2.复数的模与共轭复数的关系z ·z -=|z |2=|z -|2.3.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件. 【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( ) 【答案】 (1)× (2)× (3)√ (4)√【解析】 (1)虚部为b ;(2)虚数不可以比较大小. 【教材衍化】2.(选修2-2P106A2改编)若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A.1 B.2 C.1或2 D.-1【答案】 B【解析】 依题意,有⎩⎪⎨⎪⎧a 2-3a +2=0,a -1≠0,解得a =2,故选B.3.(选修2-2P116A1改编)复数⎝ ⎛⎭⎪⎫52-i 2的共轭复数是( )A.2-iB.2+iC.3-4iD.3+4i【答案】 C【解析】 ⎝ ⎛⎭⎪⎫52-i 2=⎣⎢⎡⎦⎥⎤5(2+i )(2-i )(2+i )2=(2+i)2=3+4i ,所以其共轭复数是3-4i.【真题体验】4.(2017·全国Ⅱ卷)3+i1+i =( )A.1+2iB.1-2iC.2+iD.2-i【答案】 D 【解析】3+i 1+i =(3+i )(1-i )(1+i )(1-i )=2-i. 5.(2018·北京卷)在复平面内,复数11-i 的共轭复数对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】 D 【解析】11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i 的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.6.(2019·青岛一模)已知复数z =-1+i(i 是虚数单位),则z +2z 2+z=________. 【答案】 -1【解析】 ∵z =-1+i ,则z 2=-2i , ∴z +2z 2+z =1+i -1-i =(1+i )(-1+i )(-1-i )(-1+i )=-22=-1. 【考点聚焦】考点一 复数的相关概念【例1】 (1)(2019·上海崇明区质检)已知z =2-ii ,则复数z 的虚部为( )A.-iB.2C.-2iD.-2(2)已知在复平面内,复数z 对应的点是Z (1,-2),则复数z 的共轭复数z -=( )A.2-iB.2+iC.1-2iD.1+2i(3)(2019·大连一模)若复数z =1+i1+a i 为纯虚数,则实数a 的值为( )A.1B.0C.-12D.-1【答案】 (1)D (2)D (3)D【解析】 (1)∵z =2-i i =(2-i )(-i )i·(-i )=-1-2i ,则复数z 的虚部为-2.故选D.(2)∵复数z 对应的点是Z (1,-2),∴z =1-2i ,∴复数z 的共轭复数z -=1+2i ,故选D. (3)设z =b i ,b ∈R 且b ≠0, 则1+i1+a i=b i ,得到1+i =-ab +b i , ∴1=-ab ,且1=b , 解得a =-1,故选D. 【规律方法】1.复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.2.解题时一定要先看复数是否为a +b i(a ,b ∈R )的形式,以确定实部和虚部.【训练1】 (1)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( ) A.15-35i B.15+35i C.13-iD.13+i (2)(2019·株洲二模)设i 为虚数单位,1-i =2+a i1+i ,则实数a =( )A.2B.1C.0D.-1【答案】 (1)B (2)C【解析】 (1)由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i.故选B.(2)∵1-i =2+a i1+i ,∴2+a i =(1-i)(1+i)=2,解得a =0.故选C. 考点二 复数的几何意义【例2】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限(2)(2019·北京新高考调研考试)在复平面内,复数z 对应的点与21-i 对应的点关于实轴对称,则z =( )A.1+iB.-1-iC.-1+iD.1-i【答案】 (1)D (2)D 【解析】 (1)由题可得,z 1z 2=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)∵复数z 对应的点与21-i =2(1+i )(1-i )(1+i )=1+i 对应的点关于实轴对称,∴z =1-i.故选D.【规律方法】1.复数z =a +b i(a ,b ∈R )Z (a ,b )OZ →=(a ,b ).2.由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.【训练2】 (1)设i 是虚数单位,则复数11+i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限(2)如图,若向量OZ →对应的复数为z ,则z +4z表示的复数为( )A.1+3iB.-3-iC.3-iD.3+i【答案】 (1)D (2)D【解析】 (1)11+i =1-i (1+i )(1-i )=12-12i ,则复数z 对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.(2)由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.故选D. 考点三 复数的运算【例3】 (1)(2018·全国Ⅲ卷)(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-iD.3+i(2)(2018·全国Ⅰ卷)设z =1-i1+i+2i ,则|z |=( ) A.0B.12C.1D. 2(3)设复数z =1+2i ,则z 2+3z -1=( )A.2iB.-2iC.2D.-2(4)⎝⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________.【答案】 (1)D (2)C (3)C (4)-1+i【解析】 (1)(1+i)(2-i)=2-i +2i -i 2=3+i.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =1-2i -12+2i =i ,∴|z |=|i|=1.故选C.(3)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i2i=2.故选C.(4)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2=i 6+6+2i +3i -65=-1+i.【规律方法】 复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题时要注意把i 的幂写成最简形式. (3)复数的运算与复数概念的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a +b i(a ,b ∈R )的形式,再结合复数的几何意义解答.【训练3】 (1)(2018·全国Ⅱ卷)i(2+3i)=( ) A.3-2i B.3+2i C.-3-2iD.-3+2i(2)已知i 为虚数单位,则1+i3-i =( )A.2-i5B.2+i5C.1-2i5D.1+2i5(3)设z =1+i(i 是虚数单位),则z 2-2z=( )A.1+3iB.1-3iC.-1+3iD.-1-3i【答案】 (1)D (2)D (3)C【解析】 (1)i(2+3i)=2i +3i 2=-3+2i ,故选D. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i 5. (3)因为z =1+i ,所以z 2=(1+i)2=1+2i +i 2=2i ,2z =21+i =2(1-i )(1+i )(1-i )=2(1-i )1-i 2=2(1-i )2=1-i ,则z 2-2z=2i -(1-i)=-1+3i.故选C.【反思与感悟】1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.复数z =a +b i(a ,b ∈R )是由它的实部和虚部唯一确定的,两个复数相等的充要条件是把复数问题转化为实数问题的主要方法.对于一个复数z =a +b i(a ,b ∈R ),既要从整体的角度去认识它,把复数看成一个整体;又要从实部、虚部的角度分解成两部分去认识. 【易错防范】1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.注意复数的虚部是指在a +b i(a ,b ∈R )中的实数b ,即虚部是一个实数. 【分层训练】【基础巩固题组】(建议用时:30分钟) 一、选择题1.已知复数(1+2i)i =a +b i ,a ∈R ,b ∈R ,则a +b =( ) A.-3 B.-1 C.1 D.3【答案】 B【解析】 因为(1+2i)i =-2+i ,所以a =-2,b =1,则a +b =-1,选B. 2.(2018·浙江卷)复数21-i (i 为虚数单位)的共轭复数是( )A.1+iB.1-iC.-1+iD.-1-i【答案】 B【解析】 因为21-i =2(1+i )(1-i )(1+i )=2(1+i )1-i 2=1+i ,所以复数21-i的共轭复数为1-i.故选B. 3.设复数z 满足z -=|1-i|+i(i 为虚数单位),则复数z =( ) A.2-i B.2+i C.1D.-1-2i【答案】 A【解析】 复数z 满足z -=|1-i|+i =2+i ,则复数z =2-i ,故选A. 4.下列各式的运算结果为纯虚数的是( ) A.i(1+i)2B.i 2(1-i) C.(1+i)2D.i(1+i)【答案】 C【解析】 i(1+i)2=i·2i=-2,不是纯虚数,排除A ;i 2(1-i)=-(1-i)=-1+i ,不是纯虚数,排除B ;(1+i)2=2i ,2i 是纯虚数.故选C. 5.设z =11+i +i(i 为虚数单位),则|z |=( )A.12B.22C.32D.2【答案】 B【解析】 因为z =11+i +i =1-i (1+i )(1-i )+i =1-i 2+i =12+12i ,所以|z |=⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22. 6.若a 为实数,且1+2ia +i 为实数,则a =( )A.1B.12C.-13D.-2【答案】 B【解析】 因为1+2i a +i =(1+2i )(a -i )(a +i )(a -i )=a +2+(2a -1)i a 2+1是一个实数,所以2a -1=0,∴a =12.故选B.7.(2019·豫南九校质量考评)已知复数a +i2+i=x +y i(a ,x ,y ∈R ,i 是虚数单位),则x +2y =( )A.1B.35C.-35D.-1【答案】 A【解析】 由题意得a +i =(x +y i)(2+i)=2x -y +(x +2y )i ,∴x +2y =1,故选A.8.(2019·福建省普通高中质量检查)若复数z 满足(1+i)z =|3+i|,则在复平面内,z -对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限【答案】 A【解析】 由题意,得z =(3)2+121+i =2(1-i )(1+i )(1-i )=1-i ,所以z -=1+i ,其在复平面内对应的点为(1,1),位于第一象限,故选A. 二、填空题9.(2018·天津卷)i 是虚数单位,复数6+7i1+2i =________.【答案】 4-i 【解析】6+7i 1+2i =(6+7i )(1-2i )(1+2i )(1-2i )=20-5i5=4-i. 10.复数z =(1+2i)(3-i),其中i 为虚数单位,则z 的实部是________. 【答案】 5【解析】 (1+2i)(3-i)=3+5i -2i 2=5+5i ,所以z 的实部为5. 11.(2019·西安八校联考)若a +b ii(a ,b ∈R )与(2-i)2互为共轭复数,则a -b =________.【答案】 -7 【解析】 ∵a +b i i=(a +b i )(-i )-i2=b -a i ,(2-i)2=4-4i -1=3-4i ,a +b ii(a ,b ∈R )与(2-i)2互为共轭复数,∴b =3,a =-4,则a -b =-7,故答案为-7.12.在复平面内,O 为原点,向量OA →对应的复数为-1+2i ,若点A 关于直线y =-x 的对称点为B ,则向量OB →对应的复数为________. 【答案】 -2+i【解析】 因为A (-1,2)关于直线y =-x 的对称点B (-2,1),所以向量OB →对应的复数为-2+i. 【能力提升题组】(建议用时:15分钟)13.(2019·烟台检测)设a ,b ∈R ,a =3+b i3-2i (i 是虚数单位),则b =( )A.-2B.-1C.1D.2【答案】 A【解析】 因为a =3+b i 3-2i =(3+b i )(3+2i )(3-2i )(3+2i )=9-2b 13+(6+3b )i 13,a ∈R ,所以6+3b13=0⇒b =-2,故选A.14.设x ∈R ,i 是虚数单位,则“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的( ) A.充分不必要条件 B.充要条件C.必要不充分条件D.既不充分也不必要条件 【答案】 B【解析】 由复数z =(x 2-4)+(x +2)i 为纯虚数,得⎩⎪⎨⎪⎧x 2-4=0,x +2≠0,解得x =2, 所以“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的充要条件,故选B.15.计算⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=( )A.-2iB.0C.2iD.2【答案】 B【解析】 ∵1+i 1-i =(1+i )2(1+i )(1-i )=2i 2=i ,1-i1+i=-i ,∴⎝ ⎛⎭⎪⎫1+i 1-i 2 019+⎝ ⎛⎭⎪⎫1-i 1+i 2 019=(i 4)504·i 3+[(-i)4]504·(-i)3=-i +i =0.16.(2019·湖南三湘名校联考)已知i 为虚数单位,复数z =3+2i2-i ,则以下为真命题的是( )A.z 的共轭复数为75-4i5B.z 的虚部为85C.|z |=3D.z 在复平面内对应的点在第一象限 【答案】 D【解析】 ∵z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5,11 ∴z 的共轭复数为45-7i 5,z 的虚部为75, |z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限,故选D.。

高考数学复习考点知识与题型专题讲解6---函数的奇偶性、周期性与对称性

高考数学复习考点知识与题型专题讲解6---函数的奇偶性、周期性与对称性

高考数学复习考点知识与题型专题讲解函数的奇偶性、周期性与对称性考试要求1.了解函数奇偶性的含义,结合三角函数,了解周期性与对称性及其几何意义.2.会依据函数的性质进行简单的应用.知识梳理1.函数的奇偶性奇偶性定义图象特点偶函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数关于y轴对称奇函数一般地,设函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数关于原点对称2.周期性(1)周期函数:一般地,设函数f(x)的定义域为D,如果存在一个非零常数T,使得对每一个x∈D都有x+T∈D,且f(x+T)=f(x),那么函数y=f(x)就叫做周期函数,非零常数T 叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.常用结论1.奇函数在关于原点对称的区间上具有相同的单调性;偶函数在关于原点对称的区间上具有相反的单调性.2.函数周期性常用结论对f (x )定义域内任一自变量的值x :(1)若f (x +a )=-f (x ),则T =2a (a >0).(2)若f (x +a )=1f (x ),则T =2a (a >0). 3.函数对称性常用结论(1)f (a -x )=f (a +x )⇔f (-x )=f (2a +x )⇔f (x )=f (2a -x )⇔f (x )的图象关于直线x =a 对称.(2)f (a +x )=f (b -x )⇔f (x )的图象关于直线x =a +b 2对称.f (a +x )=-f (b -x )⇔f (x )的图象关于点⎝ ⎛⎭⎪⎫a +b 2,0对称. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f (x )为奇函数,则f (0)=0.(×)(2)若f (x )为奇函数,g (x )为偶函数,则y =f (x )g (x )为奇函数.(×)(3)若T 是函数f (x )的一个周期,则kT (k ∈N *)也是函数的一个周期.(√)(4)若函数f (x )满足f (2+x )=f (2-x ),则f (x )的图象关于直线x =2对称.(√)教材改编题1.下列函数中为偶函数的是()A.y=x2sin x B.y=x2cos xC.y=|ln x|D.y=2-x答案B解析根据偶函数的定义知偶函数满足f(-x)=f(x)且定义域关于原点对称,A选项为奇函数;B选项为偶函数;C选项定义域为(0,+∞),不具有奇偶性;D选项既不是奇函数,也不是偶函数.2.若f(x)是定义在R上的周期为2的函数,当x∈[0,2)时,f(x)=2-x,则f(2023)=______.答案1 2解析∵f(x)的周期为2,∴f(2023)=f(1)=2-1=1 2.3.设奇函数f(x)的定义域为[-5,5],若当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集为________.答案(-2,0)∪(2,5]解析由图象可知,当0<x<2时,f(x)>0;当2<x≤5时,f(x)<0,又f(x)是奇函数,∴当-2<x <0时,f (x )<0,当-5≤x <-2时,f (x )>0.综上,f (x )<0的解集为(-2,0)∪(2,5].题型一 函数的奇偶性命题点1判断函数的奇偶性例1判断下列函数的奇偶性:(1)f (x )=3-x 2+x 2-3;(2)f (x )=⎩⎨⎧ x 2+x ,x <0,-x 2+x ,x >0; (3)f (x )=log 2(x +x 2+1).解(1)由⎩⎪⎨⎪⎧3-x 2≥0,x 2-3≥0,得x 2=3,解得x =±3, 即函数f (x )的定义域为{-3,3},从而f (x )=3-x 2+x 2-3=0.因此f (-x )=-f (x )且f (-x )=f (x ),∴函数f (x )既是奇函数又是偶函数.(2)显然函数f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称.∵当x <0时,-x >0,则f(-x)=-(-x)2-x=-x2-x=-f(x);当x>0时,-x<0,则f(-x)=(-x)2-x=x2-x=-f(x);综上可知,对于定义域内的任意x,总有f(-x)=-f(x)成立,∴函数f(x)为奇函数.(3)显然函数f(x)的定义域为R,f(-x)=log2[-x+(-x)2+1]=log2(x2+1-x)=log2(x2+1+x)-1=-log2(x2+1+x)=-f(x),故f(x)为奇函数.思维升华判断函数的奇偶性,其中包括两个必备条件(1)定义域关于原点对称,否则即为非奇非偶函数.(2)判断f(x)与f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.命题点2函数奇偶性的应用例2(1)(2022·哈尔滨模拟)函数f(x)=x(e x+e-x)+1在区间[-2,2]上的最大值与最小值分别为M,N,则M+N的值为()A.-2B.0C.2D.4答案C解析依题意,令g(x)=x(e x+e-x),显然函数g(x)的定义域为R,则g(-x)=-x(e-x+e x)=-g(x),即函数g(x)是奇函数,因此,函数g(x)在区间[-2,2]上的最大值与最小值的和为0,而f(x)=g(x)+1,则有M=g(x)max+1,N=g(x)min+1,于是得M+N=g(x)max+1+g(x)min+1=2,所以M+N的值为2.(2)(2021·新高考全国Ⅰ)已知函数f(x)=x3(a·2x-2-x)是偶函数,则a=________.答案1解析方法一(定义法)因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-x)=f(x)对任意的x∈R恒成立,所以(-x)3(a·2-x-2x)=x3(a·2x-2-x)对任意的x∈R恒成立,所以x3(a-1)(2x+2-x)=0对任意的x∈R恒成立,所以a=1.方法二(取特殊值检验法)因为f(x)=x3(a·2x-2-x)的定义域为R,且是偶函数,所以f(-1)=f (1),所以-⎝ ⎛⎭⎪⎫a 2-2=2a -12,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.方法三(转化法)由题意知f (x )=x 3(a ·2x -2-x )的定义域为R ,且是偶函数.设g (x )=x 3,h (x )=a ·2x -2-x ,因为g (x )=x 3为奇函数,所以h (x )=a ·2x -2-x 为奇函数,所以h (0)=a ·20-2-0=0,解得a =1,经检验,f (x )=x 3(2x -2-x )为偶函数,所以a =1.教师备选1.已知函数f (x )=9-x 2|6-x |-6,则函数f (x )() A .既是奇函数也是偶函数B .既不是奇函数也不是偶函数C .是奇函数,但不是偶函数D .是偶函数,但不是奇函数答案C解析由9-x 2≥0且|6-x |-6≠0,解得-3≤x ≤3且x ≠0,可得函数f (x )的定义域为{x |-3≤x ≤3且x ≠0},关于原点对称,所以f (x )=9-x 2|6-x |-6=9-x 26-x -6=9-x 2-x, 又f (-x )=9-(-x )2x =-9-x 2-x =-f (x ), 所以f (x )是奇函数,但不是偶函数.2.若函数f (x )=⎩⎨⎧ g (x ),x <0,2x -3,x >0为奇函数,则f (g (-1))=________. 答案-1解析∵f (x )为奇函数且f (-1)=g (-1),∴f (-1)=-f (1)=-(-1)=1,∴g (-1)=1,∴f (g (-1))=f (1)=-1.思维升华 (1)利用函数的奇偶性可求函数值或求参数的取值,求解的关键在于借助奇偶性转化为求已知区间上的函数或得到参数的恒等式,利用方程思想求参数的值.(2)利用函数的奇偶性可画出函数在其对称区间上的图象,结合几何直观求解相关问题.跟踪训练1(1)(2021·全国乙卷)设函数f (x )=1-x 1+x ,则下列函数中为奇函数的是() A .f (x -1)-1B .f (x -1)+1C .f (x +1)-1D .f (x +1)+1答案B解析f(x)=1-x1+x=2-(x+1)1+x=21+x-1,为保证函数变换之后为奇函数,需将函数y=f(x)的图象向右平移一个单位长度,再向上平移一个单位长度,得到的图象对应的函数为y =f(x-1)+1.(2)已知函数f(x)是定义在R上的奇函数,当x≥0,f(x)=2x-2x+a,则a=________;当x<0时,f(x)=________.答案-1-2-x-2x+1解析∵f(x)是定义在R上的奇函数,∴f(0)=0,即1+a=0,∴a=-1.∴当x≥0时,f(x)=2x-2x-1,设x<0,则-x>0,∴f(-x)=2-x-2(-x)-1=2-x+2x-1,又f(x)为奇函数,∴f(-x)=-f(x),∴-f(x)=2-x+2x-1,∴f(x)=-2-x-2x+1.题型二函数的周期性例3(1)(2022·重庆质检)已知函数f (x )是定义在R 上的奇函数,对任意的实数x ,f (x -2)=f (x +2),当x ∈(0,2)时,f (x )=x 2,则f ⎝ ⎛⎭⎪⎫132等于() A .-94B .-14C.14D.94答案A解析由f (x -2)=f (x +2),知y =f (x )的周期T =4,又f (x )是定义在R 上的奇函数,∴f ⎝ ⎛⎭⎪⎫132=f ⎝ ⎛⎭⎪⎫8-32 =f ⎝ ⎛⎭⎪⎫-32=-f ⎝ ⎛⎭⎪⎫32=-94. (2)函数f (x )满足f (x )=-f (x +2),且f (1)=2,则f (2023)=________.答案-2解析f (x )=-f (x +2),∴f (x +4)=-f (x +2)=f (x ),∴f (x )的周期为4,∴f (2023)=f (3)=-f (1)=-2.教师备选若函数f (x )=⎩⎨⎧2-x ,x ≤0,f (x -1)-f (x -2),x >0,则f (2023)=________.答案-1解析当x>0时,f(x)=f(x-1)-f(x-2),①∴f(x+1)=f(x)-f(x-1),②①+②得,f(x+1)=-f(x-2),∴f(x)的周期为6,∴f(2023)=f(337×6+1)=f(1)=f(0)-f(-1)=20-21=-1.思维升华(1)求解与函数的周期有关的问题,应根据题目特征及周期定义,求出函数的周期.(2)利用函数的周期性,可将其他区间上的求值、求零点个数、求解析式等问题,转化到已知区间上,进而解决问题.跟踪训练2(1)(2022·安庆模拟)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x,则f(1)+f(2)+f(3)+…+f(2023)等于() A.336B.338C.337D.339答案B解析因为f(x+6)=f(x),所以函数的周期T=6,于是f(1)=1,f(2)=2,f(3)=f(-3)=-(-3+2)2=-1,f(4)=f(-2)=-(-2+2)2=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以f(1)+f(2)+f(3)+f(4)+f(5)+f(6)=1,而2023=6×337+1,所以f(1)+f(2)+f(3)+…+f(2023)=337×1+1=338.(2)函数f(x)满足f(x+1)=f(x-1),且f(x)为定义在R上的奇函数,则f(2021)+f(2022)=________.答案0解析∵f(x+1)=f(x-1),∴f(x)的周期为2,∴f(2021)+f(2022)=f(1)+f(0),又f(x)为定义在R上的奇函数,∴f(0)=0,且f(-1)=-f(1),①又f(x)的周期为2,∴f(-1)=f(1),②由①②得f(1)=0,∴f(2021)+f(2022)=0.题型三函数的对称性例4(1)已知函数f(x)的定义域为R,对任意x都有f(2+x)=f(2-x),且f(-x)=f(x),则下列结论正确的是________.(填序号)①f(x)的图象关于直线x=2对称;②f(x)的图象关于点(2,0)对称;③f(x)的周期为4;④y=f(x+4)为偶函数.答案①③④解析∵f(2+x)=f(2-x),则f(x)的图象关于直线x=2对称,故①正确,②错误;∵函数f(x)的图象关于直线x=2对称,则f(-x)=f(x+4),又f(-x)=f(x),∴f(x+4)=f(x),∴T=4,故③正确;∵T=4且f(x)为偶函数,故y=f(x+4)为偶函数,故④正确.(2)函数f(x)=lg|2x-1|图象的对称轴方程为________.答案x=1 2解析内层函数t=|2x-1|的对称轴是x=12,所以函数f(x)=lg|2x-1|图象的对称轴方程是x =12.教师备选已知函数f (x )=x 3-ax 2+bx +1的图象关于点(0,1)对称,且f ′(1)=4,则a -b =________. 答案-1解析因为f (x )关于点(0,1)对称,所以f (x )+f (-x )=2,故f (1)+f (-1)=2,即1-a +b +1+(-1)-a -b +1=2,解得a =0,所以f (x )=x 3+bx +1,又因为f ′(x )=3x 2+b ,所以f ′(1)=3+b =4,解得b =1,所以a -b =-1.思维升华 (1)求解与函数的对称性有关的问题时,应根据题目特征和对称性的定义,求出函数的对称轴或对称中心.(2)解决函数对称性有关的问题,一般结合函数图象,利用对称性解决求值或参数问题. 跟踪训练3(1)函数f (x )的周期为6,且f (x +2)为偶函数,当x ∈[0,2]时,f (x )=2x -1,则f (2025)=________.答案1解析∵f (x )的周期为6,则f (2025)=f (3),又f (x +2)为偶函数,∴f (x )的图象关于直线x =2对称,∴f (3)=f (1)=1,∴f (2025)=1.(2)关于函数f (x )=sin x +1sin x 有如下四个命题,其中正确的是________.(填序号)①f (x )的图象关于y 轴对称;②f (x )的图象关于原点对称;③f (x )的图象关于直线x =π2对称;④f (x )的图象关于点(π,0)对称.答案②③④解析∵f (x )=sin x +1sin x 的定义域为{x |x ≠k π,k ∈Z },f (-x )=sin(-x )+1sin (-x )=-sin x -1sin x =-f (x ),∴f (x )为奇函数,图象关于原点对称,故①错误,②正确.∵f ⎝ ⎛⎭⎪⎫π2-x =cos x +1cos x , f ⎝ ⎛⎭⎪⎫π2+x =cos x +1cos x ,∴f ⎝ ⎛⎭⎪⎫π2-x =f ⎝ ⎛⎭⎪⎫π2+x , ∴f (x )的图象关于直线x =π2对称,故③正确.又f (x +2π)=sin(x +2π)+1sin (x +2π)=sin x +1sin x ,f (-x )=-sin x -1sin x ,∴f (x +2π)=-f (-x ),∴f (x )的图象关于点(π,0)对称,故④正确.课时精练1.如果奇函数f (x )在[3,7]上单调递增且最小值为5,那么f (x )在区间[-7,-3]上()A .单调递增且最小值为-5B .单调递减且最小值为-5C .单调递增且最大值为-5D .单调递减且最大值为-5答案C解析因为奇函数f (x )在[3,7]上单调递增且最小值为5,而奇函数的图象关于原点对称, 所以f (x )在区间[-7,-3]上单调递增且最大值为-5.2.若函数f (x )=12x -1+a 为奇函数,则a 的值为() A .-2B .-12C.12D .2答案C解析方法一(定义法)∵f (x )为奇函数,∴f (-x )=-f (x ),∴12-x -1+a =-⎝ ⎛⎭⎪⎫12x -1+a , ∴2a =-⎝ ⎛⎭⎪⎫12-x -1+12x -1=1, ∴a =12.方法二(特值法)f (x )为奇函数,且x ≠0,∴f (-1)=-f (1),∴a -2=-(a +1),∴a =12.3.(2022·南昌模拟)函数f (x )=9x +13x 的图象()A .关于x 轴对称B .关于y 轴对称C .关于坐标原点对称D .关于直线y =x 对称答案B解析f(x)=32x+13x=3x+3-x,f(-x)=3-x+3x,∴f(-x)=f(x),故f(x)为偶函数,其图象关于y轴对称.4.已知函数f(x)的图象关于原点对称,且周期为4,f(3)=-2,则f(2021)等于()A.2B.0C.-2D.-4答案A解析依题意,函数f(x)的图象关于原点对称,则函数f(x)是奇函数,又f(x)的周期为4,且f(3)=-2,则有f(2021)=f(-3+506×4)=f(-3)=-f(3)=2,所以f(2021)=2.5.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是()A.y=f(|x|) B.y=|f(x)|C.y=xf(x) D.y=f(x)+x答案D解析由奇函数的定义f(-x)=-f(x)验证,A项,f(|-x|)=f(|x|),为偶函数;B项,|f(-x)|=|-f(x)|=|f(x)|,为偶函数;C项,-xf(-x)=-x·[-f(x)]=xf(x),为偶函数;D项,f(-x)+(-x)=-[f(x)+x],为奇函数.6.(2022·南昌模拟)已知f(x)是定义在R上的奇函数,且对任意的x∈R都有f(x+2)=-f(x),当x∈[0,2]时,f(x)=x2+ax+b,则a+b等于()A.0B.-1C.-2D.2答案C解析因为f(x)是定义在R上的奇函数,且x∈[0,2]时,f(x)=x2+ax+b,所以f(0)=b=0,f(-x)=-f(x),又对任意的x∈R都有f(x+2)=-f(x),所以f(x+2)=f(-x),所以函数图象关于直线x=1对称,所以-a2=1,解得a=-2,所以a+b=-2.7.(2022·湘豫名校联考)已知f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则a+b=________.答案1 3解析因为f(x)=ax2+bx+1是定义在[a-1,2a]上的偶函数,则有(a-1)+2a=3a-1=0,则a=13,同时f(-x)=f(x),即ax2+bx+1=a(-x)2+b(-x)+1,则有bx =0,必有b =0.则a +b =13.8.已知函数f (x )满足对∀x ∈R ,有f (1-x )=f (1+x ),f (x +2)=-f (x ),当x ∈(0,1)时,f (x )=x 2+mx ,若f ⎝ ⎛⎭⎪⎫352=12,则m =______. 答案12解析由f (1-x )=f (1+x ),f (x +2)=-f (x ),知f (x )的图象关于直线x =1对称,f (x )的周期为4,∴f ⎝ ⎛⎭⎪⎫352=f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫12=12, ∴14+12m =12,∴m =12.9.已知函数f (x )=⎩⎨⎧ -x 2+2x ,x >0,0,x =0,x 2+mx ,x <0是奇函数.(1)求实数m 的值; (2)若函数f (x )在区间[-1,a -2]上单调递增,求实数a 的取值范围.解(1)设x <0,则-x >0,所以f (-x )=-(-x )2+2(-x )=-x 2-2x .又f (x )为奇函数,所以f (-x )=-f (x ),于是x <0时,f (x )=x 2+2x =x 2+mx ,所以m =2.(2)要使f (x )在[-1,a -2]上单调递增,结合f (x )的图象(如图所示)知⎩⎪⎨⎪⎧a -2>-1,a -2≤1,所以1<a ≤3,故实数a 的取值范围是(1,3].10.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式.(1)证明∵f (x +2)=-f (x ),∴f (x +4)=-f (x +2)=f (x ).∴f (x )是周期为4的周期函数.(2)解∵x ∈[2,4],∴-x ∈[-4,-2],∴4-x ∈[0,2],∴f (4-x )=2(4-x )-(4-x )2=-x 2+6x -8.∵f (4-x )=f (-x )=-f (x ),∴-f (x )=-x 2+6x -8,即当x ∈[2,4]时,f (x )=x 2-6x +8.11.(2022·重庆模拟)已知函数f (x )=ax 5+bx 3+2,若f (2)=7,则f (-2)等于()A .-7B .-3C .3D .7答案B解析设g (x )=f (x )-2=ax 5+bx 3,则g (-x )=-ax 5-bx 3=-g (x ),即f (x )-2=-f (-x )+2,故f (-2)=-f (2)+4=-3.12.已知定义在R 上的偶函数f (x )和奇函数g (x )满足f (x )+g (x )=2x +a ,则g (1)等于()A .a +54B.54C.34D .a +34答案C解析依题意⎩⎨⎧ f (1)+g (1)=2+a ①f (-1)+g (-1)=12+a ,②又f (x )为偶函数,g (x )为奇函数,∴②式可化为f (1)-g (1)=12+a ,③由①③可得g (1)=34. 13.已知f (x )为R 上的偶函数,且f (x +2)是奇函数,则下列结论正确的是________.(填序号)①f (x )的图象关于点(2,0)对称;②f (x )的图象关于直线x =2对称;③f (x )的周期为4;④f (x )的周期为8.答案①④解析∵f (x )为偶函数,∴f (x )的图象关于y 轴对称,f (-x )=f (x ),又∵f (x +2)是奇函数,∴f (-x +2)=-f (x +2),∴f (x )的图象关于(2,0)对称,又∵f (x +8)=-f (x +4)=f (x ),∴f (x )为周期函数且周期为8.14.已知函数f (x )对任意实数x 满足f (-x )+f (x )=2,若函数y =f (x )的图象与y =x +1有三个交点(x 1,y 1),(x 2,y 2),(x 3,y 3),则y 1+y 2+y 3=________.答案3解析因为f (-x )+f (x )=2,则f (x )的图象关于点(0,1)对称,又直线y =x +1也关于点(0,1)对称,因为y =f (x )与y =x +1有三个交点,则(0,1)是一个交点,另两个交点关于(0,1)对称,则y 1+y 2+y 3=2+1=3.15.已知函数f (x )=4x 4x +2,则f (x )+f (1-x )=____________,f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=________. 答案11011解析因为f (x )=4x4x +2, 所以f (x )+f (1-x )=4x 4x +2+41-x41-x +2=4x 4x +2+44x 44x +2=4x 4x +2+44x 4+2·4x 4x=4x 4x +2+44+2·4x=2·4x +44+2·4x =1,设f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=m ,① 则f ⎝ ⎛⎭⎪⎫20222023+…+f ⎝ ⎛⎭⎪⎫32023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫12023=m ,② ①+②得2022=2m ,即m =1011,故f ⎝ ⎛⎭⎪⎫12023+f ⎝ ⎛⎭⎪⎫22023+f ⎝ ⎛⎭⎪⎫32023+…+f ⎝ ⎛⎭⎪⎫20222023=1011. 16.(2022·北京西城区模拟)设函数f (x )的定义域为R .若存在常数T ,A (T >0,A >0),使得对于任意x ∈R ,f (x +T )=Af (x )成立,则称函数f (x )具有性质P .(1)判断函数y =x 和y =cos x 是否具有性质P ?(结论不要求证明)(2)若函数f (x )具有性质P ,且其对应的T =π,A =2.已知当x ∈(0,π]时,f (x )=sin x ,求函数f (x )在区间[-π,0]上的最大值.解(1)因为函数y =x 是增函数,所以函数y =x 不具有性质P ,当A =1,T =2π时,函数y =cos x 对于任意x ∈R , f (x +T )=Af (x )成立,所以y =cos x 具有性质P .(2)设x ∈(-π,0],则x +π∈(0,π], 由题意得f (x +π)=2f (x )=sin(x +π), 所以f (x )=-12sin x ,x ∈(-π,0],由f (-π+π)=2f (-π),f (0+π)=2f (0), 得f (-π)=14f (π)=0,所以当x ∈[-π,0]时,f (x )=-12sin x ,所以当x =-π2时,f (x )在[-π,0]上有最大值f ⎝ ⎛⎭⎪⎫-π2=12.。

新高考数学一轮复习考点知识归类讲义 第6讲 函数及其表示

新高考数学一轮复习考点知识归类讲义 第6讲 函数及其表示

新高考数学一轮复习考点知识归类讲义第6讲函数及其表示1.函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.2.函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x 的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.3.函数的表示法表示函数的常用方法有解析法、图像法和列表法.4.分段函数(1)若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.(2)分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.➢考点1 函数的概念[名师点睛](1)函数的定义要求非空数集A中的任何一个元素在非空数集B中有且只有一个元素与之对应,即可以“多对一”,不能“一对多”,而B中有可能存在与A中元素不对应的元素.(2)构成函数的三要素中,定义域和对应关系相同,则值域一定相同1.(2022·全国·高三专题练习)下列四个图像中,是函数图像的是()A .(1)(2)B .(1)(2)(3)C .(1)(3)(4)D .(1)(2)(3)(4) 【答案】C 【解析】根据函数的定义,一个自变量值对应唯一一个函数值,或者多个自变量值对应唯一一个函数值,显然只有(2)不满足. 故选:C.2.(2021·湖南·雅礼中学高三阶段练习)下列各组函数中,()f x ,()g x 是同一函数的是( )A .()2f x x =,()4g x x =B .()2log a f x x =,()2log a g x x =C .()4121x x f x -=-,()21x g x =+D .()11f x x x --()11g x x x --【答案】D 【解析】解:对于A 选项,()2f x x =的定义域为R ,()4g x x =的定义域为[)0,∞+,故不满足;对于B 选项,()2log a f x x =的定义域为{}0x x ≠,()2log a g x x =的定义域为()0,∞+,故不满足;对于C 选项,()4121x x f x -=-的定义域为{}0x x ≠,()21xg x =+的定义域为R ,故不满足;对于D 选项,()f x ,()g x 的定义域均为{}1,对应关系均为0y =,故是同一函数.故选:D [举一反三]1.(2022·全国·高三专题练习)函数y =f (x )的图象与直线1x =的交点个数( ) A .至少1个B .至多1个C .仅有1个D .有0个、1个或多个 【答案】B 【解析】若1不在函数f (x )的定义域内,y =f (x )的图象与直线1x =没有交点, 若1在函数f (x )的定义域内,y =f (x )的图象与直线1x =有1个交点, 故选:B.2.(2022·天津市西青区张家窝中学高三阶段练习)下列各组函数中,表示同一个函数的是( )A .y =x -1和y =211x x -+B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (xg (x 【答案】D 【解析】对于A ,函数y =x -1定义域是R ,函数y =211x x -+定义域是(,1)(1,)-∞-⋃-+∞,A 不是;对于B ,0y x =定义域是(,0)(0,)-∞+∞,函数y =1定义域是R ,B 不是;对于C ,()2f x x =和()2(1)g x x =+对应法则不同,C 不是;对于D ,f (x和g (x (0,)+∞,并且对应法则相同,D 是.故选:D3.(2022·全国·高三专题练习)下列各组函数中,表示同一个函数的是( )A .1y =与0y x =B .y x =与2y =C .22log y x =与22log y x =D .1ln 1xy x+=-与()()ln 1ln 1y x x =+-- 【答案】D 【解析】对于A :1y =定义域为R ,0y x =定义域为{}|0x x ≠,定义域不同不是同一个函数,故选项A 不正确;对于B :y x =定义域为R ,2y =的定义域为{}|0x x ≥,定义域不同不是同一个函数,故选项B 不正确;对于C :22log y x =的定义域为{}|0x x >,22log y x =定义域为{}|0x x ≠,定义域不同不是同一个函数,故选项C 不正确; 对于D :由101xx +>-可得()()110x x +-<,解得:11x -<<,所以1ln 1x y x+=-的定义域为{}|11x x -<<,由1010x x +>⎧⎨->⎩可得11x -<<,所以函数()()ln 1ln 1y x x =+--的定义域为{}|11x x -<<且()()1ln 1ln 1ln1xy x x x+=+--=-,所以两个函数定义域相同对应关系也相同是同一个函数,故选项D 正确, 故选:D.➢考点2 函数的定义域[典例]1.(2022·北京·模拟预测)函数()()=-的定义域是_______.lg2f x x【答案】1[,2)2- 【解析】 由题意可得,21020x x +≥⎧⎨->⎩,解之得122x -≤<则函数()()lg 2f x x =-的定义域是1[,2)2- 故答案为:1[,2)2-2.(2022·全国·高三专题练习)若函数()y f x =的定义域是[0,8],则函数()g x =义域是( )A .(1,32)B .(1,2)C .(1,32]D .(1,2] 【答案】D 【解析】因为函数()y f x =的定义域是[0,8], 所以04802,,12101x x x x x ≤≤≤≤⎧⎧∴∴<≤⎨⎨->>⎩⎩.故选:D.3.(2022·全国·高三专题练习)已知函数(1)f x +的定义域为(-2,0),则(21)f x -的定义域为( )A .(-1,0)B .(-2,0)C .(0,1)D .1,02⎛⎫- ⎪⎝⎭【答案】C 【解析】由题设,若1t x =+,则(1,1)t ∈-,∴对于(21)f x -有21(1,1)x -∈-,故其定义域为(0,1). 故选:C4.(2022·全国·高三专题练习)已知函数()f x =的定义域是R ,则实数a 的取值范围是( )A .(12,0)-B .(12,0]-C .1(,)3+∞D .1(,]3-∞ 【答案】B 【解析】∵()f x =的定义域为R ,∴只需分母不为0即可,即230ax ax +-≠恒成立, (1)当0a =时,30恒成立,满足题意,(2)当0a ≠时,24(3)0a a ∆=-⨯-<,解得120a -<<, 综上可得120a -<≤. 故选:B. [举一反三]1.(2022·全国·高三专题练习)函数y =13x -的定义域为( ) A .3,2⎡⎫+∞⎪⎢⎣⎭B .(-∞,3)∪(3,+∞)C .3,32⎡⎫⎪⎢⎣⎭(3,+∞)D .(3,+∞)【答案】C 【解析】要使函数y =13x -有意义,则 所以x x -≥-≠⎧⎨⎩23030,解得32x ≥且3x ≠,所以函数y =13x -的定义域为3,32⎡⎫⎪⎢⎣⎭∪(3,+∞). 故选:C.2.(2022·全国·高三专题练习)函数y 22x ππ-≤≤)的定义域是( )A .,02π⎡⎤-⎢⎥⎣⎦B .,26ππ⎡⎫-⎪⎢⎣⎭C .,02π⎡-⎫⎪⎢⎣⎭D .,26ππ⎡⎤-⎢⎥⎣⎦【答案】A由题意,得512sin 0log (12sin )022x x x ππ⎧⎪->⎪-≥⎨⎪⎪-≤≤⎩,则1sin 212sin 122x x x ππ⎧<⎪⎪-≥⎨⎪⎪-≤≤⎩,即sin 022x x ππ≤⎧⎪⎨-≤≤⎪⎩,∴[,0]2x π∈-.故选:A.3.(2022·全国·高三专题练习)已知函数(1)=-y f x 的定义域为[]1,3,则函数()3log y f x =的定义域为( )A .[]0,1B .[]1,9C .[]0,2D .[]0,9 【答案】B 【解析】由[]1,3x ∈,得[]10,2x -∈, 所以[]3log 0,2x ∈,所以[]1,9x ∈. 故选:B .4.(2022·全国·高三专题练习)定义域是一个函数的三要素之一,已知函数()Jzzx x 定义域为[211,985],则函数 ()shuangyiliu x (2018)(2021)Jzzx x Jzzx x =+的定义域为( )A .211985,20182021⎡⎤⎢⎥⎣⎦B .211985,20212018⎡⎤⎢⎥⎣⎦ C .211985,20182018⎡⎤⎢⎥⎣⎦D .211985,20212021⎡⎤⎢⎥⎣⎦【答案】A 【解析】由抽象函数的定义域可知,21120189852112021985x x ≤≤⎧⎨≤≤⎩,解得21198520182021x, 所以所求函数的定义域为211985,20182021⎡⎤⎢⎥⎣⎦. 故选A.5.(2022·全国·高三专题练习)已知函数()f x =R ,则m 的取值范围是( )A .12m -<<B .12m -<≤C .12m -≤≤D .12m -≤< 【答案】C 【解析】由题意得:()()231104m x m x +-++≥在R 上恒成立.10m +=即1m =-时,()f x =10m +≠时,只需()()2101310m m m +>⎧⎪⎨∆=+-+≤⎪⎩, 解得:12m -<≤, 综上:1,2m ,故选:C .6.(2022·上海市奉贤中学高三阶段练习)函数()f x =___________.【答案】(,0]-∞【解析】解:由1102x⎛⎫-≥ ⎪⎝⎭,得011122⎛⎫⎛⎫≥= ⎪ ⎪⎝⎭⎝⎭x ,所以0x ≤,所以函数的定义域为(,0]-∞,故答案为:(,0]-∞7.(2022·全国·高三专题练习)函数y =的定义域是R ,则a 的取值范围是_________. 【答案】[)0,4【解析】由题意可得210ax ax ++>在R 上恒成立. ①当0a =时,则10>恒成立,0a ∴=符合题意;②当0a ≠时,则2040a a a >⎧⎨-<⎩,解得04a <<.综上可得04a ≤<,∴实数a 的取值范围为[)0,4. 故答案为:[)0,4.8.(2022·全国·高三专题练习)已知函数()f x =R ,则a的范围是________. 【答案】[1,5) 【解析】当1a =时,()1f x =,即定义域为R ;当1a ≠,要使()f x 的定义域为R ,则2()(1)(1)10g x a x a x =-+-+>在x ∈R 上恒成立,∴()()210{1410a a a ->∆=---<,解得15a <<, 综上,有15a ≤<, 故答案为:[1,5)➢考点3 函数解析式[典例]1.(1)已知f(x+1)=x+2x,则f(x)的解析式为________________.(2)若f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2,则f(x)的解析式为________.(3)已知函数f(x)满足2f(x)+f(-x)=2x,则f(x)的解析式为________.【答案】(1)f(x)=x2-1(x≥1)(2)f(x)=x2-x+3(3)f(x)=2x【解析】(1)方法一(换元法):令x+1=t,则x=(t-1)2,t≥1,所以f(t)=(t-1)2+2(t-1)=t2-1(t≥1),所以函数f(x)的解析式为f(x)=x2-1(x≥1).方法二(配凑法):f(x+1)=x+2x=x+2x+1-1=(x+1)2-1.因为x+1≥1,所以函数f(x)的解析式为f(x)=x2-1(x≥1).(2)(待定系数法)设f (x )=ax 2+bx +c (a ≠0), 又f (0)=c =3, 所以f (x )=ax 2+bx +3,所以f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2. 所以⎩⎨⎧4a =4,4a +2b =2,所以⎩⎨⎧a =1,b =-1,所以函数f (x )的解析式为f (x )=x 2-x +3. (3)(解方程组法)因为2f (x )+f (-x )=2x ,① 将x 换成-x 得2f (-x )+f (x )=-2x ,② 由①②消去f (-x ),得3f (x )=6x , 所以f (x )=2x .2.(2022·全国·高三专题练习)根据下列条件,求函数f (x )的解析式. (1)f (x )是一次函数,且满足f (f (x ))=4x -3;(2)已知f (x )满足2f (x )+f (1x)=3x ,求f (x )的函数解析式.(3)已知f (0)=1,对任意的实数x ,y 都有f (x -y )=f (x )-y (2x -y +1). 【解】(1)因为f (x )是一次函数,所以设()()0f x kx b k =+≠,所以()()()2f f x k kx b b k x kb b =++=++,又因为f (f (x ))=4x -3,所以243k x kb b x ++=-,故243k kb b ⎧=⎨+=-⎩,解得21k b =⎧⎨=-⎩或23k b =-⎧⎨=⎩,所以()21f x x =-或()23f x x =-+;(2)将1x 代入()123f x f x x ⎛⎫+= ⎪⎝⎭,得()132f f x x x ⎛⎫+= ⎪⎝⎭,因此()()123132fx f x x ff x x x ⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,解得()()120f x x x x=-≠. (3)令x =0,得f (-y )=f (0)-y (-y +1)=1+y 2-y=()()21y y -+-+,所以f (y )=y 2+y +1,即f (x )=x 2+x +1.[举一反三]1.(2022·全国·高三专题练习)已知函数221111x xf x x --⎛⎫= ⎪++⎝⎭,则()f x 的解析式为( ) A .()()2211x f x x x =≠-+B .()()2211xf x x x =-≠-+ C .()()211x f x x x =≠-+D .()()211x f x x x =-≠-+ 【答案】A 【解析】令11x t x -=+,则11t x t -=+ ,所以()()222112111111t t t f t t t t t -⎛⎫- ⎪+⎝⎭==≠-+-⎛⎫+ ⎪+⎝⎭, 所以()()2211xf x x x =≠-+,故选:A. 2.(2022·全国·高三专题练习)已知函数f (x ﹣1)=x 2+2x ﹣3,则f (x )=( ) A .x 2+4x B .x 2+4C .x 2+4x ﹣6D .x 2﹣4x ﹣1 【答案】A【解析】()()()22123141f x x x x x -=+-=-+-,所以()24f x x x =+.故选:A3.(2022·全国·高三专题练习)已知函数()f x 的定义域为R ,且2()2()f x f x x x +-=-,则()f x =( )A .223x x +B .223x x +C .2223x x+D .23x x +【答案】D【解析】令x 为x -,则2()2()f x f x x x -+=+, 与2()2()f x f x x x +-=-联立可解得,2()3x f x x =+.故选:D .4.(多选)(2022·全国·高三专题练习)已知函数()f x 是一次函数,满足()()98f f x x =+,则()f x 的解析式可能为( ) A .()32f x x =+B .()32f x x =- C .()34f x x =-+D .()34f x x =-- 【答案】AD 设()f x kx b =+,由题意可知()()()298f f x k kx b b k x kb b x =++=++=+,所以298k kb b ⎧=⎨+=⎩,解得32k b =⎧⎨=⎩或34k b =-⎧⎨=-⎩,所以()32f x x =+或()34f x x =--. 故选:AD.5.(2022·山东济南·二模)已知函数2()23f x x x =--+,则(1)f x +=______. 【答案】24x x -- 【解析】解:因为2()23f x x x =--+,所以()()22(+1)+12+143f x x x x x =--+-=-,(1)f x +=24x x --.故答案为:24x x --.6.(2022·全国·高三专题练习)已知()49f f x x =+⎡⎤⎣⎦,且()f x 为一次函数,求()f x =_________【答案】23x +或29x --. 【解析】因为()f x 为一次函数,所以设()()0f x kx b k =+≠,所以()()()()21f f x f kx b k kx b b k x b k =+=++=++⎡⎤⎣⎦, 因为()49f f x x =+⎡⎤⎣⎦,所以()2149k x b k x ++=+恒成立, 所以()2419k b k ⎧=⎪⎨+=⎪⎩,解得:23k b =⎧⎨=⎩或29k b =-⎧⎨=-⎩,所以()23f x x =+或()29f x x =--, 故答案为:23x +或29x --.7.(2022·全国·高三专题练习)已知函数)25f x =+,则()f x 的解析式为_______【答案】()()212f x x x =+≥【解析】2t +=,则2t ≥,且()22x t =-, 所以()()()2224251f t t t t =-+-+=+,()2t ≥所以()()212f x x x =+≥,故答案为:()()212f x x x =+≥.8.(2022·全国·高三专题练习)设函数f (x )对x ≠0的一切实数都有f (x )+2f (2020x)=3x ,则f (x )=_________. 【答案】4040()f x x x=- 【解析】 因为()202023f x f x x ⎛⎫+=⎪⎝⎭,可得()2020232020x f f x x ⎛⎫+= ⎪⎝⎭,由()()2020232020232020f x f x x x f f x x ⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎛⎫⎪+= ⎪⎪⎝⎭⎩,解得4040()f x x x=-. 故答案为:4040()f x x x=-. 9.(2022·全国·高三专题练习)已知定义域为R 的函数()f x 满足()()323f x f x x --=,则()f x =___________.【答案】3x【解析】因为()()323f x f x x --=,所以()()323f x f x x --=-,同除以2得()()31322f x f x x --=-,两式相加可得()33322f x x =,即()3f x x =.故答案为:3x .10.(2022·全国·高三专题练习)(1)已知()f x 是二次函数且(0)2f =,(1)()1f x f x x +-=-,求()f x ;(2)已知1()2(0)f x f x x x ⎛⎫+=≠ ⎪⎝⎭,求()f x .【解】(1)∵f (x )为二次函数,∴f (x )=ax 2+bx +c (a ≠0),∵f (0)=c =2,∵f (x +1)﹣f (x )=x ﹣1,∴2ax +a +b =x ﹣1,∴a 12=,b 32=-, ∴f (x )12=x 232-x +2. (2)∵()12f x f x x ⎛⎫+= ⎪⎝⎭,①,∴f (1x )+2f (x )1x=,② ①-②×2得:﹣3f (x )=x 2x-, ∴2()(0)33xf x x x =-≠➢考点4 分段函数1.(2022·广东梅州·二模)设函数()()21log 6,1,2, 1.x x x f x x -⎧-<=⎨≥⎩,则()()22log 6f f -+=( ) A .2B .6C .8D .10 【答案】B 【解析】 解:因为()()21log 6,1,2, 1.x x x f x x -⎧-<=⎨≥⎩,所以()()2log 61222log 83,log 623f f --====,所以()()22log 66f f -+=. 故选:B.2.(2022·山东潍坊·模拟预测)设函数()()()3,104,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()8f =( )A .10B .9C .7D .6【答案】C 【解析】因为()()()3,104,10x x f x f f x x -≥⎧⎪=⎨+<⎪⎩,则()()()()()()()812913107f f f f f f f =====.故选:C.3.(2022·浙江省江山中学高三期中)已知[]1,1∈-a ,函数()()()22sin 2, 21,π⎧⎡⎤-≤⎪⎣⎦=⎨-++>⎪⎩x a x a f x x a x a x a 若()() 1=f f a ,则=a _______.【答案】1-或34【解析】()()()01f f a f ==,当01a ≤≤时,()()0sin 21π=-=f a ,得14a k =--,故34a =;当10a -≤<时,()201f a ==,故1a =-.故答案为:34a =或1a =-.4.(2022·湖南湘潭·三模)已知0a >,且1a ≠,函数()()2log 21,0,0a xx x f x a x ⎧+≥⎪=⎨<⎪⎩,若()()12f f -=,则=a ___________,()4f x ≤的解集为___________.【答案】∞⎛- ⎝⎦【解析】①由题可知,()()()()121log 212a f f f a a ---==+=,则2221a a -=+,即4220a a --=,解得22a =,故a =②当0x 时,())2214f x x=+,解得602x;当0x <时,()4x f x =恒成立.故不等式的解集为∞⎛- ⎝⎦.∞⎛- ⎝⎦. [举一反三]1.(2022·山东·济南一中高三阶段练习)已知函数()()21,13,1xx f x f x x ⎧+<⎪=⎨-≥⎪⎩,则()9f =( ) A .2B .9C .65D .513 【答案】A 【解析】()09(93)(6)(3)(0)212f f f f f =-====+=,故选:A2.(2022·重庆八中模拟预测)已知函数()()1,221,2xx f x f x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪->⎩,则()2log 12f =( )A .13B .6-C .16D .3- 【答案】A 【解析】因为()2log 31,2∈,则()22log 122log 33,4=+∈,所以()()()()22log 31log 322211log 122log 3log 3223f f f -⎛⎫=+==== ⎪⎝⎭,故选:A.3.(2022·安徽安庆·二模)已知函数()()()lg ,10R 10,01axx x f x a x ⎧--≤<=∈⎨≤≤⎩且()12f =,则()41log 310f f ⎛⎫--= ⎪⎝⎭( ) A.1-.1-.1.1【答案】A【解析】∵()1102a f ==,∴lg 2a =,由()()()lg ,10R 10,01ax x x f x a x ⎧--≤<=∈⎨≤≤⎩,知()()lg ,102,01x x x f x x ⎧--≤<=⎨≤≤⎩. 于是()241log 3log log 32411log 3lg 2121211010f f ⎛⎫--=-=--=--=- ⎪⎝⎭故选:A4.(2022·福建三明·模拟预测)已知函数()33,0log ,0x x f x x x ⎧≤=⎨>⎩,则()2f f -=⎡⎤⎣⎦___________. 【答案】-2【解析】因为()33,0log ,0x x f x x x ⎧≤=⎨>⎩,所以()()()22323log 32f f f ---===-⎡⎤⎣⎦ 故答案为:-25.(2022·辽宁·建平县实验中学模拟预测)已知函数()221010,231,2x x x f x x x --⎧-≤⎪=⎨-->⎪⎩,则不等式()()10f x f x +-<的解集为___________. 【答案】9,2⎛⎫-∞ ⎪⎝⎭ 【解析】①当2x ≤时,11x -≤,()221010x x f x --=-在(],2-∞上单调递增, ()()20f x f ∴≤=,又()()()1120f x f f -≤<=, ()()10f x f x ∴+-<恒成立;②当23x <≤时,112x <-≤,()3120f x x x =--=-<,又()()120f x f -≤=,()()10f x f x ∴+-<恒成立; ③当34x <≤时,213x <-≤,()314f x x x =--=-,()1413f x x x -=--=-; ()()110f x f x ∴+-=-<恒成立;④当4x >时,13x ->,()314f x x x =--=-,()1415f x x x -=--=-, ()()1290f x f x x ∴+-=-<,解得:92x <,942x ∴<<; 综上所述:不等式()()10f x f x +-<的解集为9,2⎛⎫-∞ ⎪⎝⎭. 故答案为:9,2⎛⎫-∞ ⎪⎝⎭. 6.(2022·浙江省临安中学模拟预测)设()(),0121,1x x f x x x ⎧<<⎪=⎨-≥⎪⎩,若()()1f a f a =+,则=a __________,1f a ⎛⎫= ⎪⎝⎭__________. 【答案】146 【解析】 若01a <<,则112a <+<,由()()1f a f a =+,得()211a a =+-,即24a a =, 解得:0a =(舍去)或14a =;若1a ≥,由()()1f a f a =+,得()()21211a a -=+-,该方程无解.综上可知,14a =,()()142416f f a =⎛⎫ =⎪-⎝=⎭ 故答案为:14; 67.(2022·浙江·湖州中学高三阶段练习)已知函数,则()()1f f =___________;方程()1f x =的解集为___________. 【答案】 1 {1,e}【解析】()()()()11e e,1e lne 1f f f f =====,()1,1e 10x x f x x ≤=⇒=⇒=, ()1,1ln 1e x f x x x >=⇒=⇒=, {}0,e .x ∴∈故答案为:1;{}0,e .8.(2022·浙江·高三专题练习)已知()23log ,1,,1,x x f x x x ≥⎧=⎨-<⎩则()(2)f f -=______;若()1f x <,则x 的取值范围是______.【答案】 3 ()1,2-【解析】因为()32(2)8f -=--=, ()()()328l g 8o 3f f f ∴-===,当1x <时,()31f x x =-<,得11x -<<,当1≥x 时,()2log 1f x x =<,得12x ≤<, 故x 的取值范围是()1,2-故答案为:3;()1,2-.9.(2022·浙江浙江·二模)设a ∈R ,函数33(0)()log (0)ax x f x x x ⎧≤=⎨>⎩.则(9)f =________;若1273f f ⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭,则实数a 的取值范围是________. 【答案】 2 [)3,∞-+【解析】3(9)log 92f ==, 311log 133f ⎛⎫==- ⎪⎝⎭由()31132733a f f f -⎛⎫⎛⎫=-=≤= ⎪ ⎪⎝⎭⎝⎭,则3a -≤,所以3a ≥- 故答案为:2;[)3,∞-+。

高三数学 高考知识点 函数的定义域复习题

高三数学 高考知识点 函数的定义域复习题

高三数学 高考知识点 函数的定义域复习题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合 , ,则 为( ) A. B. C. D.2.若函数 的定义域为 ,则实数 的取值范围是( ) A. B. C. 或 D. 或 3.函数的定义域是( )A. B. C. D.4.已知集合{}|A x y ==, {}| B x x a =≥,若A B A ⋂=,则实数a 的取值范围是( )A. (],3-∞-B. (),3-∞-C. (],0-∞D. [)3,+∞ 5.函数的定义域为( )A. B. C. D. 6.函数的定义域为( )A.B.C.D.7.函数()()lg 1f x x =+的定义域为( )A. ()(]1,00,1-⋃B. (]1,1-C. (]4,1--D. ()(]4,00,1-⋃ 8.若函数y =f (x )的定义域是[0,2],则函数g (x )=的定义域是 ( )A. [0,1]B. [0,1)C. [0,1)∪(1,4]D. (0,1)9.若函数 的定义域为 ,则实数 的取值范围是( ) A. B. C. D.10.已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( )A. (-1,1)B.C. (-1,0)D.二、填空题11.函数 的定义域为________. 12.函数 的定义域为_____________. 13.函数的定义域为__________.14.已知函数 的定义域为 ,则函数 的定义域为__________.三、解答题15合B .(1)若4B ∈,求实数a 的取值范围; (2)求满足B A ⊆的实数a 的取值范围. 16.已知函数是奇函数.(1)求a 的值和函数f(x)的定义域; (2)解不等式f(-m 2+2m -1)+f(m 2+3)<0.17.已知二次函数 ,且满足 . (1)求函数 的解析式;(2)若函数 的定义域为 ,求 的值域. 18.已知函数()()()22log 1log 1f x x x =--+. (1)求函数()f x 的定义域; (2)判断()f x 的奇偶性;(3)方程()1f x x =+是否有实根?如果有实根0x ,的区间(),a b ,使()0,x a b ∈;如果没有,请说明理由(注:区间(),a b 的长度b a -)19.已知 是定义在 上的增函数,且满足 , . (1)求 的值,(2)求不等式 的解集.20.(1)已知函数f(x)的定义域是[1,5],求函数f(x 2+1)的定义域. (2)已知函数f(2x 2-1)的定义域是[1,5],求f(x)的定义域.参考答案1.C【解析】分析:通过解二次不等式求得集合A ,利用根式函数的定义域求得集合B ,然后再根据交集运算求 .详解:由题意得 , ∴ . 故选C .点睛:本题考查交集运算、二次不等式的解法和根式函数的定义域,主要考查学生的转化能力和计算求解能力. 2.B【解析】分析:先根据真数大于零得 >0恒成立,再根据二次型系数是否为零讨论,最后结合二次函数图像得实数 的取值范围.详解:因为函数 的定义域为 ,所以 >0恒成立, 因为 成立,所以若 ,则由 得 ,因此 , 选B.点睛:研究形如 恒成立问题,注意先讨论 的情况,再研究 时,开口方向,判别式正负,对称轴与定义区间位置关系,列不等式解得结果. 3.D【解析】分析:根据偶次根式下被开方数非负以及分母不为零列方程组,解方程组得定义域. 详解:因为 ,所以所以定义域为 , 选D.点睛:求具体函数定义域,主要从以下方面列条件:偶次根式下被开方数非负,分母不为零,对数真数大于零,实际意义等. 4.A【解析】由已知得[]3,3A =-,由A B A ⋂=,则A B ⊆,又[),B a =+∞,所以3a ≤-.故选A. 5.A【解析】分析:根据函数的解析式,列出函数满足的条件,即可求解函数的定义域. 详解:由函数 ,可得函数满足 ,解得 ,即函数的定义域为 ,故选A.点睛:本题主要考查了函数的定义域,其中根据函数的解析式列出函数有意义满足的条件是解答的关键,着重考查了推理与运算能力. 6.D【解析】要使函数有意义,需满足,解得 ,即函数的定义域为,故选D. 7.A【解析】 由题意,函数()f x =满足2340{10 11x x x x --+≥+>+≠ ,解得11x -<≤且0x ≠,所以函数()f x 的定义域为()(]1,00,1-⋃,故选A. 8.D【解析】∵f (x )的定义域为[0,2],∴要使f (2x )有意义,必有0≤2x ≤2,∴0≤x ≤1,∴要使g (x )有意义,应有∴0<x <1,故选D .9.B【解析】分析:由题意知 > 在 上恒成立,因二次项的系数是参数,所以分 和 两种情况,再利用二次函数的性质即开口方向和判别式的符号,列出式子求解,最后求并集即可.详解:∵函数 的定义域为 , ∴ > 在 上恒成立,①当 时,有 > 在 上恒成立,故符合条件; ②当 时,由 > =< ,解得 < < , 综上,实数 的取值范围是 . 故选B.点睛:本题的考点是对数函数的定义域,考查了含有参数的不等式恒成立问题,由于含有参数需要进行分类讨论,易漏二次项系数为零这种情况,当二次项系数不为零时利用二次函数的性质列出等价条件求解. 10.B【解析】解析:对于()211210f x x <<+,-+ ,即函数()21f x +11.[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域. 详解:要使函数 有意义,则 ,解得 ,即函数 的定义域为 . 点睛:求给定函数的定义域往往需转化为解不等式(组)的问题. 12.【解析】由题意,根据对数函数的概念及其定义域可得, ,即 ,由指数函数 与 的图象可知,如图所示,当 时, 恒成立,所以正确答案为 , .13.【解析】分析:由题得,解不等式组即得函数的定义域.详解:由题得,解之得 故答案为: . 点睛:(1)本题主要考查函数定义域的求法,意在考查学生对这些知识的掌握水平.(2)求函数的定义域时,考虑问题要全面,不要遗漏,本题不要遗漏了 14.[-1,2]【解析】分析:要求函数 的定义域,需求函数 中 的范围。

高考数学总复习考点知识讲解与提升练习6 函数的概念及其表示

高考数学总复习考点知识讲解与提升练习6 函数的概念及其表示

高考数学总复习考点知识讲解与提升练习专题6 函数的概念及其表示考点知识1.了解函数的含义.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.知识梳理1.函数的概念一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A 到集合B的一个函数,记作y=f(x),x∈A.2.函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为同一个函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.常用结论1.直线x =a 与函数y =f (x )的图象至多有1个交点.2.在函数的定义中,非空数集A ,B ,A 即为函数的定义域,值域为B 的子集.3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.(×)(2)函数y =f (x )的图象可以是一条封闭曲线.(×)(3)y =x 0与y =1是同一个函数.(×)(4)函数f (x )=⎩⎨⎧ x -1,x ≥0,x 2,x <0的定义域为R .(√) 教材改编题1.(多选)下列所给图象是函数图象的是()答案CD解析A 中,当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;B 中,当x =x 0时,y 的值有两个,因此不是函数图象;CD 中,每一个x 的值对应唯一的y 值,因此是函数图象.2.下列各组函数表示同一个函数的是()A .y =x -1与y =x 2-1x +1B .y =x -1与y =-1xC .y =2x 2与y =2xD .y =2x -1与v =2t -1答案D解析y =x -1的定义域为R ,y =x 2-1x +1的定义域为{x |x ≠-1},定义域不同,不是同一个函数,故选项A 不正确;y =x -1=1x 与y =-1x的对应关系不同,不是同一个函数,故选项B 不正确; y =2x 2=2|x |与y =2x 的对应关系不同,不是同一个函数,故选项C 不正确;y =2x -1与v =2t -1的定义域都是(-∞,1)∪(1,+∞),对应关系也相同,所以是同一个函数,故选项D 正确.3.已知函数f (x )=⎩⎨⎧ ln x ,x >0,e x ,x ≤0,则函数f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13等于() A .3B .-3C.13D .-13答案C解析由题意可知,f ⎝ ⎛⎭⎪⎫13=ln 13=-ln3,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫13=f (-ln3)=e -ln3=13.题型一函数的定义域例1(1)函数y =ln (x +1)-x 2-3x +4的定义域为()A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]答案C解析由题意得⎩⎨⎧ x +1>0,-x 2-3x +4>0,解得-1<x <1,故定义域为(-1,1).(2)已知函数f (x )的定义域为(-4,-2),则函数g (x )=f (x -1)+x +2的定义域为________.答案[-2,-1)解析∵f (x )的定义域为(-4,-2),要使g (x )=f (x -1)+x +2有意义,则⎩⎨⎧ -4<x -1<-2,x +2≥0,解得-2≤x <-1,∴函数g (x )的定义域为[-2,-1).思维升华(1)无论抽象函数的形式如何,已知定义域还是求定义域,均是指其中的x 的取值集合;(2)若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出;(3)若复合函数f (g (x ))的定义域为[a ,b ],则函数f (x )的定义域为g (x )在[a ,b ]上的值域.跟踪训练1(1)函数f (x )=1ln (x -1)+3-x 的定义域为() A .(1,3] B .(1,2)∪(2,3]C .(1,3)∪(3,+∞) D.(-∞,3)答案B解析由题意知⎩⎨⎧ x -1>0,x -1≠1,3-x ≥0,所以1<x <2或2<x ≤3, 所以函数的定义域为(1,2)∪(2,3].(2)(2023·南阳检测)已知函数f (x )=lg1-x 1+x ,则函数g (x )=f (x -1)+2x -1的定义域是()A .{x |x >2或x <0}B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 12≤x <2 C .{x |x >2}D.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ x ≥12答案B解析要使f (x )=lg1-x 1+x 有意义, 则1-x 1+x >0, 即(1-x )(1+x )>0,解得-1<x <1,所以函数f (x )的定义域为(-1,1).要使g (x )=f (x -1)+2x -1有意义,则⎩⎨⎧ -1<x -1<1,2x -1≥0,解得12≤x <2, 所以函数g (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ 12≤x <2.题型二函数的解析式例2(1)已知f (1-sin x )=cos 2x ,求f (x )的解析式;(2)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2,求f (x )的解析式; (3)已知f (x )是一次函数且3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.(4)已知f (x )满足2f (x )+f (-x )=3x ,求f (x )的解析式.解(1)(换元法)设1-sin x =t ,t ∈[0,2],则sin x =1-t ,∵f (1-sin x )=cos 2x =1-sin 2x ,∴f (t )=1-(1-t )2=2t -t 2,t ∈[0,2].即f (x )=2x -x 2,x ∈[0,2].(2)(配凑法)∵f ⎝⎛⎭⎪⎫x +1x =x 2+1x 2=⎝ ⎛⎭⎪⎫x +1x 2-2, ∴f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(3)(待定系数法)∵f (x )是一次函数,可设f (x )=ax +b (a ≠0),∴3[a (x +1)+b ]-2[a (x -1)+b ]=2x +17.即ax +(5a +b )=2x +17,∴⎩⎨⎧ a =2,5a +b =17,解得⎩⎨⎧ a =2,b =7.∴f (x )的解析式是f (x )=2x +7.(4)(解方程组法)∵2f (x )+f (-x )=3x ,①∴将x 用-x 替换,得2f (-x )+f (x )=-3x ,②由①②解得f (x )=3x .思维升华函数解析式的求法(1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法.跟踪训练2(1)已知f (x -1)=x 2+4x -5,则f (x )的解析式是()A .f (x )=x 2+6xB .f (x )=x 2+8x +7C .f (x )=x 2+2x -3D .f (x )=x 2+6x -10答案A解析f (x -1)=x 2+4x -5,设x -1=t ,x =t +1,则f (t )=(t +1)2+4(t +1)-5=t 2+6t ,故f (x )=x 2+6x . (2)若f ⎝ ⎛⎭⎪⎫1x =x 1-x,则f (x )=________. 答案1x -1(x ≠0且x ≠1) 解析f (x )=1x 1-1x=1x -1(x ≠0且x ≠1). (3)已知函数f (x )满足f (x )+2f ⎝ ⎛⎭⎪⎫-1x =3x ,则f (2)等于() A .-3B .3C .-1D .1答案A解析f (x )+2f ⎝ ⎛⎭⎪⎫-1x =3x ,① 则f ⎝ ⎛⎭⎪⎫-1x +2f (x )=-3x ,② 联立①②解得f (x )=-2x -x ,则f (2)=-22-2=-3. 题型三分段函数例3(1)已知函数f (x )=⎩⎨⎧ f (x -1),x >0,-ln (x +e )+2,x ≤0,则f (2024)的值为() A .-1B .0C .1D .2答案C解析因为f (x )=⎩⎨⎧ f (x -1),x >0,-ln (x +e )+2,x ≤0,所以f (2024)=f (2023)=f (2022)=…=f (1),又f (1)=f (1-1)=f (0)=-ln(0+e)+2=-1+2=1,所以f (2024)=1.(2)已知函数f (x )=⎩⎨⎧ -x 2-3x +2,x <-1,2x -3,x ≥-1,若f (a )=4,则实数a 的值是________;若f (a )≥2,则实数a 的取值范围是________.答案-2或5[-3,-1)∪[4,+∞)解析若f (a )=4,则⎩⎨⎧a <-1,-a 2-3a +2=4或⎩⎨⎧ a ≥-1,2a -3=4, 解得a =-2或a =5. 若f (a )≥2,则⎩⎨⎧ a <-1,-a 2-3a +2≥2或⎩⎨⎧ a ≥-1,2a -3≥2,解得-3≤a <-1或a ≥4,∴a 的取值范围是[-3,-1)∪[4,+∞).思维升华分段函数求值问题的解题思路(1)求函数值:当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.跟踪训练3(1)已知函数f (x )=⎩⎨⎧ x +2,x ≤0,x +1x ,x >0,若f (f (a ))=2,则a 等于() A .0或1B .-1或1C .0或-2D .-2或-1答案D解析令f (a )=t ,则f (t )=2,可得t =0或t =1,当t =0时,即f (a )=0,显然a ≤0,因此a +2=0⇒a =-2,当t =1时,即f (a )=1,显然a ≤0,因此a +2=1⇒a =-1,综上所述,a =-2或-1.(2)(2023·重庆质检)已知函数f (x )=⎩⎨⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________.答案⎝ ⎛⎭⎪⎫-12,+∞解析当x ≤0时,x +1≤1,f (x )<f (x +1)等价于x 2-1<(x +1)2-1,解得-12<x ≤0;当0<x ≤1时,x +1>1,此时f (x )=x 2-1≤0,f (x +1)=log 2(x +1)>0,∴当0<x ≤1时,恒有f (x )<f (x +1);当x >1时,x +1>2,f (x )<f (x +1)等价于log 2x <log 2(x +1),此时也恒成立.综上,不等式f (x )<f (x +1)的解集为⎝ ⎛⎭⎪⎫-12,+∞. 课时精练1.函数f (x )=lg(x -2)+1x -3的定义域是() A .(2,+∞) B.(2,3)C .(3,+∞) D.(2,3)∪(3,+∞)答案D解析∵f (x )=lg(x -2)+1x -3, ∴⎩⎨⎧ x -2>0,x -3≠0,解得x >2,且x ≠3,∴函数f (x )的定义域为(2,3)∪(3,+∞).2.(2023·三明模拟)已知集合A ={x |-2<x ≤1},B ={x |0<x ≤4},则下列对应关系中是从集合A 到集合B 的函数是()A .f :x →y =x +1B .f :x →y =e xC .f :x →y =x 2D .f :x →y =|x |答案B解析对于A ,当x =-1时,由f :x →y =x +1得y =0,但0∉B ,故A 错误;对于B,因为从A={x|-2<x≤1}中任取一个元素,通过f:x→y=e x在B={x|0<x≤4}中都有唯一的元素与之对应,故B正确;对于C,当x=0时,由f:x→y=x2得y=0,但0∉B,故C错误;对于D,当x=0时,由f:x→y=|x|得y=0,但0∉B,故D错误.3.已知f(x3)=lg x,则f(10)的值为()A.1B.310C.13D.1310答案C解析令x3=10,则x=13 10,∴f(10)=lg1310=13.4.图中的文物叫做“垂鳞纹圆壶”,是甘肃礼县出土的先秦时期的青铜器皿,其身流线自若、纹理分明,展现了古代中国精湛的制造技术.科研人员为了测量其容积,以恒定的流速向其内注水,恰好用时30秒注满,设注水过程中,壶中水面高度为h,注水时间为t,则下面选项中最符合h关于t的函数图象的是()答案A解析水壶的结构:底端与上端细、中间粗,所以在注水恒定的情况下,开始水的高度增加的快,中间增加的慢,最后又变快, 由图可知选项A 符合.5.函数y =1+x -1-2x 的值域为()A.⎝ ⎛⎭⎪⎫-∞,32B.⎝ ⎛⎦⎥⎤-∞,32 C.⎝ ⎛⎭⎪⎫32,+∞D.⎣⎢⎡⎭⎪⎫32,+∞ 答案B 解析设1-2x =t ,则t ≥0,x =1-t 22,所以y =1+1-t 22-t =12(-t 2-2t +3)=-12(t +1)2+2,因为t ≥0,所以y ≤32.所以函数y =1+x -1-2x 的值域为⎝ ⎛⎦⎥⎤-∞,32. 6.已知函数f (x )=⎩⎨⎧ -x 2+2x +3,x ≤2,6+log a x ,x >2(a >0且a ≠1),若函数f (x )的值域是(-∞,4],则实数a 的取值范围是()A.⎝ ⎛⎭⎪⎫22,1B.⎣⎢⎡⎭⎪⎫22,1 C .(1,2] D .(1,2)答案B解析当x ≤2时,f (x )=-x 2+2x +3=-(x -1)2+4,当x =1时,f (x )=-x 2+2x +3取得最大值4,所以当x ≤2时,函数f (x )的值域是(-∞,4],所以当x >2时,函数f (x )=6+log a x 的值域为(-∞,4]的子集,当a >1时,f (x )=6+log a x 在(2,+∞)上单调递增,此时f (x )>f (2)=6+log a 2>6,不符合题意,当0<a <1时,f (x )=6+log a x 在(2,+∞)上单调递减,此时f (x )<f (2)=6+log a 2≤4,即log a 2≤-2,所以a 2≥12,可得22≤a <1,所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫22,1.7.(多选)下列四个函数,定义域和值域相同的是() A .y =-x +1B .133,0,1,0x x y x x ⎧≤⎪=⎨⎪>⎩C .y =ln|x |D .y =2x -1x -2答案ABD解析对A ,函数的定义域和值域都是R ;对B ,根据分段函数和幂函数的性质,可知函数的定义域和值域都是R ;对C ,函数的定义域为(-∞,0)∪(0,+∞),值域为R ;对D ,因为函数y =2x -1x -2=2+3x -2,所以函数的定义域为(-∞,2)∪(2,+∞),值域为(-∞,2)∪(2,+∞).所以ABD 是定义域和值域相同的函数.8.(多选)函数概念最早是在17世纪由德国数学家莱布尼茨提出的,后又经历了贝努利、欧拉等人的改译.1821年法国数学家柯西给出了这样的定义:在某些变数存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着确定时,则称最初的变数叫自变量,其他的变数叫做函数.德国数学家康托尔创立的集合论使得函数的概念更严谨.后人在此基础上构建了高中教材中的函数定义:“一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个函数”,则下列对应法则f 满足函数定义的有()A .f (x 2)=|x |B .f (x 2)=xC .f (cos x )=xD .f (e x )=x答案AD解析令t =x 2(t ≥0),f (t )=|±t |=t ,故A 符合函数定义;令t =x 2(t ≥0),f (t )=±t ,设t =4,f (t )=±2,一个自变量对应两个函数值,故B 不符合函数定义;设t =cos x ,当t =12时,x 可以取±π3等无数多个值,故C 不符合函数定义; 令t =e x (t >0),f (t )=ln t ,故D 符合函数定义.9.已知函数f (x )=⎩⎨⎧ cos x ,x <0,f (x -π),x >0,则f ⎝ ⎛⎭⎪⎫11π3=________. 答案12解析由已知得f ⎝ ⎛⎭⎪⎫11π3=f ⎝ ⎛⎭⎪⎫8π3=f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫2π3=f ⎝ ⎛⎭⎪⎫-π3=cos ⎝ ⎛⎭⎪⎫-π3=12.10.已知f (x )=x -1,则f (x )=________.答案x 2-1(x ≥0)解析令t =x ,则t ≥0,x =t 2,所以f (t )=t 2-1(t ≥0),即f (x )=x 2-1(x ≥0).11.已知函数f (x )的定义域为[-2,2],则函数g (x )=f (2x )+1-2x 的定义域为__________.答案[-1,0]解析由条件可知,函数的定义域需满足⎩⎨⎧ -2≤2x ≤2,1-2x ≥0,解得-1≤x ≤0,所以函数g (x )的定义域是[-1,0].12.已知f (x )=⎩⎨⎧ 2x +3,x >0,x 2-4,x ≤0,若f (a )=5,则实数a 的值是__________;若f (f (a ))≤5,则实数a 的取值范围是__________.答案1或-3[-5,-1]解析①当a >0时,2a +3=5,解得a =1;当a ≤0时,a 2-4=5,解得a =-3或a =3(舍).综上,a =1或-3.②设t =f (a ),由f (t )≤5得-3≤t ≤1.由-3≤f (a )≤1,解得-5≤a ≤-1.13.(2022·广州模拟)已知定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,则f (1)等于()A .-1B .1C .-13D.13答案B解析∵定义在R 上的函数f (x )满足,f (1-x )+2f (x )=x 2+1,∴当x =0时,f (1)+2f (0)=1,①当x =1时,f (0)+2f (1)=2,②②×2-①,得3f (1)=3,解得f (1)=1.14.(2023·南昌模拟)已知函数f (x )=⎩⎨⎧x +3,x ≤0,x ,x >0,若f (a -3)=f (a +2),则f (a )等于()A .2B.2C .1D .0答案B解析作出函数f (x )的图象,如图所示.因为f (a -3)=f (a +2),且a -3<a +2,所以⎩⎨⎧ a -3≤0,a +2>0,即-2<a ≤3,此时f (a -3)=a -3+3=a ,f (a +2)=a +2,所以a =a +2,即a 2=a +2,解得a =2或a =-1(不满足a =a +2,舍去),则f (a )= 2.15.∀x ∈R ,用M (x )表示f (x ),g (x )中最大者,M (x )={|x |-1,1-x 2},若M (n )<1,则实数n 的取值范围是()A .(-2,2)B .(-2,0)∪(0,2)C .[-2,2]D .(-2,2)答案B解析当x ≥0时,若x -1≥1-x 2,则x ≥1,当x <0时,若-x -1≥1-x 2,则x ≤-1,所以M (x )=⎩⎨⎧ |x |-1,x ≥1或x ≤-1,1-x 2,-1<x <1,若M (n )<1,则当-1<n <1时,1-n 2<1⇒-n 2<0⇒n ≠0,即-1<n <0或0<n <1, 当n ≥1或n ≤-1时,|n |-1<1,解得-2<n ≤-1或1≤n <2,综上,-2<n <0或0<n <2.16.(多选)德国数学家狄利克雷在数学领域成就显著,以其名字命名的函数F (x )=⎩⎨⎧ 1,x 为有理数,0,x 为无理数被称为狄利克雷函数.关于狄利克雷函数,下列说法正确的是()A .F (F (x ))=0B .对任意x ∈R ,恒有F (x )=F (-x )成立C .任取一个不为0的实数T ,F (x +T )=F (x )对任意实数x 均成立D .存在三个点A (x 1,F (x 1)),B (x 2,F (x 2)),C (x 3,F (x 3)),使得△ABC 为等边三角形答案BD解析∵当x为有理数时,F(x)=1,当x为无理数时,F(x)=0,当x为有理数时,F(F(x))=F(1)=1,当x为无理数时,F(F(x))=F(0)=1,所以F(F(x))=1恒成立,故A错误;因为有理数的相反数是有理数,无理数的相反数是无理数,所以对任意x∈R,恒有F(x)=F(-x)成立,故B正确;若x是有理数,T是有理数,则x+T是有理数;若x是有理数,T是无理数,则x+T是无理数;若x是无理数,则x+T是无理数或有理数,所以任取一个不为0的实数T,F(x+T)=F(x)不恒成立,故C错误;取x1=-33,x2=0,x 3=33,可得F(x1)=0,F(x2)=1,F(x3)=0,所以A⎝⎛⎭⎪⎫-33,0,B(0,1),C⎝⎛⎭⎪⎫33,0,恰好△ABC为等边三角形,故D正确.。

高考数学复习考点知识讲解课件6 函数的定义域与值域

高考数学复习考点知识讲解课件6 函数的定义域与值域
知识梳理 1.函数的定义域 (1)求定义域的步骤 ①写出使函数式有意义的不等式(组). ②解不等式(组). ③写出函数定义域.(注意用区间或集合的形式写出)
— 返回 —
— 4—
(新教材) 高三总复习•数学
(2)基本初等函数的定义域 ①整式函数的定义域为 R. ②分式函数中分母_不___等__于__0__. ③偶次根式函数被开方式__大__于__或__等__于___0___. ④一次函数、二次函数的定义域均为 R. ⑤函数 f(x)=x0 的定义域为__{_x_|x_≠__0_}__. ⑥指数函数的定义域为____R______. ⑦对数函数的定义域为_(_0_,__+__∞__)_.
0<2-x<1, ⇒x≠32
1<x<2, ⇒x≠32.
所以函数的定义域为1,32∪32,2.
— 14 —
(新教材) 高三总复习•数学
— 返回 —
角度 2:求抽象函数的定义域 【例 2】 已知函数 f(2x+1)的定义域为(0,1),则 f(x)的定义域是___(1_,_3_)__. [思路引导] 由已知得 x∈(0,1)→求 2x+1 的范围→得 f(x)的定义域.
2
— 返回 —
— 13 —
(新教材) 高三总复习•数学
— 返回 —
[解析] (1)要使原函数有意义,
-x2+9x+10≥0, 则x-1>0,
x-1≠1,
解得 1<x≤10 且 x≠2,所以函数 f(x)= -x2+9x+10-
lnx2-1的定义域为(1,2)∪(2,10],故选 D.
(2)要使函数有意义,则log12 2-x>0, 2x-3≠0
— 11 —
— 返回 —

新高考数学复习考点知识与题型专题讲解6---等式性质与不等式性质(解析版)

新高考数学复习考点知识与题型专题讲解6---等式性质与不等式性质(解析版)

新高考数学复习考点知识与题型专题讲解6 等式性质与不等式性质(一)基本事实两个实数a ,b ,其大小关系有三种可能,即a>b ,a =b ,a<b.依据如果a>b ⇔ . 如果a =b ⇔ . 如果a<b ⇔ .结论要比较两个实数的大小,可以转化为比较它们的与的大小(二)重要不等式∀a ,b ∈R ,有a2+b22ab ,当且仅当a =b 时,等号成立. (三)等式的基本性质 1.如果a =b ,那么. 2.如果a =b ,b =c ,那么. 3.如果a =b ,那么a±c =b±c. 4.如果a =b ,那么ac =bc. 5.如果a =b ,c≠0,那么=cbc a (四)不等式的性质序号 性质注意事项1 a>b ⇔ba ⇔ 2a>b ,b>c ⇒a>c不可逆3 a>b ⇔a +cb +c 可逆 4a>b ,c>0⇒ _______ a>b ,c<0⇒ _______c 的符号5 a>b ,c>d ⇒ ___________ 同向6 a>b>0,c>d>0⇒ ________ 同向 7a>b>0⇒anbn(n ∈N ,n≥2)同正答案:(一)a -b>0 a -b =0 a -b<0 (二)≥ (三)b =a a =c (四)< > ac>bc ac<bc a +c>b +d ac>bd >题型一由不等式性质比较数(式)大小1.若a b <,d c <,且()()0c a c b --<,()()0d a d b -->,则a ,b ,c ,d 的大小关系是() A .d a c b <<< B .a c b d <<< C .a d b c <<< D .a d c b <<<【答案】A【解析】因为()()0c a c b --<,a b <,所以a c b <<,因为()()0d a d b -->,a b <,所以d a <或d b >,而a c b <<,d c <,所以d a <. 所以d a c b <<<. 故选:A .题型二作差法比较代数式大小2.已知a ,b 为非零实数,且a <b ,则下列命题成立的是() A .a 2<b 2 B .a 2b <ab 2 C .2211ab a b< D .b a a b<【答案】C【解析】对于A ,取3,2a b =-=-,则a b <,但22a b >,故A 错误. 对于B ,取3,2a b =-=,则a b <,但221812a b ab =>-=,故B 错误. 而2332b aa b=->-=,故D 错误. 对于C ,因为2222110a b ab a b a b --=<,故2211ab a b<,故C 正确. 故选:C.3.已知1m n >>,则下列不等式中一定成立的是() A .11+>+m n n mB .->-m n m nC .3322+>m n mnD .3322+>m n m n【答案】ABC【解析】对于A 项,11111,,m n m n n m n m>>>∴+>+,故A 正确; 对于B 项,()()22222220m nm nmn n n n ---=->-=,结合0,0m n m n ->->可得->-m n m n ,故B 正确;对于C 项,()()323222222()()m mn n mn m m n n n m m n m mn n -+-=-+-=-+-,222220,0m mn n m n n m n +->+->->,即3322+>m n mn ,故C 正确;对于D 项,当3,2m n ==时,33227835236m n m n +=+=<=,故D 错误; 故选:ABC题型二作差法比较代数式大小4.已知a ,b 为非零实数,且a <b ,则下列命题成立的是() A .a 2<b 2 B .a 2b <ab 2 C .2211ab a b< D .b a a b< 【答案】C【解析】对于A ,取3,2a b =-=-,则a b <,但22a b >,故A 错误. 对于B ,取3,2a b =-=,则a b <,但221812a b ab =>-=,故B 错误. 而2332b aa b=->-=,故D 错误. 对于C ,因为2222110a b ab a b a b --=<,故2211ab a b<,故C 正确. 故选:C.题型三作商法比较代数式大小5.比较下列各组中两个代数式的大小: (1)231x x -+与221x x +-; (2)当0a >,0b >且ab 时,a b a b 与b a a b .【答案】(1)223121x x x x -+>+-;(2)a b b a a b a b >. 【解析】(1)()()()2222312122110xx x x x x x -+-+-=-+=-+>,因此,223121x x x x -+>+-;(2)1a ba ba b a b b a a b b a a b a a b a a b b b -----⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭.①当0a b >>时,即0a b ->,1a b >时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>; ②当0b a >>时,即0a b -<,01a b <<时,01a ba ab b -⎛⎫⎛⎫>= ⎪ ⎪⎝⎭⎝⎭,a b b a a b a b ∴>. 综上所述,当0a >,0b >且a b 时,a b b a a b a b >.题型四由不等式性质证明不等式6.若0a b >>,0c d <<,||||b c > (1)求证:0b c +>;(2)求证:22()()b c a da cb d ++<--;(3)在(2)中的不等式中,能否找到一个代数式,满足2()b c a c +<-所求式2()a db d +<-?若能,请直接写出该代数式;若不能,请说明理由.【答案】(1)证明见解析;(2)证明见解析;(3)能,222()()()b c b c a da cb d b d +++<<---.【解析】(1)因为||||b c >,且0,0b c ><,所以b c >-,所以0b c +>.(2)因为0c d <<,所以0c d ->->.又因为0a b >>,所以由同向不等式的相加性可将以上两式相加得0a c b d ->->.所以22()()0a c b d ->->. 所以22110()()a c b d <<--,因为,a b d c >>,所以由同向不等式的相加性可将以上两式相加得a d b c +>+. 所以0a d b c +>+>,所以由两边都是正数的同向不等式的相乘可得22()()b c a da cb d ++<--.(3)因为0b c +>,22110()()a c b d <<--, 所以22()()b c b ca cb d ++<--,因为0b c a d <+<+,210()b d >-,所以22()()b c a db d b d ++<--,所以222()()()b c b c a da cb d b d +++<<---. 所以在(2)中的不等式中,能找到一个代数式2()b cb d +-满足题意. 1.下列命题为真命题的是 A .若0a b >>,则22ac bc > B .若0a b >>,则22a b > C .若0a b <<,则22a ab b << D .若0a b <<,则11a b< 【答案】B【解析】当0c 时,A 显然不成立;若0a b >>时,则22a ab b >>,即B 正确;当2,1a b =-=-时,224,2,1a ab b ===,显然C 不成立; 当2,1a b =-=-时,112a =-,1b =-,显然D 不成立; 故选:B.2.用不等号“>”或“<”填空:(1)如果a b >,c d <,那么a c -______b d -; (2)如果0a b >>,0c d <<,那么ac ____bd ; (3)如果0a b >>,那么21a ____21b ;(4)如果0a b c >>>,那么c a ____c b. 【答案】> < < <【解析】解析:(1)c d <,c d ∴->-.a b >,a c b d ∴->-. (2)0c d <<,0c d ∴->->.0a b >>,ac bc bd ∴->->-,ac bd ∴<.(3)0a b >>,0ab ∴>,10ab>,110a b ab ab ∴⋅>⋅>,110b a ∴>>,2211b a ⎛⎫⎛⎫∴> ⎪ ⎪⎝⎭⎝⎭,即2211a b <.(4)0a b >>,所以0ab >,10ab>.于是1a b ab ab 1⋅>⋅,即11b a >,即11a b <. 0c >,c ca b∴<.故答案为:(1)>;(2)<;(3)<;(4)<3.比较()()37x x ++和()()46x x ++的大小. 【答案】()()()()3746x x x x ++<++. 【解析】解:()()x 3x 7++-()()x 4x 6++=()22x 10x 21x 10x 24.++-++=-3<0所以()()()()x 3x 7x 4x 6++<++ 4.比较下列各组中两个代数式的大小: (1)256x x ++与2259x x ++; (2)2(3)x -与(2)(4)x x --; (3)当1x >时,2x 与21x x -+; (4)221x y ++与2(1)x y +-.【答案】(1)2256259x x x x ++<++.(2)2(3)(2)(4)x x x ->--.(3)221x x x >-+.(4)2212(1)x y x y ++>+-.【解析】解:(1)因为()()2225625930x x x x x ++-++=--<,所以2256259x x x x ++<++. (2)因为()()222(3)(2)(4)696810x x x x x x x ----=-+--+=>,所以2(3)(2)(4)x x x ->--.(3)因为()22110x x x x --+=->,所以当1x >时,221x x x >-+.(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++--+=-+-+>,所以2212(1)x y x y ++>+-.5.已知0a b >>,0c d <<,0e <,求证:e e a c b d>--. 【答案】>e e a c b d--【解析】0c d <<,0c d ∴->->,又0a b >>, 0a c b d ∴->->,∴110a c b d<<--, 又0e <, ∴e e a c b d>--.6.火车站有某公司待运的甲种货物1530t,乙种货物1150t,现计划用A,B两种型号的货厢共50节运送这批货物,已知35t甲种货物和15t 乙种货物可装满一节A型货厢,25t甲种货物和35t乙种货物可装满一节B型货厢,据此安排A,B两种货厢的节数,共有几种方案?若每节A型货厢的运费是0.5万元,每节B型货用的运费是0.8万元,哪种方案的运费较少?【答案】见解析【解析】解:设安排A 型货厢x节,B型货厢y节,总运费为z所以352515301535115050x yx yx y+⎧⎪+⎨⎪+=⎩,所以2830x又因为*x∈N ,所以2822xy=⎧⎨=⎩或2921xy=⎧⎨=⎩或3020xy=⎧⎨=⎩.所以共有三种方案,方案一安排A型货厢28节,B型货厢22节;方案二安排A型货厢29节,B型货厢21节;方案三安排A型货厢30节,B型货厢20节.当3020xy=⎧⎨=⎩时,总运费0.5300.82031z=⨯+⨯=(万元)此时运费较少.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 两条直线的位置关系★知识梳理★1.两条直线的平行与垂直关系(分斜率存在与不存在两种情况讨论)①若两条不重合的直线的斜率都不存在,则这两条直线平行;若一条直线的斜率不存在,另一条直线的斜率为0,则这两条直线垂直.②已知直线111:b x k y l +=,222:b x k y l +=,若1l ,与2l 相交,则21k k ≠ ; 若21l l ⊥,则121-=⋅k k ;若1l //2l ,则21k k =且21b b ≠; 若1l 与2l 重合,则,21k k =且21b b =2.几个公式①已知两点),(),,(222111y x P y x P ,则 =||21P P 221221)()(y y x x -+-②设点),(00y x A ,直线,0:=++C By Ax l 点A 到直线l 的距离为=d 2200||B A C By Ax +++③设直线,0:1=++C By Ax l ),(0:2C C C By Ax l '≠='++则1l 与2l 间的距离=d 22||B A C C +'- 3.直线系① 与直线0=++C By Ax 平行的直线系方程为0='++C By Ax ;②与直线0=++C By Ax 垂直的直线系方程为0='+-C Ay Bx ;③过两直线0:,0:22221111=++=++c y b x a l c y b x a l 的交点的直线系方程为为参数)λλ(,0)(222111=+++++c y b x a c y b x a★重难点突破★重点:掌握两条直线的平行与垂直的充要条件;掌握两点之间的距离公式,点到直线的距离公式,会求两条平行线之间的距离.难点:判断两条直线位置关系时的分类讨论以及综合运用平行与垂直的充要条件、距离公式解题重难点:综合运用平行与垂直的充要条件和三个距离公式,进行合理转化之后求直线方程(1)在判断两条直线的位置关系时的分类讨论, 要防止因考虑不周造成的增解与漏解,关键是要树立检验的意识.①要考虑斜率存在与斜率不存在两种情形;②要考虑两条直线平行时不能重合;问题1:已知直线06:21=++y m x l ,023)2(:2=++-m my x m l ,m 为何值时,1l 与2l 平点拨:当m=0时//1l 2l ,当0≠m 时,1l 的斜率为21m -,2l 的斜率为m m 32-- 由=-21m mm 32--得1-=m 或3=m ,3=m 时1l 与2l 重合,1-=m 时//1l 2l (2)在分析题意,寻找解题思路时,要充分利用数形结合思想,将问题转化,化繁为简,有效降低运算量.问题2:已知点P (2,1)求过P 点与原点距离最大的直线l 的方程点拨: 过P 点与原点距离最大的直线l 为垂直于直线OP 的直线,∴直线l 的斜率为-2, ∴直线l 的方程为)2(21--=-x y ,即052=-+y x(3)在使用点到直线的距离公式和两条直线的距离公式时,应先将直线方程化为一般式,使用两条直线的距离公式,还要使两直线方程中的y x 、的系数对应相等问题2:求直线012:1=-+y x l 与0742:2=++y x l 的距离点拨:将1l 的方程化为0242:1=-+y x l ,则两直线的距离为1059209==d (4)处理动直线过定点问题的常用的方法: ①将直线方程化为点斜式②化为过两条直线的交点的直线系方程③特殊入手,先求其中两条直线的交点,再验证动直线恒过交点④从“恒成立”入手,将动直线方程看作对参数恒成立。

问题3:求证:直线01164)43()382(222=--+-+-++m m y m m x m m 恒过某定点,并求该定点的坐标.将直线方程化为01143)68()432(2=-++--++-y x m y x m y x若直线过定点),(00y x P ,则01143)68()432(0000200=-++--++-y x m y x m y x 上式对m 恒成立,⎩⎨⎧=--=+-∴06804320000y x y x ,2,100==∴y x ,∴该直线必过定点)2,1(P ★热点考点题型探析★考点1:两直线的平行与垂直关系题型: 判断两条直线平行与垂直[例1 ] 已知直线1l :3mx+8y+3m-10=0 和 2l : x+6my-4=0 问 m 为何值时 (1)1l 与2l 相交(2)1l 与2l 平行(3)1l 与2l 垂直;[解析]当0m =时1:8100l y -=;2:40l x -= , 1l 与2l 垂直当0m ≠时12310312:;:8863m m l y x l y x m m-=-+=-+由 312103428,8638633m m m m m m --=-⇒=±=⇒=或,而31()186m m--=-无解 综上所述(1)23m ≠±时1l 与2l 相交(2)23m =-1l 与2l 平行(3)0m =时1l 与2l 垂直 【名师指引】判断两条直线的位置关系,一般要分类讨论,分类讨论要做到不重不漏,平时要培养分类讨论的“意识”[例 2 ] 已知△ABC 三边的方程为::3260AB x y -+=,:23220AC x y +-=,:340BC x y m +-=;(1)判断三角形的形状;(2)当BC 边上的高为1时,求m 的值。

【解题思路】(1)三边所在直线的斜率是定值,三个内角的大小是定值,可从计算斜率入手;(2)BC 边上的高为1,即点A 到直线BC 的距离为1,由此可得关于m 的方程.解析: (1)直线AB 的斜率为32AB k =,直线AC 的斜率为23AC k =-, 所以1AB AC k k ⋅=-,所以直线AB 与AC 互相垂直,因此△ABC 为直角三角形(2)解方程组326023220x y x y -+=⎧⎨+-=⎩,得26x y =⎧⎨=⎩,即(2,6)A由点到直线的距离公式得305m d -== ,当1d =时,3015m -=,即305m -=,解得25m =或35 【名师指引】(1)一般地,若两条直线的方向(斜率、倾斜角、方向向量)确定,则两条直线的夹角确定(2)在三角形中求直线方程,经常会结合三角形的高、角平分线、中线【新题导练】1.已知直线1:0l ax by c ++=,直线2:0l mx ny p ++=,则“bm an =”是“直线21//l l ”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件[解析]B2.已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )A .0B .-8C .2 D.10[解析]设所求的直线20x y m ++=,则那么m=-8,选 B 3. “m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( ) A .充分必要条件B .充分而不必要条件C .必要而不充分条件D.既不充分也不必要条件 {40240m n m n -++=++=[解析]当m =21或-2时,两条直线垂直,所以m =21是两条直线垂直的充分不必要条件,选 B [点评]还要考虑斜率不存在的情形4. (山东省枣庄市2008届高三第一次调研考试)已知直线l 的倾斜角为π43,直线l 1经过点l l a B A 与且1),1,(),2,3(-垂直,直线l 2:b a l by x +=++平行,与直线1012等于 ( )A .-4B .-2C .0D .2 [解析] B [0133=⇒=-=a a k AB ,又212-=⇒=-b b] 考点2 点到直线的距离题型:利用两个距离公式解决有关问题[例3 ] 已知直线0)()2(:=-++++b a y b a x b a l 及点)4,3(P(1)证明直线l 过某定点,并求该定点的坐标(2)当点P 到直线l 的距离最大时,求直线l 的方程【解题思路】分离参数b a ,求定点坐标;寻找P 到直线l 的距离最大时,直线l 满足的条件 解析:(1)将直线l 的方程化为:0)1()12(=-++++y x b y x a ,∴无论b a ,如何变化,该直线系都恒过直线012=++y x 与直线01=-+y x 的交点, 由⎩⎨⎧=-+=++01012y x y x 得⎩⎨⎧=-=32y x ,∴直线l 过定点)3,2(-Q (2)当PQ l ⊥时点P 到直线l 的距离最大,此时直线l 的斜率为-5,∴直线l 的方程为)2(53+-=-x y 即075=++y x【名师指引】(1)斜率不定的动直线,都应考虑是否过定点(2)处理解析几何的最值问题,一般方法有:函数法;几何法[例4 ] 已知三条直线()1:200l x y a a -+=< 2:4210l x y -++= 3:10l x y +-= ,若1l 与2l (1)求a 的值(2)能否找到一点P 使得P 同时满足下列三个条件①P 是第一象限的点;②P 点到1l 的距离是P 点到2l 的距离的12③P 点到1l 的距离与P 点到3l P 点坐标;若不能,说明理由。

【解题思路】由三个条件可列三个方程或不等式,最终归结为混合组是否有解的问题[解析](1)21:20,3210l x y d a --===⇒= (2)设00(,)P x y 同时满足三个条件由②得:设00(,)P x y 在':20l x y C -+=131126C C =⇒==或则有00001311202026x y x y -+=-+=或------------(1)= 000240320x y x ⇒-+=+=或--------------(2)由①得 000,0x y >> ----------------(3)解由(1)(2)(3)联立的混合组得 00137,.918x y == 所以137(,)918P 【名师指引】(1)在条件比较多时,思路要理顺;(2)解混合组时,一般是先解方程,再验证不等式成立【新题导练】6. 点(4cos ,3sin )P θθ到直线60x y +-=的距离的最小值等于 [解析]222|6)sin(5|2|6sin 3cos 4|≥-+=-+=φθθθd 7. 与直线210x y ++=的距离为5的直线方程为 [解析] 02=+y x 或022=-+y x8. 两平行直线1l ,2l 分别过点P (-1,3),Q (2,-1)它们分别绕P ,Q 旋转,但始终保持平行,则之1l ,2l 间的距离的取值范围是( )A .()0,+∞ B.(0,5) C.(]0,5 D.([解析]最大值为P ,Q 的距离,即5,选C9.求过原点且与两定点)2,3(),1,1(--B A 距离相等的直线l 的方程[解析] 直线l 过线段AB 的中点或平行于直线AB ,故方程为02=+y x 或043=+y x 考点3 直线系题型1:运用直线系求直线方程[例5 ]求过直线1:3530l x y --=和2:3580l x y --=的交点,且与直线470x y +-=垂直的直线方程和平行的直线方程。

相关文档
最新文档