(完整)ADC参数定义

合集下载

高速ADC几个关键指标的定义

高速ADC几个关键指标的定义

高速ADC几个关键指标的定义介绍高速ADC几个指标的定义一个基本概念分贝(dB):按照对数定义的一个幅度单位。

对于电压值,dB以20log(V A/V B)给出;对于功率值,以10log(P A/P B)给出。

dBc是相对于一个载波信号的dB值;dBm是相对于1mW的dB值。

对于dBm而言,规格中的负载电阻必须是已知的(如:1mW提供给50Ω),以确定等效的电压或电流值。

静态指标定义:量化误差(Quantization Error)量化误差是基本误差,用图3所示的简单3bit ADC来说明。

输入电压被数字化,以8个离散电平来划分,分别由代码000b到111b去代表它们,每一代码跨越Vref/8的电压范围。

代码大小一般被定义为一个最低有效位(Least Significant Bit,LSB)。

若假定Vref=8V时,每个代码之间的电压变换就代表1V。

换言之,产生指定代码的实际电压与代表该码的电压两者之间存在误差。

一般来说,0.5 LSB偏移加入到输入端便导致在理想过渡点上有正负0.5LSB的量化误差。

图3 理想ADC转换特性偏移与增益误差(Offset Gain Error)器件理想输出与实际输出之差定义为偏移误差,所有数字代码都存在这种误差。

在实际中,偏移误差会使传递函数或模拟输入电压与对应数值输出代码间存在一个固定的偏移。

通常计算偏移误差方法是测量第一个数字代码转换或“零”转换的电压,并将它与理论零点电压相比较。

增益误差是预估传递函数和实际斜率的差别,增益误差通常在模数转换器最末或最后一个传输代码转换点计算。

为了找到零点与最后一个转换代码点以计算偏移和增益误差,可以采用多种测量方式,最常用的两种是代码平均法和电压抖动法。

代码平均测量就是不断增大器件的输入电压,然后检测转换输出结果。

每次增大输入电压都会得到一些转换代码,用这些代码的和算出一个平均值,测量产生这些平均转换代码的输入电压,计算出器件偏移和增益。

(完整)ADC参数定义

(完整)ADC参数定义

ADC测试参数定义、分析及策略之动态测试2007-11—08 10:50:21分类:前言混合信号技术给当今的半导体制造商们带来了很多新挑战,以前一些对数字电路只有很小影响的缺陷如今在嵌入式器件中却可能大大改变模拟电路的功能,导致器件无法使用。

为确保这些新型半导体器件达到“无缺陷”水平,需要开发新的测试策略、方法与技术。

本文将结合一个简单的混合信号器件——模数转换器(AD C)来对这些策略、技术与方法进行讨论,说明混合信号器件测试的步骤和方法。

有了这些基本认识后,就可将其扩展并应用到当前先进的嵌入式半导体器件中,如数字滤波器、音频/视频信号处理器及数字电位计等。

传统半导体器件测试包括基本参数测试(连续性、泄漏、增益等)和功能测试(将器件输出与给定输入相比较),混合信号测试还要再另外增加两个测试,即动态测试和线性测试.动态参数描述的是器件对一个特定频率或多频率时序变化信号的采样(从模拟信号中建立数字波形)和重现(利用数字输入建立模拟信号)能力。

线性参数则相反,描述的是器件内在特性,主要关注数字和模拟电路之间的关系.下面将对这两种特性分别作详细说明。

动态测试模数转换器的动态特性有时也称作传输参数,代表器件模拟信号采样和输入波形的数字再现能力,信噪比(S NR)、总谐波失真(THD)及有效位数(ENOB)等指标可使制造商对器件输出的“纯度”和数字信息精度进行量化。

新型动态测试技术产生于上世纪80年代,主要围绕数字信号处理和傅立叶变换,将时域波形和信号分别转换为频谱成分.这种技术可以同时对多个测试频率进行采样,效率和重复性非常高.图1是对一个普通ADC 器件进行快速傅立叶变换(FFT)测试的示意图,图中可以看到模拟信号在时域内转换成数字代码,然后用傅立叶变换转换成频谱。

对ADC输出进行傅立叶分析可提供宝贵的性能信息,但如果测试时条件设置不当得到的信息也会毫无意义。

为了从器件输出信号的傅立叶分析中提取有意义的性能参数,在讨论FFT结果之前首先需要考虑测试条件,其中包括输入信号完整性、采样频率、一致性及系统测量误差(假频、量化及采样抖动误差)。

ADC参数解释

ADC参数解释

ADC参数解释1.分辩率(Resolution) 指数字量变化一个最小量时模拟信号的变化量,定义为满刻度与2n的比值。

分辩率又称精度,通常以数字信号的位数来表示。

2.转换速率(Conversion Rate)是指完成一次从模拟转换到数字的AD转换所需的时间的倒数。

积分型AD的转换时间是毫秒级属低速AD,逐次比较型AD是微秒级属中速AD,全并行/串并行型AD可达到纳秒级。

采样时间则是另外一个概念,是指两次转换的间隔。

为了保证转换的正确完成,采样速率(Sample Rate)必须小于或等于转换速率。

因此有人习惯上将转换速率在数值上等同于采样速率也是可以接受的。

常用单位是ksps和Msps,表示每秒采样千/百万次(kilo / Million Samples per Second)。

3.量化误差(Quantizing Error) 由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。

通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。

4.偏移误差(Offset Error) 输入信号为零时输出信号不为零的值,可外接电位器调至最小。

5.满刻度误差(Full Scale Error) 满度输出时对应的输入信号与理想输入信号值之差。

6.微分非线性(Differential nonlinearity,DNL)ADC相邻两刻度之间最大的差异。

7.积分非线性(Integral nonlinearity,INL)表示了ADC器件在所有的数值点上对应的模拟值和真实值之间误差最大的那一点的误差值,也就是输出数值偏离线性最大的距离。

8.总谐波失真(Total Harmonic Distotortion缩写THD)。

ADC的选择,首先看精度和速度,然后看输入通道数,输出的接口如SPI或者并行的,差分还是单端输入的,输入范围是多少。

ADC参数解释和关键指标

ADC参数解释和关键指标

第五章ADC 静态电参数测试(一)翻译整理:李雷本文要点:ADC 的电参数定义ADC 电参数测试特有的难点以及解决这些难题的技术ADC 线性度测试的各类方法ADC 数据规范(Data Sheet)样例快速测试ADC 的条件和技巧用于ADC 静态电参数测试的典型系统硬件配置关键词解释失调误差 Eo(Offset Error):转换特性曲线的实际起始值与理想起始值(零值)的偏差。

增益误差E G(Gain Error):转换特性曲线的实际斜率与理想斜率的偏差。

(在有些资料上增益误差又称为满刻度误差)线性误差Er(Linearity Error):转换特性曲线与最佳拟合直线间的最大偏差。

(NS 公司定义)或者用:准确度E A(Accuracy):转换特性曲线与理想转换特性曲线的最大偏差(AD 公司定义)。

信噪比(SNR): 基频能量和噪声频谱能量的比值。

一、ADC 静态电参数定义及测试简介模拟/数字转换器(ADC)是最为常见的混合信号架构器件。

ADC是一种连接现实模拟世界和快速信号处理数字世界的接口。

电压型ADC(本文讨论)输入电压量并通过其特有的功能输出与之相对应的数字代码。

ADC的输出代码可以有多种编码技术(如:二进制补码,自然二进制码等)。

测试ADC 器件的关键是要认识到模/数转换器“多对一”的本质。

也就是说,ADC 的多个不同的输入电压对应一个固定的输出数字代码,因此测试ADC 有别于测试其它传统的模拟或数字器件(施加输入激励,测试输出响应)。

对于 ADC,我们必须找到引起输出改变的特定的输入值,并且利用这些特殊的输入值计算出ADC 的静态电参数(如:失调误差、增益误差,积分非线性等)。

本章主要介绍ADC 静态电参数的定义以及如何测试它们。

Figure5.1:Analog-to-Digital Conversion Process. An ADC receives an analog input and outputs the digital codes that most closely represents then input magnitude relative to full scale.1.ADC 的静态电参数规范ADC的静态电参数主要验证器件的输入-输出转换曲线符合设计(理想)曲线的程度。

adc 基本概念、逻辑概念和物理概念

adc 基本概念、逻辑概念和物理概念

adc 基本概念、逻辑概念和物理概念ADC是模拟数字转换器(Analog to Digital Converter)的英文简称,它是一种将模拟信号转换为数字信号的设备或模块。

ADC在现代电子系统中起着非常重要的作用,它可以将来自传感器、麦克风、摄像头等模拟信号转换为数字信号,以便数字处理器进行处理和分析。

在本文中,我们将从基本概念、逻辑概念和物理概念三个方面来探讨ADC的工作原理和应用。

首先,我们来看一下ADC的基本概念。

ADC的基本原理是根据一定的采样频率对模拟信号进行采样,并将采样值按照一定的编码规则转换为数字信号。

其中,采样频率表示每秒钟采集模拟信号的次数,而编码规则则决定了数字信号的精度和范围。

通常来说,ADC的输出是一个n位的二进制数,其取值范围为0到2的n次方减1。

因此,ADC的精度可以通过比特数来表示,比如8位ADC的输出精度为256个离散值。

其次,我们来谈一下ADC的逻辑概念。

在数字系统中,ADC通常作为一个独立的模块,负责将模拟信号转换为数字信号。

它可以通过串行接口(如SPI、I2C)或并行接口(如并行总线)与其他数字器件进行通信。

在实际应用中,ADC的转换结果可以直接用于数字信号处理器(DSP)、微控制器(MCU)或FPGA进行进一步处理。

此外,为了提高系统的灵敏度和精度,可能还会使用ADC前置放大器、数字滤波器等辅助器件。

最后,我们来探讨ADC的物理概念。

ADC通常由模拟前端、数字处理器和接口电路等部分组成。

其中,模拟前端用于对模拟信号进行采样、滤波和放大,以保证转换的准确性和稳定性;数字处理器负责将模拟信号转换为数字信号,并进行存储、加工和输出;而接口电路用于与其他数字设备之间进行通信和数据传输。

此外,ADC的性能参数还包括转换速率、信噪比、非线性度等,这些参数直接影响了其在实际应用中的性能和稳定性。

综上所述,ADC作为一种重要的模拟数字转换设备,在现代电子系统中具有广泛的应用。

ADC分类及参数

ADC分类及参数

ADC分类∙直接转换模拟数字转换器(Direct-conversion ADC),或称Flash模拟数字转换器(Flash ADC)∙循续渐近式模拟数字转换器(Successive approximation ADC)∙跃升-比较模拟数字转换器(Ramp-compare ADC)∙威尔金森模拟数字转换器(Wilkinson ADC∙集成模拟数字转换器(Integrating ADC)∙Delta编码模拟数字转换器(Delta-encoded ADC)∙管道模拟数字转换器(Pipeline ADC)∙Sigma-Delta模拟数字转换器(Sigma-delta ADC)∙时间交织模拟数字转换器(Time-interleaved ADC)∙带有即时FM段的模拟数字转换器∙时间延伸模拟数字转换器(Time stretch analog-to-digital converter, TS-ADC1、闪速型2、逐次逼近型3、Sigma-Delta型1. 闪速ADC闪速ADC是转换速率最快的一类ADC。

闪速ADC在每个电压阶跃中使用一个比较器和一组电阻。

2. 逐次逼近ADC逐次逼近转换器采用一个比较器和计数逻辑器件完成转换。

转换的第一步是检验输入是否高于参考电压的一半,如果高于,将输出的最高有效位(MSB)置为1。

然后输入值减去输出参考电压的一半,再检验得到的结果是否大于参考电压的1/4,依此类推直至所有的输出位均置―1‖或清零。

逐次逼近ADC所需的时钟周期与执行转换所需的输出位数相同。

3. Sigma-delta ADCSigma-delta ADC采用1位DAC、滤波和附加采样来实现非常精确的转换,转换精度取决于参考输入和输入时钟频率。

Sigma -delta转换器的主要优势在于其较高的分辨率。

闪速和逐次逼近ADC采用并联电阻或串联电阻,这些方法的问题在于电阻的精确度将直接影响转换结果的精确度。

尽管新式ADC采用非常精确的激光微调电阻网络,但在电阻并联中仍然不甚精确。

ADC测试参数定义、分析及策略之动态测试

ADC测试参数定义、分析及策略之动态测试

ADC测试参数定义、分析及策略之动态测试2007-11-08 10:50:21分类:前言混合信号技术给当今的半导体制造商们带来了很多新挑战,以前一些对数字电路只有很小影响的缺陷如今在嵌入式器件中却可能大大改变模拟电路的功能,导致器件无法使用。

为确保这些新型半导体器件达到“无缺陷”水平,需要开发新的测试策略、方法与技术。

本文将结合一个简单的混合信号器件——模数转换器(ADC)来对这些策略、技术与方法进行讨论,说明混合信号器件测试的步骤和方法。

有了这些基本认识后,就可将其扩展并应用到当前先进的嵌入式半导体器件中,如数字滤波器、音频/视频信号处理器及数字电位计等。

传统半导体器件测试包括基本参数测试(连续性、泄漏、增益等)和功能测试(将器件输出与给定输入相比较),混合信号测试还要再另外增加两个测试,即动态测试和线性测试。

动态参数描述的是器件对一个特定频率或多频率时序变化信号的采样(从模拟信号中建立数字波形)和重现(利用数字输入建立模拟信号)能力。

线性参数则相反,描述的是器件在特性,主要关注数字和模拟电路之间的关系。

下面将对这两种特性分别作详细说明。

动态测试模数转换器的动态特性有时也称作传输参数,代表器件模拟信号采样和输入波形的数字再现能力,信噪比(SNR)、总谐波失真(THD)及有效位数(ENOB)等指标可使制造商对器件输出的“纯度”和数字信息精度进行量化。

新型动态测试技术产生于上世纪80年代,主要围绕数字信号处理和傅立叶变换,将时域波形和信号分别转换为频谱成分。

这种技术可以同时对多个测试频率进行采样,效率和重复性非常高。

图1是对一个普通ADC器件进行快速傅立叶变换(F FT)测试的示意图,图中可以看到模拟信号在时域转换成数字代码,然后用傅立叶变换转换成频谱。

对ADC输出进行傅立叶分析可提供宝贵的性能信息,但如果测试时条件设置不当得到的信息也会毫无意义。

为了从器件输出信号的傅立叶分析中提取有意义的性能参数,在讨论FFT结果之前首先需要考虑测试条件,其中包括输入信号完整性、采样频率、一致性及系统测量误差(假频、量化及采样抖动误差)。

模数转换器(ADC)的主要性能参数

模数转换器(ADC)的主要性能参数
模/数转换器(ADC)的主要性能参数
成都市工业职业技术学校
模/数转换器(ADC)的主要性能参数
(4)相 对精度
(1)分 辨率
(2)量化 误差
(3)转换 速度
模/数转换器(ADC)的 主参数
模/数转换器(ADC)的主要性能参数
实际工作中经常用A/D转换器的位数来表示A/D转换器 的分辨率。它表明A/D对模拟信号的分辨能力,由它确定能 被A/D辨别的最小模拟量变化。一般来说,A/D转换器的位 数越多,其分辨率则越高。实际的A/D转换器,通常为8, 10,12,16位等。
模/数转换器(ADC)的主要性能参数
转换速度是指完成一次A/D转换所需的 时间。转换时间是从模拟信号输入开始, 到输出端得到稳定的数字信号所经历的时 间。转换时间越短,说明转换速度越高。 并联型A/D转换器的转换速度最高,约为数 十纳秒;逐次逼近型转换速度次之,约为 数十微秒;双积分型A/D转换器的转换速度 最慢,约为数十毫秒。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ADC测试参数定义、分析及策略之动态测试2007-11—08 10:50:21分类:前言混合信号技术给当今的半导体制造商们带来了很多新挑战,以前一些对数字电路只有很小影响的缺陷如今在嵌入式器件中却可能大大改变模拟电路的功能,导致器件无法使用。

为确保这些新型半导体器件达到“无缺陷”水平,需要开发新的测试策略、方法与技术。

本文将结合一个简单的混合信号器件——模数转换器(AD C)来对这些策略、技术与方法进行讨论,说明混合信号器件测试的步骤和方法。

有了这些基本认识后,就可将其扩展并应用到当前先进的嵌入式半导体器件中,如数字滤波器、音频/视频信号处理器及数字电位计等。

传统半导体器件测试包括基本参数测试(连续性、泄漏、增益等)和功能测试(将器件输出与给定输入相比较),混合信号测试还要再另外增加两个测试,即动态测试和线性测试.动态参数描述的是器件对一个特定频率或多频率时序变化信号的采样(从模拟信号中建立数字波形)和重现(利用数字输入建立模拟信号)能力。

线性参数则相反,描述的是器件内在特性,主要关注数字和模拟电路之间的关系.下面将对这两种特性分别作详细说明。

动态测试模数转换器的动态特性有时也称作传输参数,代表器件模拟信号采样和输入波形的数字再现能力,信噪比(S NR)、总谐波失真(THD)及有效位数(ENOB)等指标可使制造商对器件输出的“纯度”和数字信息精度进行量化。

新型动态测试技术产生于上世纪80年代,主要围绕数字信号处理和傅立叶变换,将时域波形和信号分别转换为频谱成分.这种技术可以同时对多个测试频率进行采样,效率和重复性非常高.图1是对一个普通ADC 器件进行快速傅立叶变换(FFT)测试的示意图,图中可以看到模拟信号在时域内转换成数字代码,然后用傅立叶变换转换成频谱。

对ADC输出进行傅立叶分析可提供宝贵的性能信息,但如果测试时条件设置不当得到的信息也会毫无意义。

为了从器件输出信号的傅立叶分析中提取有意义的性能参数,在讨论FFT结果之前首先需要考虑测试条件,其中包括输入信号完整性、采样频率、一致性及系统测量误差(假频、量化及采样抖动误差)。

图1 ADC器件傅立叶测试示意图◆输入信号对于模数转换器来说,输入信号的“纯度”会影响数字输出的性能.输入信号中的耦合噪声将转换为输出信号数字噪声,如果输入信号中有太多噪声和失真,ADC性能实际上会被测试条件所掩盖。

输入信号的精度和纯度最终取决于器件的转换分辨率,一般来说测试设备的精度要比被测器件高10倍以上。

另外可以考虑在输入端使用滤波器,除去输入信号之外的噪声和失真。

◆采样与一致性采样频率是采样时间的倒数,如果采样数据点选择正确,一个无限时序变化信号可用有限几个数据点来表示。

通过奈奎斯特采样间隔定理,即采样频率必须是被测信号频率的两倍以上,我们可以获得正确的采样频率范围,利用采样点再现输入信号。

在我们所举例子中,ADC必须以输入频率两倍以上的频率“运行”或采样,以便正确地数字化再现出输入信号,得到有效动态测试结果。

一致性是动态测试第二个关键的部分,当能对测试信号的生成与采样进行控制时,它可以提供很多东西。

一致性采样主要是为了保证采样数据包含完整的输入周期描述信息,使得在有限的样本中收集到尽可能多输入信息。

一致性采样定义了测试频率(Ft)、样本大小(M)、采样频率(Fs)以及测试周期(N)之间的关系,如式(1)所示:M/Ft=N/Fs 式(1)这里的M和N为互质数。

另外,一致性采样还可以保证傅立叶变换将采样数据的频率成分放入离散频段中。

◆量化、假频与采样抖动量化误差指的是从时序变化信号中可分离出的最小量值信息,以我们讨论的ADC测试为例,量化误差就是最小步距代表的电压,或建立输入测试信号的模拟信号源最小分辨率。

假频是由采样产生的,它将高频信号认作低频信号。

实际上当采样频率小于信号频率两倍时,采样周期即已违反了奈奎斯特采样规定,对高频信号采用低采样率的结果就好像它是一个低频信号。

抖动误差是指系统输入或采样能力与期望值之间的差异或偏离,换句话说,本来一个有一定幅度的信号预计在时间X产生,但由于抖动误差会使信号比预期的时间提前或推迟出现;同样抖动误差也可能在采样时产生,原来规定在时间X采集数据但实际却比预期时间提前或推迟。

量化误差、抖动误差和假频都会使输入信号失真,在频谱上出现错误信息。

如果测试条件都设置正确,同时也遵守采样规则,那么时基采样信号经傅立叶变换后的频率部分将提供重要的器件性能参数。

图2是一个典型的傅立叶变换图,突出的部分是基本频率,定义为器件输入频率,在这个例子中是一个1kHz正弦波,图中也显示了在基本频率倍频上出现的谐波频率和最大幅值。

对于我们讨论的A DC器件,从频谱可以算出五个重要动态传输特性,分别是信噪比(SNR)、总谐波失真(THD)、无杂散动态范围(SFDR)、信号与噪声失真比(SINAD)以及有效位数(ENOB)。

图2 傅立叶变换图·信噪比(Signal to Noise Ratio,SNR)信噪比是输入信号和噪声(不包括任何谐波以及直流) 的功率比,是定义器件内部噪声大小的基本参数。

SN R定义的详细描述如式(2)所示:式(2)理论上ADC的信噪比范围取决于系统的位数,式(3)是理想的N bit ADC的理论SNR计算公式:SNR=6.02N+1。

76dB 式(3)这里N代表位数。

系统内部噪声会使偏离或SNR大于理论值范围,可能造成误差的原因包括:器件量化误差、器件内部噪声和驱动/采样源产生的非线性噪声(应用噪声).量化噪声关系到转换器的分辨率,转换器内的噪声主要是和输入比较器的完善程度有关。

附声卡中对SNR的定义:SNR是对声卡抑制噪音能力的一个评价。

声卡处理的是对我们有用的音频信号,而噪音是指我们不希望有的音频信号,通常是一些规律且难听的声音,是背景噪声(由机箱内电磁干扰产生)与声卡各部件在工作时产生的“杂音”的综合,声卡应该尽量屏蔽和减少这些噪音的出现与功率(音量)。

在没有出现饱和与截止情况下,有用信号功率与噪音信号功率的比值就是SNR,单位为dB.SNR值越高说明声卡的滤波效能越好,声音听起来也就越清晰。

按照微软在PC98中的规定,声卡的SNR值必须不低于80dB。

·无杂散动态范围(Spurious-free Dynamic Range,SFDR)无杂散动态范围能对系统失真进行量化,它是基本频率与杂波信号最大值的数量差。

杂波通常产生于各谐波中(虽然并不总是这样),它表示器件输入和输出之间的非线性。

偶次谐波中的杂波表示传递函数非对称失真,一个“给定”的输入信号应该产生一个“给定”的输出,但由于系统非线性,实际输出并不等于预期值,当系统接收到大小相等极性相反的信号时,得到的两个输出不相等,这里的非线性就是非对称的。

奇次谐波中的杂波表示系统传递函数的对称非线性,即给定的输入产生的输出失真对正负输入信号在数量上都是相等的。

附:在频域中,SFDR是衡量线性特性的有效方法。

如果单音正弦信号加到输入,SFDR定义在一定频率范围内的信号与第二大频率成分的功率差。

在大多通信应用中,输入是多音信号,信号由幅度、相位、和频率不同的多个信号组成.测量SFDR时将引起一些混淆,有时更好是用称之为多音功率比(Multi—tone Power Rati o,MTPR)进行测量,MTPR定义为单音载波与失真的功率比。

我们在多个频率施加一定数量的等幅但相位不同的信号.在某点测量该点的输出和该点失真的功率。

注意这有几个参数影响MTPR,例如单音幅度、挑选的单音频率、单音数量。

在不同情况下,得出的MTPR也不同。

当单音数量增加,将形成一个高的峰值.高峰值可能使放大器饱和并使DAC超出范围。

我们用峰值/平均值比(PAR)或峰值因子,测量输入信号的峰值与有效值功率,对单音正弦信号PAR=A2/(A/sqrt(2))2=2。

有时PAR也定义为均方根功率比.如果输入单音幅度相等,单音数量和相位决定PAR.多个信号输出的SFDR见式(4):SFDR=6.02×N+4。

77-10×log(PAR) 式(4)高速DAC根据奈奎斯特采样定理,如果采样时钟为fs,信号带宽为fn=fs/2,但SFDR可能比较差。

提高SFDR的一个有效途径是采用比奈奎斯特频率小的带宽,当信号带宽为fB,定义过采样率OSR=fs/fB.单个信号输出的SFDR如式(5)所示:SFDR=6。

02×N+1。

76+10×log(OSR)式(5)采样时钟的抖动影响信号的抖动,并且时钟本身存在杂散,这些杂散通过电路耦合到输出,降低信号质量.·总谐波失真(Total Harmonic Distortion,THD)总谐波失真是输入信号与系统所有谐波的总功率比,它可提供系统对称和非对称非线性产生的总失真大小,用以表达其对信号的谐波含量的作用或者影响。

式(6)附:谐波失真是指音箱在工作过程中,由于会产生谐振现象而导致音箱重放声音时出现失真。

尽管音箱中只有基频信号才是声音的原始信号,但由于不可避免地会出现谐振现象(在原始声波的基础上生成二次、三次甚至多次谐波),这样在声音信号中不再只有基频信号,而是还包括由谐波及其倍频成分,这些倍频信号将导致音箱在放音时产生失真.总谐波失真是指用信号源输入时,输出信号(谐波及其倍频成分)比输入信号多出的额外谐波成分,通常用百分数来表示.一般来说,1MHz频率处的总谐波失真最小,因此不少产品均以该频率的失真作为它的指标。

所以测试总谐波失真时,是发出1MHz的声音来检测,并希望这个值越小越好。

·信号与噪声失真比(Signal to Noise And Distortion,SINAD)信号与噪声失真比SINAD是输入信号和所有输出信号失真功率(包括谐波成分,不包括直流)比,它测量的是输出信号所有传递函数非线性加上系统所有噪声(量化、抖动和假频)的累积效果.其定义如下:式(7)在完美的转换器中,SINAD和SNR是相同的。

SNR是转换器所能达到的理想状态,SINAD是反映转换器实际性能参数的指标,当然,我们希望SINAD越接近SNR越好。

·有效位数(Effective Number of Bits,ENOB)有效位数ENOB是在ADC器件信噪比基础上计算出来的,它将传输信号质量转换为等效比特分辨率。

实际上系统噪声使输出信号失真,失真大小就反映在信噪比上.ADC的比特分辨率可以用来计算给定器件的理论信噪比,反过来也成立,所以器件的信噪比测量值也可用来计算有效器件比特分辨率。

所有噪声源和器件的不精确性合在一起,可以转化为量化误差与有效器件分辨率。

让我们再次重新温习一下在ADC中的两个重要的概念:SINAD表示ADC的信噪失真比,指ADC满量程单频理想正弦波输入信号的有效值与ADC输出信号的奈奎斯特带宽内的全部其它频率分量(包括谐波分量,不包括直流分量)的总有效值之比。

相关文档
最新文档