使用Matlab技术进行随机信号分析的基本步骤

合集下载

matlab产生随机信号并计算自相关函数与协方差

matlab产生随机信号并计算自相关函数与协方差

clc;clear all;Signal_1=rand(1,2000);%产生随机信号 Signal_1Signal_2=rand(1,2000);%产生随机信号 Signal_2%Signal_3=[Signal_1;Signal_2];n=length(Signal_1);Signal_1_2=Signal_1.^2;% 计算 Signal_1 的每个元素的平方Signal_2_2=Signal_1.^2;Signal_1_aver1=sum(Signal_1)/n; % 利用定义计算Signal_1 的均值Signal_1_aver2=mean(Signal_1);% 利用mean函数计算Signal_1的均值Signal_1_2_aver=sum(Signal_1_2)/n; %计算Signal_1_2 的均值Signal_2_aver=mean(Signal_2);for i=1:nSignal_1_3(1,i)=Signal_1(1,i)-Signal_1_aver1;end%产生一个新的矩阵,即 Signal_1的每个元素减去Signal_1的均值Signal_1_3_aver=sum(Signal_1_3.^2)/n;%公式(1.2.9)计算Signal_1_3的方差,也是Signal_1的方差Signal_1_D2=Signal_1_2_aver-Signal_1_aver1^2;%公式(1.2.10),得结果与公式(1.2.9)一样D=std(Signal_1);%计算Signal_1的标准差Signal_1_D1=std(Signal_1)^2;%通过先求向量的标准差再求平方,算得的结果与直接用函数var算到的结果相同,也是Signal_1的方差Signal_1_D3=var(Signal_1);% 利用var函数求向量Signal_1的方差%R_Signal_1=xcorr(Signal_1);%用库函数xorr求Signal_1自相关函数%R_Signal_2=xcorr(Signal_2);%用用库函数xorr求Signal_2自相关函数%Sig1_Sig2_C=cov(Signal_3);R1_Signal_1_Signal_2=cov(Signal_1,Signal_2);R2_Signal_1_Signal_2=mean((Signal_1-Signal_1_aver2).*(Signal_2-Signal_2 _aver));R3_Signal_1_Signal_2=mean(Signal_1.*Signal_2)-Signal_1_aver2*Signal_2_a ver;R_Signal_1=mean(Signal_1_2);R_Signal_2=mean(Signal_2_2);C=R_Signal_1-Signal_1_aver2*Signal_1_aver2;subplot(3,2,1);plot(Signal_1);title('随机信号Signal_1');axis([0 2000,-1 2]);subplot(3,2,2);plot(Signal_2);title('随机信号Signal_2');axis([0 2000,-1 2]);subplot(3,2,3);%将画布分为 2行2列,在第1行第1列画Signal_1_R自相关函数,并写上标题Signal_1自相关函数plot(Signal_1_R);title('Signal_1自相关函数');subplot(3,2,4);%将画布分为 2行2列,在 第1行第2列画Signal_2_R 自相关函数,并写上标题Signal_2自相关函数plot(Signal_2_R);title('Signal_2自相关函数');subplot(3,2,5);plot(Sig1_Sig2_C);title('随机信号Signal_1,Signal_1协方差');axis([0 2000,-1 1]);0500100015002000-1012随机信号Signal 10500100015002000-1012随机信号Signal 20100020003000400005001000Signal 1自相关函数0100020003000400005001000Signal 2自相关函数0500100015002000-101随机信号Signal 1,Signal 1协方差。

信号分析与处理实验指导书

信号分析与处理实验指导书

实验一时域分析实验一.实验目的(1)熟悉MATLAB开发环境。

(2)掌握MATLAB各种表达式的书写规则以及常用函数的使用。

(3)熟悉MATLAB的基本操作(4)熟悉MATLAB中产生信号和绘制信号的基本命令。

(5)熟悉序列的简单运算,如:加法、标量乘法、时间反转、延时、乘法等。

二.实验原理MATLAB (矩阵实验室的简称)是一种专业的计算机程序,用于工程科学的矩阵数学运算。

但在以后的几年内,它逐渐发展为一种极其灵活的计算体系,用于解决各种重要的技术问题。

MA TLAB程序执行MATLAB语言,并提供了一个极其广泛的预定义函数库,这样就使得技术工作变得简单高效。

三.实验任务及步骤1、学习了解MATLAB的实验环境:在Windows桌面上,双击MA TLAB图标,即可进入MA TLAB系统命令窗口。

图1-1 MATLAB系统命令窗口当MA TLAB运行时,有多种类型的窗口,有的用于接收命令,有的用于显示信息。

三个重要的窗口有命令窗口;图像窗口;编辑/调试窗口;它们的作用分别为输入命令;显示图形;充许使用者创建和修改MATLAB程序。

在本节课中我们将会看到这三个窗口的例子。

当MA TLAB程序启动时,一个叫做MATLAB桌面的窗口出现了。

默认的MATLAB桌面结构如图1-1所示。

在MA TLAB集成开发环境下,它集成了管理文件、变量和应用程序的许多编程工具。

在MA TLAB桌面上可以得到和访问的窗口主要有:■命令窗口(The Command Window)■命令历史窗口(The Command History Window)■启动平台(Launch Pad)■编辑调试窗口(The Edit/Debug Window)■工作台窗口和数组编辑器(Workspace Browser and Array Editor)■帮助空间窗口(Help Browser)■当前路径窗口(Current Directory Browser)1.1 命令窗口MA TLAB桌面的右边是命令窗口。

信号分析与处理实验(MATLAB)

信号分析与处理实验(MATLAB)

例:Chebyshev I型数字滤波器设计
通带截止频率wp,阻带截止频率ws,
通带最大衰减rp,阻带最小衰减rs. 假设各参数: wp=30*2 *pi; ws=40*2* pi; Fs=100;
rp=0.3;
rs=80;
例1:Chebyshev I型数字滤波器设计
1. 2. 3. 4.
实验安排
1、信号的产生与运算; 2、连续与离散信号的频谱分析; 3、连续与离散系统分析、滤波; 4、信号处理程序设计;(设计性) (卷积、相关、窗函数、DFT、FFT*) 5、数字滤波器的设计与滤波; 6、wav音频信号的读写与处理。
1、信号的产生与运算
实验目的:掌握用Matlab产生基本信号、绘制波形、实 现基本运算。
Matlab程序举例2:计算卷积
直接计算 x1=[ones(1,5) zeros(1,27) ]; x2=[ones(1,10) zeros(1,22) ]; y1=conv(x1,x2);
用卷积定理 X1=fft(x1,32); X2=fft(x2,32); Y=X1.*X2; y2=real(ifft(Y)); subplot(2,1,1); stem(y1); subplot(2,1,2); stem(y2);
5.
6.
7.
选择阶数: [N, Wn]=cheb1ord(wp, ws, rp, rs, 's'); 创建Chebyshev I型滤波器原型:[z,p,k]=cheb1ap(N,rp); 表达形式从零极点增益形式转换成状态方程形式: [A, B, C, D]=zp2ss(z,p,k); 把模拟低通滤波器原型转换成模拟低通滤波器: [At, Bt, Ct, Dt]=lp2lp(A, B, C, D, Wn); 表达形式从状态方程形式转换成传递函数形式: [num1 ,den 1]=ss2tf(At,Bt,Ct,Dt); 采用冲激响应不变法将模拟滤波器转换成数字滤波器: [num2,den2]=impinvar(num1 ,den1, Fs); 返回数字滤波器的频率响应: [H, W]=freqz(num2,den2,N)

随机信号分析实验报告

随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。

二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。

MATLAB中的信号检测与估计技巧

MATLAB中的信号检测与估计技巧

MATLAB中的信号检测与估计技巧一、引言MATLAB作为一种功能强大的数学软件,广泛应用于信号处理领域。

本文将介绍MATLAB中的信号检测与估计技巧,包括信号检测的基本概念、信号估计的方法和一些常用的MATLAB函数。

二、信号检测技巧信号检测是指在已知噪声背景下,通过观测信号来判断是否存在目标信号。

在MATLAB中,我们可以利用假设检验的方法进行信号检测。

常见的假设检验方法有最小二乘法、最大似然法和贝叶斯检测等。

最小二乘法是一种经典的信号检测方法。

其原理是通过最小化观测信号与理想信号之间的均方误差来判断是否存在目标信号。

在MATLAB中,可以使用"lsqnonlin"函数进行最小二乘法信号检测。

最大似然法是一种基于统计模型的信号检测方法。

其原理是假设观测信号服从某种概率分布,通过计算观测信号在不同假设下的概率,选择概率最大的假设作为检测结果。

在MATLAB中,可以利用"mle"函数进行最大似然法信号检测。

贝叶斯检测是一种基于贝叶斯理论的信号检测方法。

其原理是通过先验概率和条件概率来计算后验概率,进而进行信号检测。

在MATLAB中,可以使用"bayesopt"函数进行贝叶斯检测。

三、信号估计技巧信号估计是指通过观测信号,对信号的某些特性进行估计。

在MATLAB中,常用的信号估计方法包括功率谱估计、自相关函数估计和谱估计等。

功率谱估计是一种常用的信号估计方法,用于估计信号的功率在不同频率上的分布。

在MATLAB中,可以使用"pwelch"函数进行功率谱估计。

自相关函数估计是一种用于估计信号的自相关性质的方法。

自相关函数描述了信号与其自身在不同时间上的相关程度。

在MATLAB中,可以使用"xcorr"函数进行自相关函数估计。

谱估计是一种将信号从时域转换到频域的方法,可以用于估计信号在不同频率上的能量分布。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

matlab 实验四 信号的谱分析

matlab 实验四 信号的谱分析

实验四 信号的谱分析一、实验目的:1、 掌握DTFT 原理及其程序实现,学习用DTFT 对信号进行谱分析。

2、 掌握DFT 原理及其程序实现,学习用DFT 对信号进行谱分析。

3、 熟悉FFT 算法原理和掌握fft 子程序的应用。

4、 掌握DFT 的性质。

二、实验内容:1、 对于序列x(n)=[3,1,7,2,4],在-π ~ π内取64个频点,利用矩阵操作求其DTFT ,画出它的幅频特性和相频特性。

并把x(n)的位置零点右移一位,再求DTFT ,画出其幅频特性和相频特性,讨论移位对于DTFT 的影响。

2、 利用矩阵操作求1题中序列的DFT ,并画图。

3、 利用Matlab 自带的fft 函数求1题中序列的DFT ,并与1题中求出的DTFT 相比较。

4、 已知序列x(n)=[2,3,4,5]位于主值区间,求其循环左移一位的结果,画出循环移位的中间过程。

提示:左右各拓展一个周期,nx=[-4:7];采用stem 函数画图。

5、 已知序列x(n)=[1,2,3,4,5,6]位于主值区间,循环长度为8,确定并画出循环折叠y(n)=x((-n)8);如果循环长度为6,确定并画出循环折叠y(n)=x((-n)6)。

6、 已知序列x(n)=[2,1,5,3]位于主值区间,h(n)=nR 4(n),计算循环卷积1()()()c y n h n x n =⑥,2()()()c y n h n x n =⑩和线性卷积()()*()y n h n x n =,画出1()c y n 、2()c y n 和()y n 的波形图,观察循环卷积和线性卷积的关系。

三、实验报告要求:1.实验原理:序列x (n)的频谱定义为:nj n en x n x F j X ωω-∞-∞=∑==)())(()( πωπ≤≤-;也称为它的离散时间傅立叶变换。

可以认为,序列中的每一个样本x(n)对频谱产生的贡献为n j e n x ω-)( ,把整个序列中所有样本的频谱分量按向量(即复数)叠加起来,就得到序列的频谱X(j ω)。

matlab中随机信号的产生

matlab中随机信号的产生

Matlab 中随机信号的产生在matlab 编程中,我们所能用到的用于产生随机信号的函数有三:Rand, randn,randi 下面我们详细的了解一下这三个函数。

1. Rand 功能是生产均匀分布的伪随机数,并且所生成的伪随机数分布在(0-1); 主要语法:rand (m ,n )生成m 行n 列的均匀分布的伪随机数Rand (m,n.’double’)生成制定精度的均匀分布的伪随机数,参数还可以是’single’; Rand(randStream,m,n)利用指定的randStream 生成伪随机数2. Randn 生成标注正态分布的伪随机数(均值为0,方差为1) 语法同上;3. Randi 生成均匀分布的伪随机整数主要语法:randi(iMax)在开区间(0,iMax )生成均匀分布的伪随机整数Randi(iMax,m,n) 在开区间(0,iMax )生成m ×n 型随机矩阵r= randi([iMin,iMax],m,n)在开区间(iMin,iMax )生成m ×n 型随机矩阵 下面我们来看看具体的例子:1,Rand散点图:xh=rand(1,2500);plot(xh)概率分布图:xh=rand(1,25000);hist(xh,2000)00.10.20.30.40.50.60.70.80.912,Randn散点图:xh=randn(1,400000);plot(xh)概率分布图:xh=randn(1,400000);hist(xh,2000)00.51 1.52 2.53 3.54x 105-5-4-3-2-1123453,Randi散点图:r= randi([12,214],1,144);plot(r)概率分布图:r= randi([12,214],1,144);hist(r,10000)对于随机种子,伪随机数的重复生成,在正常情况下每次调用相同指令生成的伪随机数是不同的例如:rand(1,4)rand(1,4)输出结果为:ans = 0.0428 0.2402 0.0296 0.0398ans = 0.7753 0.4687 0.3378 0.0074在一些特殊的情况下我们会用到相等的随机数,那我们该如何呢使两个语句生成的随机数相等呢?在Matlab中rand 、randn,和randi 从一个基础的随机数流中得到随机数,叫做默认流。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

使用Matlab技术进行随机信号分析的基本步

随机信号分析是信号与系统领域中的一个重要研究课题,它主要涉及到信号的时间特性、频率特性、概率特性等方面的分析。

而使用Matlab技术进行随机信号分析,则是一种十分高效且常见的方法。

在本文中,我们将向您介绍使用Matlab 技术进行随机信号分析的基本步骤。

第一步:信号生成
随机信号的分析首先需要产生实验信号。

Matlab提供了丰富的信号生成函数,例如rand、randn等,可以生成均匀分布的随机信号、高斯分布的随机信号等。

根据所需要分析的信号类型和特性,我们可以选择适合的函数进行信号生成。

第二步:采样和量化
分析随机信号之前,我们需要对其进行采样和量化。

采样是将连续信号转化为离散信号的过程,而量化则是将连续信号的振幅值转化为离散信号的过程。

Matlab 提供了相应的函数,例如downsample和quantize,可以实现信号的采样和量化操作。

第三步:时域分析
时域分析是对信号在时间域上的特性进行分析。

常用的时域分析方法包括信号的均值、方差、自相关函数、互相关函数等。

在Matlab中,我们可以使用mean、var、xcorr等函数,对随机信号的时域特性进行计算和分析。

第四步:频域分析
频域分析是对信号在频率域上的特性进行分析。

通过对随机信号进行傅里叶变换,我们可以得到信号的频谱特性。

Matlab中提供了fft函数,可以用于实现傅里
叶变换。

通过对傅里叶变换结果进行幅度谱和相位谱的计算,我们可以更全面地了解信号在频率域上的特性。

第五步:概率分布分析
概率分布分析是对信号的概率特性进行分析。

在随机信号分析中,常见的概率分布包括均匀分布、高斯分布、泊松分布等。

Matlab中提供了相应的概率分布函数,我们可以使用这些函数计算信号的概率密度函数、累积分布函数等。

第六步:建立模型和拟合
通过对信号进行分析,我们可以建立信号的数学模型,并利用拟合技术将实际信号与模型进行比较。

Matlab中提供了polyfit、lsqcurvefit等函数,可以用于信号的模型建立和拟合。

第七步:参数估计
参数估计是对信号的未知参数进行估计和推算的过程。

通过对信号进行模型拟合和比对,我们可以利用已知的参数估计方法对信号的未知参数进行估计。

Matlab 中提供了相应的函数,例如linregress、polyval等,可以用于信号参数的估计。

第八步:结果可视化
最后,将分析得到的结果可视化是非常重要的。

Matlab中提供了丰富的绘图函数,可以绘制出信号的时域波形、频谱特性、概率分布等图像。

通过直观的图像展示,我们可以更好地理解和分析随机信号的特性。

综上所述,使用Matlab技术进行随机信号分析的基本步骤包括信号生成、采样和量化、时域分析、频域分析、概率分布分析、建立模型和拟合、参数估计以及结果可视化。

这些步骤的完成可以帮助我们更全面地了解和分析随机信号的特性,为相关领域的研究和应用提供重要的参考和支持。

相关文档
最新文档