光电探测器响应时间实验研究-毕业设计论文

合集下载

光电探测器响应时间实验研究-毕业设计论文

光电探测器响应时间实验研究-毕业设计论文

光电探测器响应时间实验研究摘要近几十年来,光电探测器在光通信、国防探测、信号处理、传感系统和测量系统等高精尖科技领域得到广泛的应用,在信息为导向的时代,时间就是生命,提高速度的需求日益紧迫,提高光电探测器响应速度的努力几乎从诞生它的一刻起就没停止过。

本实验主要研究光敏电阻和光电二极管的响应时间。

理论分析先从光敏电阻的光谱响应特性、照度伏安特性、频率响应、温度特性和前历效应来考察它的工作影响因素,确定光敏电阻响应时间与其入射光的照度、所加电压、负载电阻及照度变化前电阻所经历的时间的关系。

从光电二极管的模型分析,我们知道光电二极管的响应时间有三个方面决定:①光生载流子在耗尽层附近的扩散时间;②光生载流子在耗尽层内的漂移时间;③与负载电阻并联的结电容所决定的电路时间常数。

文中将详细分析计算对比三个时间的数量级,以确定提高响应速度的最有效途径,并提出改善光电二极管的有效方法和PIN模型。

实验研究时,采用近似脉冲的光源,经探测器的输出信号输入快速响应的CS-1022型示波器,在示波器上直接读出响应时间,分析实验结果,得出影响探测器响应时间的因素。

关键词:光电探测器,响应时间,半导体,影响因素AbstractIn recent decades, photoelectric detectors have been widely used in high-tech areas such as optical communications, national defense detection and signal processing, sensing system and measurement system .in the era which leaded by information, time is life. Improving speed increasingly is urgent needs of photoelectric detector. To improve the response speed, effort haven't been stopped from birth to its moment. This experiment mainly researchs photoconductive resistance and photoelectric diode response time. The theoretical analysis studys photoconductive resistance properties, intensity of illumination volt-ampere characteristics, frequency response and temperature characteristic and former calendar effect to examine its working influence factors, and find out the influencing factors between photoconductive resistance response time and incident light intensity of illumination, voltage, load resistance and the time experienced before intensity of illumination change. From the model analysis of the photoelectric diode, we know that the response time of the photoelectric diode has three aspects: (1) The diffusion time of photon-generated carrier near depletion layer.(2) The drift time of photon-generated carrier in depletion layer .(3) The constant of the circuit decided by junction capacitor which parallel with the load resistance . The detailed analysis and calculation of the order of magnitude of three time will be contrasted to determine the effective ways to improve photoelectric diode’s reaction speed,and the effective PIN model.In the experimental study, we use a pulse generator as light source, and the detector pulse output signal input quick response CS - 1022 type scillograph. So we can read direct response time in oscilloscope directly, then analyze the results, find out the factors which affect the probe response time.Key word:Photoelectric detector, response time, semiconductor, influencing factors目录1 绪论 (1)1.1光电探测器发展历程 (1)1.2近年高速探测器的发展成果 (2)1.3光电探测器的分类 (4)1.4光电探测器的物理基础 (6)2 典型光电探测器响应时间的研究 (10)2.1光电导探测器 (10)2.1.1光电转换原理 (10)2.1.2工作特性分析 (12)2.1.3时间响应特性及改善 (17)2.2 PN结光伏探测器 (17)2.2.1光电转换原理 (18)2.2.2 光伏探测器的工作模式 (19)2.2.3 Si光电二极管的构造与特性分析 (21)2.2.4 频率响应特性及改善探讨 (24)3光电探测器响应时间实验研究 (32)3.1实验原理 (32)3.1.1脉冲响应 (32)3.1.2幅频特性 (33)3.2实验仪器 (34)3.3实验步骤 (35)3.4实验结果与分析 (37)结论 (39)参考文献 (40)致谢 (41)1 绪论自年第一台红宝石激光器问世以来,古老的光学发生了革命性的变化与此同时,电子学也突飞猛进地向前发展。

光电探测器响应时间的测试实验报告模板

光电探测器响应时间的测试实验报告模板

通常,光电探测器输出的电信号都有要在时间上落后于作用在其上的光信号,即光电探测器的输出相对于输入的光信号要发生沿时间轴扩展。

扩展的程序可由响应时间来描述。

光电探测器的这种响应落后于作用信号的特性称为惰性。

由于惰性的存在,会使先后作用的信号在输出端相互交叠,从而降低了信号的调制度。

如果探测器观测的是随时间快速变化的物理量,则由于惰性的影响会造成输出严重畸变。

因此,深入了解探测器的时间响应特性是十分必要的。

一、实验目的(1)了解光电探测器的响应度不仅与信号光的波长有关,而且与信号光的调制频率有关;(2)掌握发光二极管的电流调制法;(3)熟悉测量控测器响应时间的方法。

二、实验内容(1)用探测器的脉冲响应特性测量响应时间;(2)利用探测器的幅频特性确定其响应时间。

三、基本原理表示时间响应特性的方法主要有两种,一种是脉冲响应特性法,另一种是幅频特性法。

1. 脉冲响应响应落后于作用信号的现象称为弛豫。

对于信号开始作用时产弛豫称为上升弛豫或起始弛豫;信号停止作用时的弛豫称为衰减弛豫。

弛豫时间的具体定义如下:如用阶跃信号作用于器件,则起始弛豫定义为探测器的响应从零上升为稳定值的(1-1/e)(即63%)时所需的时间。

衰减弛豫定义为信号撤去后,探测器的响应下降到稳定值的1/e(即37%)所需的时间。

这类探测器有光电池、光敏电阻及热电探测器等。

另一种定义弛豫的时间的方法是:起始弛豫为响应值从稳态值的10%上升到90%所用的时间;衰减弛豫为响应从稳态值的90%下降到10%所用的时间。

这种定义多用于响应速度很快的器件,如光电二极管、雪崩光电二极管和光电倍增管等。

若光电探测器在单位跃信号作用下的起始阶跃响应函数为[1-exp(-t/τ1)],衰减响应函数为exp(-t/τ2),则根据第一种定义,起始弛豫时间为τ1,衷减弛豫时间性为τ2。

此外,如果测出了光电探测器的单位冲激响应函数,则可直接用其半值宽度来表示时间特性。

为了得到具有单位冲激函数形式的信号光源,即δ函数光源,可以采用脉搏冲式发光二极管、锁模激光器以及火花源等光源来近似。

光电探测器的灵敏度与响应时间研究与探索

光电探测器的灵敏度与响应时间研究与探索

光电探测器的灵敏度与响应时间研究与探索哎呀,说起光电探测器,这可真是个有趣又重要的东西!你想想,在我们生活的这个科技飞速发展的时代,从智能手机的摄像头到太空望远镜,从医疗设备到自动驾驶汽车,到处都有光电探测器的身影。

我记得有一次,我参加了一个科技展览。

在那里,我看到了一个展示光电探测器应用的展台。

展示人员拿着一个小小的光电探测器模块,给我们演示它是如何工作的。

他用一束很微弱的光线照射在探测器上,旁边的仪器立刻就显示出了光线的强度和相关的数据。

我当时就特别好奇,这么小的一个东西,怎么就能这么灵敏地检测到光线的变化呢?这就不得不提到光电探测器的灵敏度啦。

灵敏度可是衡量光电探测器性能的一个关键指标。

简单来说,就是它能多敏锐地察觉到光的存在和变化。

比如说,在夜晚拍摄星空的时候,如果光电探测器的灵敏度不够高,那可能就捕捉不到那些微弱的星光,我们看到的星空照片就会是一片漆黑,啥也看不清。

但要是灵敏度高呢,就能把那些暗淡的星星都清晰地呈现出来,给我们带来美轮美奂的星空图。

那光电探测器的灵敏度到底是怎么实现的呢?这就得从它的工作原理说起。

光电探测器就像是一个超级敏感的“小眼睛”,当光线照射到它上面时,会引发一系列的物理和化学变化。

就好比是一场微小的“光的派对”,光子们和探测器内部的材料相互作用,产生了电流或者电压的变化。

而这个变化的大小,就决定了探测器的灵敏度高低。

为了提高光电探测器的灵敏度,科学家们可是绞尽了脑汁。

他们不断地研究和改进探测器的材料,寻找那些对光更加敏感的物质。

就像在一堆水果中,挑选出最甜、最饱满的那一个一样。

比如说,有些材料能够吸收更多的光子,转化效率更高;有些材料则能够在更低的光强度下就产生明显的响应。

除了材料,探测器的结构设计也很重要。

想象一下,一个精心设计的房子,每个房间的布局都恰到好处,通风采光都极佳。

光电探测器也是这样,合理的结构能够让光线更好地被接收和处理,从而提高灵敏度。

比如说,增加探测器的接收面积,就像给“小眼睛”戴上了一副大眼镜,能看到更多的光;或者优化内部的电路设计,让信号传输更加顺畅,减少损耗。

光电探测器实验报告

光电探测器实验报告

光电探测器特性测量实验摘 要:本实验中探测并绘制了光电二极管的光谱响应曲线。

分别运用脉冲法,幅频特性法和截止频率法对二极管和光敏电阻的响应时间进行了测量,并分析比较了这三种方法的利弊。

最后自己设计连接电路测量光敏电阻的响应时间,更深入地理解了响应时间及测量原理。

一、 引言光电探测器可将一定的光辐射转换为电信号,然后经过信号处理,去实现某种目的,它是光电系统的核心组成部分,其性能直接影响着光电系统的性能。

因此,无论是设计还是使用光电系统,深入了解光电探测器的性能参数都是很重要的。

通常,光电探测器的光电转换特性用响应度表示。

响应特性用来表征光电探测器在确定入射光照下输出信号和入射光辐射之间的关系。

主要的响应特征包括:响应度、光谱响应、时间响应特性等性能参数。

本实验内容主要是光电探测器性能参数测量和光电探测器的一般使用方法,并专门列举了几种常用的光电探测器的使用方法。

二、 实验原理1. 光电探测器光谱响应度的测量光谱响应度是光电探测器对单色入射辐射的响应能力。

电压光谱响应度()λRv 定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,即()()()λλλP V Rv =;同理,电流光谱响应度()()()λλλP I R i =式中,()λP 为波长λ时的入射光功率;()λV 为光电探测器在入射光功率()λP 作用下的输出信号电压;()λI 则为输出用电流表示的输出信号电流。

实验中用响应度和波长无关的热释电探测器作参考探测器,测得入射光功率为()λP 时的输出电压为()λf V 。

若用f R 表示热释电探测器的响应度,则()()ff f K R V P λλ=(f K 为热释电探测器前放和主放放大倍数的乘积,即总的放大倍数。

在本实验中,K f =100×300,f R 为热释电探测器的响应度,实验中在所用的25Hz 调制频率下,f R =900V/W )。

然后在相同的光功率()λP 下,用硅光电二极管测量相应的单色光,得到输出电压()λb V ,从而得到光电二极管的光谱响应度()()()()()ff f b bK R V K V P V R //λλλλλ==式中K b 为硅光电二极管测量时总的放大倍数,这里K b =150×300。

光电探测器光谱响应度和响应时间的测量(刘1)

光电探测器光谱响应度和响应时间的测量(刘1)

光电探测器光谱响应度的测量光谱响应度是光电探测器的基本性能之一,它表征了光电探测器对不同波长入射辐射的响应。

通常热探测器的光谱响应比较平坦,而光子探测器的光谱响应却具有明显的选择性。

一般情况下,以波长为横坐标,以探测器接受到的等能量单色辐射所产生的电信号的相对大小为纵坐标,绘出光电探测器的相对光谱响应曲线。

典型的光子探测器和热探测器的光谱响应曲线如图1-1所示。

一、实验目的(1)加深对光谱响应概念的理解; (2)掌握光谱响应的测试方法;(3)熟悉热释电探测器和硅光电二极管的使用。

二、实验内容(1)用热释电探测器测量钨丝灯的光谱辐射特性曲线; (2)用比较法测量硅光电二极管的光谱响应曲线。

三、基本原理光谱响应度是光电探测器对单色入射辐射的响应能力。

电压光谱响应度()λV ℜ定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号电压,用公式表示,则为()()()λλλP V V =ℜ (1-1)而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示()()()λλλP I i =ℜ (1-2) 式中, P (λ)为波长为λ时的入射光功率;V (λ)为光电探测器在入射光功率P (λ)作用下的输出信号电压;I (λ)则为输出用电流表示的输出信号电流。

为简写起见,()λV ℜ和()λi ℜ均可以用()λℜ表示。

但在具体计算时应区分()λV ℜ和()λi ℜ,显然,二者具有不同的单位。

通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长辐射照射下光电探测器输出的电信号V (λ)。

然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率P (λ)需要利用参考探测器(基准探测器)。

即使用一个光谱响应度为()λfℜ的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准探测器。

光电探测器关键性能参数测试研究共3篇

光电探测器关键性能参数测试研究共3篇

光电探测器关键性能参数测试研究共3篇光电探测器关键性能参数测试研究1光电探测器关键性能参数测试研究光电探测器是现代光学系统及通信系统中重要的组成部分,如光电转换、信号检测等,而其性能参数如灵敏度、响应时间等则对整个系统的效能和性能产生非常重要的影响。

因此,对光电探测器关键性能参数进行测试研究是非常必要的。

1. 灵敏度测试灵敏度是光电探测器的重要性能参数之一,是指光电探测器吸收到的光功率与光电转化电流之比。

具有高灵敏度的光电探测器能够更加灵敏地检测到光信号。

光电探测器的灵敏度测试需要利用光源和光功率计将光信号输入光电探测器,同时修改光源的光功率,测量光电转化电流和光功率之比,以得到光电探测器的灵敏度。

2. 响应时间测试响应时间是光电探测器的另一重要性能参数,指的是光电转换电流上升到其最大值时所需的时间。

具有高响应时间的光电探测器能够更快地响应到光信号。

光电探测器的响应时间测试需要利用激光光源和光脉冲发生器将光信号输入光电探测器,同时利用示波器记录光电转化电流的波形,以得到光电探测器的响应时间。

3. 噪声测试噪声是光电探测器的另一个重要性能参数,指的是光电探测器未受到光信号时产生的电流和电压波动。

噪声影响了光电探测器的信噪比和灵敏度。

光电探测器的噪声测试需要利用示波器和功率谱仪来对光电探测器的电流和电压进行测试。

4. 阈值电流测试阈值电流是光电探测器另一个重要性能参数,是指光电探测器开始进行光电转换时所需的最小电流。

阈值电流直接影响光电探测器的检测能力。

光电探测器的阈值电流测试需要利用实验仪器来检测光电转换电流和光功率计之间的关系,以此得到阈值电流。

总的来说,光电探测器关键性能参数测试是一项非常重要的工作,它能够为光学系统和通信系统中光电探测器的适当选择和性能提升提供可靠的理论和实践基础。

伴随着科技的迅速发展和社会的不断进步,光电探测器在各个领域的应用越来越广泛,不断地推动着光学技术的进步和创新综上所述,光电探测器的关键性能参数测试是非常重要的,能够为光学系统和通信系统的性能提升提供有力的支撑。

光电探测器的动态响应特性研究

光电探测器的动态响应特性研究

光电探测器的动态响应特性研究哎呀,要说这光电探测器的动态响应特性,那可真是一个有趣又复杂的话题。

我记得有一次,我在实验室里捣鼓这些光电探测器,那场面就跟打一场紧张刺激的“科技战”似的。

当时,周围堆满了各种仪器和线路,我全神贯注地盯着那个小小的光电探测器,心里想着一定要把它的动态响应特性搞清楚。

咱们先来说说什么是光电探测器的动态响应特性吧。

简单来讲,就是它对光信号变化的反应速度和准确性。

这就好比我们人听到一个指令,有的人能马上做出反应,有的人则要慢半拍。

光电探测器也一样,有的能迅速准确地捕捉到光的变化,有的就稍微迟钝一些。

那影响光电探测器动态响应特性的因素都有啥呢?首先就是探测器的材料啦。

不同的材料,性能可大不一样。

比如说,有些材料对光的吸收效率高,就能更快地产生电信号,响应速度自然就快。

还有探测器的结构设计也很关键。

就像盖房子,结构合理才能坚固耐用。

探测器的结构如果设计得好,就能减少内部的电阻、电容等因素对信号传输的影响,从而提高响应速度。

再来说说探测器的工作条件。

这就好比我们人在不同的环境下工作效率不同。

光电探测器在不同的温度、光照强度等条件下,动态响应特性也会有所变化。

为了研究这动态响应特性,科学家们可是使出了浑身解数。

各种先进的测试设备纷纷上阵,什么示波器、频谱分析仪等等,就是为了能精确地测量和分析探测器的响应情况。

我在研究的时候就发现,哪怕是一点点微小的改变,都可能对结果产生很大的影响。

有一次,我只是调整了一下探测器的偏置电压,没想到响应速度就有了明显的变化,那感觉就像发现了新大陆一样惊喜。

而且啊,这光电探测器的动态响应特性在实际应用中可太重要了。

比如在通信领域,要想实现高速、准确的数据传输,就离不开性能优良的光电探测器。

要是响应速度慢了,那信息就可能丢失或者出错,后果不堪设想。

在医疗领域,像一些光学检测设备,也需要光电探测器能够快速准确地检测到微弱的光信号,帮助医生做出更准确的诊断。

总之,研究光电探测器的动态响应特性,不仅能让我们更深入地了解它的工作原理,还能为各种相关技术的发展提供有力的支持。

光电探测系统的时间测量精度研究

光电探测系统的时间测量精度研究

光电探测系统的时间测量精度研究摘要:光电探测系统广泛应用于各个领域,例如激光测距、雷达测距、光学测量等。

其中,时间测量精度是光电探测系统性能评估的重要指标之一。

本文将从光电探测系统的时间测量原理、影响因素以及提高时间测量精度的方法等方面进行综述与分析。

1. 引言光电探测系统是一种利用光电效应实现信号的探测与测量的技术系统。

时间测量精度作为光电探测系统的重要指标,对于系统的测量精度、定位精度以及数据处理等方面具有重要影响。

因此,研究光电探测系统的时间测量精度具有重要的理论和实际意义。

2. 光电探测系统的时间测量原理光电探测系统的时间测量原理是基于光电效应的原理。

当光子与物质相互作用时,会产生光电子,并且光电子的产生时间与光子的到达时间有关。

通过测量光电子的产生时间,可以间接测量光子的到达时间。

光电探测系统通常采用光电二极管、光电倍增管等光电传感器来实现时间测量。

3. 影响光电探测系统时间测量精度的因素光电探测系统的时间测量精度受到多种因素的影响,主要包括以下几个方面:1) 光电传感器的响应时间:光电传感器的响应时间越短,时间测量精度越高。

2) 光电传感器的噪声:光电传感器的噪声会引入误差,影响时间测量精度。

3) 光电探测系统的时钟同步:时钟同步不准确会导致时间测量误差累积。

4) 光学系统的非线性误差:光学系统的非线性误差会导致时间测量精度下降。

5) 数据处理算法的精度:数据处理算法的精度直接影响时间测量精度。

4. 提高光电探测系统时间测量精度的方法为了提高光电探测系统的时间测量精度,可以采取以下方法:1) 优化光电传感器的设计:改进光电传感器的结构和材料,提高其响应速度和抗噪声能力。

2) 提高时钟同步精度:采用高精度的时钟同步方法,减小时钟同步误差对时间测量的影响。

3) 校准光学系统的非线性误差:通过精确的校准方法,消除光学系统的非线性误差。

4) 优化数据处理算法:改进数据处理算法,提高时间测量的精度和稳定性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电探测器响应时间实验研究摘要近几十年来,光电探测器在光通信、国防探测、信号处理、传感系统和测量系统等高精尖科技领域得到广泛的应用,在信息为导向的时代,时间就是生命,提高速度的需求日益紧迫,提高光电探测器响应速度的努力几乎从诞生它的一刻起就没停止过。

本实验主要研究光敏电阻和光电二极管的响应时间。

理论分析先从光敏电阻的光谱响应特性、照度伏安特性、频率响应、温度特性和前历效应来考察它的工作影响因素,确定光敏电阻响应时间与其入射光的照度、所加电压、负载电阻及照度变化前电阻所经历的时间的关系。

从光电二极管的模型分析,我们知道光电二极管的响应时间有三个方面决定:①光生载流子在耗尽层附近的扩散时间;②光生载流子在耗尽层内的漂移时间;③与负载电阻并联的结电容所决定的电路时间常数。

文中将详细分析计算对比三个时间的数量级,以确定提高响应速度的最有效途径,并提出改善光电二极管的有效方法和PIN模型。

实验研究时,采用近似脉冲的光源,经探测器的输出信号输入快速响应的CS-1022型示波器,在示波器上直接读出响应时间,分析实验结果,得出影响探测器响应时间的因素。

关键词:光电探测器,响应时间,半导体,影响因素AbstractIn recent decades, photoelectric detectors have been widely used in high-tech areas such as optical communications, national defense detection and signal processing, sensing system and measurement system .in the era which leaded by information, time is life. Improving speed increasingly is urgent needs of photoelectric detector. To improve the response speed, effort haven't been stopped from birth to its moment. This experiment mainly researchs photoconductive resistance and photoelectric diode response time. The theoretical analysis studys photoconductive resistance properties, intensity of illumination volt-ampere characteristics, frequency response and temperature characteristic and former calendar effect to examine its working influence factors, and find out the influencing factors between photoconductive resistance response time and incident light intensity of illumination, voltage, load resistance and the time experienced before intensity of illumination change. From the model analysis of the photoelectric diode, we know that the response time of the photoelectric diode has three aspects: (1) The diffusion time of photon-generated carrier near depletion layer.(2) The drift time of photon-generated carrier in depletion layer .(3) The constant of the circuit decided by junction capacitor which parallel with the load resistance . The detailed analysis and calculation of the order of magnitude of three time will be contrasted to determine the effective ways to improve photoelectric diode’s reaction speed,and the effective PIN model.In the experimental study, we use a pulse generator as light source, and the detector pulse output signal input quick response CS - 1022 type scillograph. So we can read direct response time in oscilloscope directly, then analyze the results, find out the factors which affect the probe response time.Key word:Photoelectric detector, response time, semiconductor, influencing factors目录1 绪论 (1)1.1光电探测器发展历程 (1)1.2近年高速探测器的发展成果 (2)1.3光电探测器的分类 (4)1.4光电探测器的物理基础 (6)2 典型光电探测器响应时间的研究 (10)2.1光电导探测器 (10)2.1.1光电转换原理 (10)2.1.2工作特性分析 (12)2.1.3时间响应特性及改善 (17)2.2 PN结光伏探测器 (17)2.2.1光电转换原理 (18)2.2.2 光伏探测器的工作模式 (19)2.2.3 Si光电二极管的构造与特性分析 (21)2.2.4 频率响应特性及改善探讨 (24)3光电探测器响应时间实验研究 (32)3.1实验原理 (32)3.1.1脉冲响应 (32)3.1.2幅频特性 (33)3.2实验仪器 (34)3.3实验步骤 (35)3.4实验结果与分析 (37)结论 (39)参考文献 (40)致谢 (41)1 绪论自年第一台红宝石激光器问世以来,古老的光学发生了革命性的变化与此同时,电子学也突飞猛进地向前发展。

光学和电子学紧密联合形成了光电子学这一崭新的学科。

由此发展起来的光电子高新技术,已深入到人们生活的各个领域,从光纤通信,镭射唱盘到海湾战争中的现代化武器,都和光电子技术密切相关。

而光电探测器则是光电子系统中不可缺少的重要器件。

可以毫不夸大地说,没有光电探测器件,就没有今天的光电子学系统。

1.1光电探测器发展历程1873年,英国W.史密斯发现硒的光电导效应,但是这种效应长期处于探索研究阶段,未获实际应用。

第二次世界大战以后,随着半导体的发展,各种新的光电导材料不断出现。

在可见光波段方面,到50年代中期,性能良好的硫化镉、硒化镉光敏电阻和红外波段的硫化铅光电探测器都已投入使用。

60年代初,中远红外波段灵敏的Ge、Si 掺杂光电导探测器研制成功,典型的例子是工作在3~5微米和8~14微米波段的Ge:Au (锗掺金)和Ge:Hg光电导探测器。

70年代,HgCdTe、PbSnTe等可变禁带宽度的三元系材料的研究取得进展。

至今,光电导探测器在军事和国民经济的各个领域有广泛用途。

在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。

光电导体的另一应用是用它做摄像管靶面。

为了避免光生载流子扩散引起图像模糊,连续薄膜靶面都用高阻多晶材料,如PbS-PbO、Sb2S3等。

其他材料可采取镶嵌靶面的方法,整个靶面由约10万个单独探测器组成。

同样,光伏探测器等利用不同光电效应、光热效应制成的各种光电探测器也得到飞速的发展。

由于体积小,重量轻,响应速度快,灵敏度高,易于与其它半导体器件集成,是光源的最理想探测器,广泛应用于光通信、信号处理、传感系统和测量系统。

尤其在近代高速信息传输的需求推动下,光伏探测器的响应频率从几百兆发展到几十吉赫兹,在西方发达国家,甚至几百吉赫兹的超高速通信传输网已投入试验。

1.2近年高速探测器的发展成果为满足超高速光通信、信号处理、测量和传感系统的需要,半导体光电探测器正朝着超高速、高灵敏度、宽带宽以及单片集成的方向发展。

以下介绍几种近年来研究最多的几种光电探测器。

1、谐振腔增强型(RCE)光电探测器高带宽的光信号探测,需要光电探测器的最佳典型结构是薄的光吸收区。

然而,薄的光吸收层必定导致半导体材料在吸收系数比较小的波长位置的量子时效率减小。

虽然带宽超过200GHz的光电探测器也已研制成功,但带宽效率积仍然受材料特性的限制。

在肖特基光电探测器中,金属接触中的光损耗进一步受到顶部照射器件量子效率的限制,增加器件的响应度只靠采用半透明的肖特基接触。

最近几年发展的光电子器件新种类--谐振腔增强型结构光电探测器,靠有源器件结构内部的法布里-泊罗谐振腔,使器件的量子效率在谐振波长位置猛烈增强,带宽效率积惊人地改善,致使允许制作薄的光吸收区。

所以,RCE结构探测器方案对肖特基型光电探测器特别有吸引力。

2、金属-半导体-金属行波光电探测器低温生长GaAs(LTG-GaAs)基光电探测器(PD)由于它们短的响应时间、高的电带宽、低的暗电流,以及它们能够与其微波器件例如微波天线集成而受到大大关注。

然而,LTG-GaAs的宽吸收能隙(~800nm)限制了它在长波长(1300-1500nm)光通信的应用。

在长波长制式,几个PS的响应时间已从LTG-InGaAs基PD得到了,但这比短波长制式的LTG-GaAs基PD的亚PS响应时间长得多。

近来,有几个研究组在长波长光通信制式使用垂直照射结构或边缘耦合行波结构,演示了LTG-GaAs基p-i-n/n-i-n和MSM PD。

通过使用内部能隙对导带的欠态跃迁,在LTG-GaAs中得到了低于带隙的光子吸收。

相关文档
最新文档