膜片钳记录和分析技术

合集下载

膜片钳实验与技术

膜片钳实验与技术
膜片钳实验与技术
汇报人:XX
单击输入目录标题 膜片钳实验原理 膜片钳实验操作流程 膜片钳实验数据分析 膜片钳实验的应用实例
膜片钳实验的未来发展与挑战
添加章节标题
膜片钳实验原理
膜片钳技术的基本原理
膜片钳实验原理:通过玻璃微电极接触细胞膜,记录单一离子通道活动的 电位变化,从而研究细胞膜离子通道的特性。
膜片钳实验操作步骤
准备实验器材:包括膜片钳 放大器、微操纵器、微电极、
细胞夹持器等
添加标题
细胞贴片稳定:等待细胞贴 片稳定后,进行下一步操作
添加标题
开启膜片钳放大器:开启放 大器,调节放大器参数,确 保记录到有效的膜电流信号
数据记录:记录膜电流信号, 进行分析和处理
添加标题
添加标题
添加标题
添加标题
新型膜片钳技术的研发,提高实验效率和准确性 应用人工智能技术,实现自动化数据分析与处理 结合其他技术手段,拓展膜片钳技术的应用领域 持续优化膜片钳设备,降低实验成本,提高普及率
膜片钳实验在多学科交叉中的应用前景
神经科学领域:研究神经元电活动与行为之间的联系 生理学领域:研究生物体的生理功能和机制 药理学领域:研究药物对细胞膜通道的影响和作用机制 生物医学工程领域:开发新型膜片钳技术,提高实验的灵敏度和特异性
膜片钳技术的特点:高灵敏度、高分辨率和高时间分辨率,能够记录单个 离子通道的活动。
膜片钳技术的应用范围:研究细胞膜离子通道的生理功能、药理作用和药 物作用机制等。
膜片钳实验的影响因素:电极内液的成分、温度、细胞内外的离子浓度和 pH值等。
膜片钳实验的应用范围
神经科学:研究神经细胞的电生理特性 药理学:药物对膜通道的影响 生理学:研究生物膜的离子通道功能 病理学:研究疾病状态下膜通道的异常变化

膜片钳技术数据处理与分析 ppt课件

膜片钳技术数据处理与分析  ppt课件

高通滤波的f-3dB不能高于低通滤波的f-3dB 。
带通滤波用于欲记录的信号频率较为单一和固定时,对其 它频率的噪声进行滤波。
Patch clamp training class
Apr. 23-25, 2014
23
膜片钳实验数据的处理
Notch 带阻滤波:削弱某一特定频率(如50 Hz交流) 信号。 中心频率(Center frequency):10-3,000 Hz。 频率宽度(–3dB width):频率宽度。 -3dB width越窄,滤波需要的数据点越多,滤波 效果越好。
8
膜片钳实验数据的处理
(3)Subtract fixed value(去除固定值法)
(4)Adjust manually(手工调零法)
Patch clamp training class
Apr. 23-25, 2014
9
膜片钳实验数据的处理
基线调零的注意事项 (1)有些只相对值(如电流幅度的变化值),不需要将基线调零。但多数 情况需要基线调零,建议都要进行基线调零。 (2)对于基线变动复杂的数据,基线调零可能会用到上述的几种方法。 (3)对于某些基线变动,Clampfit中的基线调零方法可能也无法准确调零。 建议最好在采集数据时就设法调整好基线。
Patch clamp training class
Apr. 23-25, 2014
29
膜片钳实验数据的处理
Clampfit演示Average Traces功能
Patch clamp training class
Apr. 23-25, 2014
30
膜片钳实验数据的处理
Analyze/Segmented Average 可对几个Trace中的某一相同时段(如Epoch A)或Cursor 1-2之间的时间段进行平 均,平均后的文件通常用于Analyze/Subtract Control功能中的Control File。

膜片钳技术数据处理与分析课件

膜片钳技术数据处理与分析课件

Patch clamp training class
PPTA学p习r. 2交3-流25, 2014
16
膜片钳实验数据的处理
信号采集后的滤波
Patch clamp training class
PPTA学p习r. 2交3-流25, 2014
17
膜片钳实验数据的处理
Clampfit滤波类型
Lowpass
Patch clamp training class
PPTA学p习r. 2交3-流25, 2014
12
膜片钳实验数据的处理
坏点的赋值 (1)Data value at cursor 1:Cursor 1的数值。 (2)Mean between cursor 1..2:Cursor 1-2之间均值。 (3)Mean between cursor 3..4:Cursor 3-4之间均值。 (4)Straight -line fit between cursor 1..2:Cursor 1-2之间的直线拟合
Patch clamp training class
PPTA学p习r. 2交3-流25, 2014
10
膜片钳实验数据的处理
Clampfit演示基线调零方法
Patch clamp training class
PPTA学p习r. 2交3-流25, 2014
11
膜片钳实验数据的处理
二、坏点的去除
坏点产生的原因 ➢ 刺激伪迹:给标本施加刺激时产生。 ➢ 电容瞬变电流:电容的充放电反应。 ➢ 瞬时脉冲干扰(Glitch):打开电源开关(日光灯、仪器设备开启时) ➢ 手机来电:一过性高频。 ➢人手靠近记录探头:高幅、高频。
14
膜片钳实验数据的处理

膜片钳记录钠电流实验结果

膜片钳记录钠电流实验结果

膜片钳记录钠电流实验结果膜片钳是一种用于记录细胞膜上离子通道电流的实验技术。

在钠电流实验中,膜片钳被广泛应用于研究神经元细胞膜上的钠离子通道的活动。

本文将详细介绍如何使用膜片钳记录钠电流实验结果。

一、实验目的通过使用膜片钳记录钠电流,我们可以了解神经元细胞膜上钠离子通道的特性和功能。

具体而言,我们可以研究钠离子通道的开放概率、电流大小和动力学特性等。

二、实验材料和设备1. 膜片钳:包括一个玻璃微电极和一个放大器。

2. 玻璃微电极:用于穿刺神经元细胞膜,并记录离子通道电流。

3. 放大器:用于放大微弱的离子通道电流信号。

4. 实验室常规设备:显微镜、注射器、培养皿等。

三、实验步骤1. 准备工作:a. 准备好玻璃微电极。

将一根玻璃毛细管拉制成细微的一端,并用火烧熔封,形成一个小孔。

b. 准备好实验室常规设备,确保实验环境安全和卫生。

2. 细胞准备:a. 选择合适的细胞进行实验。

可以使用培养的原代神经元细胞或转染表达特定蛋白质的细胞系。

b. 将培养皿中的细胞置于显微镜下,选择一个健康、完整的细胞。

3. 穿刺膜片:a. 将玻璃微电极连接到放大器上,并调整放大器参数,使其适应记录离子通道电流信号。

b. 控制玻璃微电极接近选定的细胞,并轻轻穿刺膜片,使其与玻璃微电极相连。

c. 在穿刺过程中,需要注意保持薄膜完整性和稳定性。

4. 录制钠电流:a. 穿刺成功后,将放大器参数调整到合适的范围。

通常需要设置合适的增益、滤波和采样频率等参数。

b. 开始记录钠电流。

通过施加一系列不同电压的脉冲,可以激活和测量钠离子通道的电流。

c. 记录一段时间内的电流数据,并保存以备后续分析。

5. 数据分析:a. 使用适当的软件对记录的数据进行分析。

可以计算钠离子通道的开放概率、电流大小和动力学特性等。

b. 可以绘制电流-电压曲线(I-V曲线)来描述钠离子通道的特性。

c. 进一步分析和比较不同条件下钠离子通道活动的差异。

四、实验注意事项1. 实验环境应保持安静和稳定,以避免噪音干扰。

膜片钳技术及其应用

膜片钳技术及其应用
细胞信号转导的研究
膜片钳技术可以用于研究细胞信号转导过程中离子通道和受体的变 化,了解信号转导的机制。
细胞功能调控的研究
膜片钳技术可以用于研究细胞功能调控的机制,例如细胞兴奋性的 调节和细胞内离子浓度的变化。
04 膜片钳技术的优势与局限 性
膜片钳技术的优势
高灵敏度
细胞无损
膜片钳技术具有高灵敏度,能够检测单 个离子通道的活动,从而提供关于细胞 膜电位和离子通道功能的重要信息。
膜片钳技术可以在保持细胞完整性的 情况下进行实验,不会对细胞造成严 重损伤或干扰细胞的正常功能。
实时监测
膜片钳技术可以对细胞膜电位进行实时 监测,从而了解离子通道的动态变化, 有助于深入理解细胞生理和病理过程。
膜片钳技术的局限性
1 2 3
实验条件要求高
膜片钳技术需要高精度的实验设备和条件,包括 低温、低噪声和低阻抗等,这增加了实验的难度 和成本。
03
04
05
膜片钳放大器
微操纵器
细胞培养皿或显 微镜载玻片
电极溶液
细胞内和细胞外 灌流液
用于放大细胞膜电信号, 提高信号的检测灵敏度。
用于精确控制电极的移动 ,以便在细胞膜上定位和 进行膜片钳实验。
用于培养和固定细胞,以 便进行膜片钳实验。
用于填充电极,以保持电 极的湿润和导电性。
用于维持细胞内外环境的 稳定,并排除干扰实验的 物质。
03
在单细胞水平上研究细胞信号转导和离子通道功能,深入了 解细胞生理和病理过程。
膜片钳技术与其他技术的联合应用
结合光学成像技术,利用膜片钳技术对神经元电生理特性进行同时监测和成像,实现多参数的同时测 量。
与基因编辑技术结合,利用膜片钳技术对特定基因表达的离子通道进行功能研究,深入了解基因与离子 通道的关系。

膜片钳技术及应用

膜片钳技术及应用

制备玻璃微电极
拉制微电极 材料:硼硅酸盐毛细玻璃管。 要求:玻璃毛胚外径1.3~1.7㎜,内径1.0~1.2
㎜,壁的厚度在0.2㎜以上。管壁越厚,拉 制出的电极尖端管壁也越厚,电极的跨壁 电容就越小,噪声也就越低。
玻璃微电极及膜片的几何形状
电极拉制仪
拉制方法:两步拉制法。
第一步:使玻璃软化,并拉开一个距离,形 成一个细管,即拉制电极的颈部;
高阻封接形成的电流图
膜片钳技术四种基本记录模式
细胞吸附膜片(cell-attached patch) 将两次拉制后经加热抛光的微管电极置于
清洁的细胞膜表面上,形成高阻封接,在细 胞膜表面隔离出一小片膜,既而通过微管电 极对膜片进行电压钳制,高分辨测量膜电流, 称为细胞贴附膜片。由于不破坏细胞的完整 性,
膜片钳技术
向细胞内注射恒定或变化的电流刺激, 纪录由此引起的膜电位的变化,这叫做电流 钳技术。在具体实验中,可通过给予细胞一 系列电流脉冲刺激,诱发细胞产生动作电位。
电压钳技术是通过向细胞内注射一定的
电流,抵消离子通道开放时所产生的离子流, 从而将细胞膜电位固定在某一数值。由于注 射电流的大小与离子流的大小相等、方向相 反。因此它可以反映离子流的大小和方向。
电极液的充灌
对于尖端较细的玻璃微电极,膜片钳实 验中常用的方法是:在微电极尾部施加负压 使尖端充灌电极内液,然后用注射器在微电 极尾部充灌电极内液,最后轻弹微电极杆步 使其内的气泡排出。
充灌长度为电极的1/3。
制备细胞标本
从理论上来讲,膜片钳实验用的细胞标 本可来自体内各种组织细胞,只要细胞表面 光滑,能与微电极尖端形成高阻封接即可。 但在标本制备上,不同组织细胞间联接牢固 程度不同,采用的分离方法也不完全相同。 大体上包括冲洗、酶解消化或机械分离以及 清洗等步骤。

常州细胞生物学脑定位膜片钳原理及步骤

常州细胞生物学脑定位膜片钳原理及步骤

常州细胞生物学脑定位膜片钳原理及步骤
常州细胞生物学脑定位膜片钳是一种用于记录神经元电活动的实验技术。

其原理为利用微型电极穿透细胞膜,直接记录细胞内外电位的变化,并通过程序控制电极的移动,定位到特定的神经元细胞上进行电生理实验分析。

具体步骤如下:
1. 制备膜片钳:制作玻璃微电极,并用火炬加热封闭一端,使其呈现一个微小的孔。

将另一端连接到电极放大器上。

2. 切取小鼠或大鼠脑组织:将小鼠或大鼠的脑组织切成薄片,并将其置于离心管中。

加入缓冲液处理,使脑片柔软并不断吸除液,去除脑组织中的血液和细胞间液。

3. 将片段放在实验器皿中:将制备好的膜片钳放入实验器皿中,将离心管中的脑片放在显微镜下,观察和定位神经元的位置。

4. 穿透细胞膜:通过微调玻璃微电极的位置,将其穿透神经元细胞膜,并记录细胞内外的电位变化。

5. 进行电生理实验:利用程序控制电极的移动,将膜片钳定位到具体的神经元细胞上进行离子通道电流和电势信号的测量。

6. 分析细胞电生理数据:通过数据分析软件对实验结果进行分析,了解神经元细胞的电生理特性和响应情况。

7. 记录实验结果:将数据记录下来,并用图表等方式展示实验结果,以便后续研究或发表论文。

膜片钳记录法

膜片钳记录法

膜片钳记录法(Patch Clamp Recording)是一种生理学实验技术,用于测量细胞膜离子通道或受体的电生理特性和活动。

该技术的基本原理是使用微型玻璃电极将一个非常小的玻璃管(称为膜片)贴附到单个细胞的表面上,从而形成一个微小的、高阻抗的突触点。

然后在膜片和细胞膜之间形成一个密封,并使用微电极或电极芯片记录跨越这个突触点的电位变化。

这种技术可以测量非常小的电流变化(尤其是亚毫安级别),因此非常适合研究离子通道和受体的活动。

通过控制细胞环境的情况,例如改变温度、pH值或添加化学物质,可以进一步调节离子通道和受体的电生理属性及其响应模式。

这种方法还可以用于研究各种细胞类型的电生理特性,包括神经元和心肌细胞等。

膜片钳记录法是一种十分精密的技术,在操作过程中需要非常小心谨慎,以避免损坏细胞或膜片。

同时,该技术需要一定的专业知识和设备支持,因此通常由有经验的生理学家和技术人员来执行。

总之,膜片钳记录法是一种重要的电生理技术,已经成为研究离子通道和受体的电生理学特性的关键工具之一,对于揭示神经、心血管等多种疾病的发病机制和治疗方法也具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九洲健康咨询台供
膜片钳记录和分析技术
细胞是动物和人体的基本组成单元,细胞与细胞内的通信,是依靠其膜上的离子通道进行的,离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。

由此形成了一门细胞学科-电生理学(electrophysiology),即是用电生理的方法来记录和分析细胞产生电的大小和规律的科学。

早期的研究多使用双电极电压钳技术作细胞内电活动的记录。

现代膜片钳技术是在电压钳技术的基础上发展起来的。

1976年德国马普生物物理研究所Neher和Sakmann创建了膜片钳技术(patch clamp recording technique)。

这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术)。

以后由于吉欧姆阻抗封接(gigaohm seal, 109W)方法的确立和几种方法的创建。

这种技术点燃了细胞和分子水平的生理学研究的革命之火,它和基因克隆技术(gene cloning)并架齐驱,给生命科学研究带来了巨大的前进动力。

这一伟大的贡献,使Neher和Sakmann获得1991年度的诺贝尔生理学与医学奖。

一、膜片钳技术发展历史
1976年德国马普生物物理化学研究所Neher和Sakmann首次在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh激活的单通道离子电流,从而产生了膜片钳技术。

1980年Sigworth等在记录电极内施加5-50cmH2O的负压吸引,得到10-100GW10-100G?的高阻封接(Giga-seal),大大降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。

1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1µm的空间分辨率和10µs的时间分辨率。

1983年10月,《Single-Channel Recording》一书问世,奠定了膜片钳技术的里程碑。

Sakmann和Neher也因其杰出的工作和突出贡献,荣获1991年诺贝尔医学和生理学奖。

二、膜片钳技术原理
膜片钳技术是用玻璃微电极吸管把只含1-3个离子通道、面积为几个平方微米的细胞膜通过负压吸引封接起来(见下图),由于电极尖端与细胞膜的高阻封接,在电极尖端笼罩下的那片膜事实上与膜的其他部分从电学上隔离,因此,此片膜内开放所产生的电流流进玻璃吸管,用一个极为敏感的电流监视器(膜片钳放大器)测量此电流强度,就代表单一离子通道电流。

膜片钳技术的建立,对生物学科学特别是神经科学是一资有重大意义的变革。

这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术。

些技术的出现自然将细胞水平和分子水平的生理学研究联系在一起,同时又将神经科学的不同分野必然地融汇在一起,改变了既往各个分野互不联系、互不渗透,阻碍人们全面认识能力的弊端。

这一技术的发现和基因克隆技术并架齐驱,给生命科学研究带来了巨大的前进动力。

三、全自动膜片钳技术
膜片钳技术被称为研究离子通道的"金标准"。

是研究离子通道的最重要的技术。

目前膜片钳技术已从常规膜片钳技术(Conventional patch clamp technique)发展到全自动膜片钳技术(Automated patch clamp technique)。

传统膜片钳技术每次只能记录一个细胞(或一对细胞),对实验人员来说是一项耗时耗力的工作,它不适合在药物开发初期和中期进行大量化合物的筛选,也不适合需要记录大量细胞的基础实验研究。

全自动膜片钳技术的出现在很大程度上解决了这些问题,它不仅通量高,一次能记录几个甚至几十个细胞,而且从找细胞、形成封接、破膜等整个实验操作实现了自动化,免除了这些操作的复杂与困难。

这两个优点使得膜片钳技术的工作效率大大提高了!签于全自动膜片钳技术的这些优点,目前已经广泛的用于药物筛选。

四、膜片钳技术的应用
1、应用学科
膜片钳技术发展至今,已经成为现代细胞电生理的常规方法,它不仅可以作为基础生物医学研究的工具,而且直接或间接为临床医学研究服务,目前膜片钳技术广泛应用于神经(脑)科学、心血管科学、药理学、细胞生物学、病理生理学、中医药学、植物细胞生理学、运动生理等多学科领域研究。

随着全自动膜片钳技术(Automatic patch clamp technology)的出现,膜片钳技术因其具有的自动化、高通量特性,在药物研发、药物筛选中显示了强劲的生命力。

2、应用的标本种类
使用的标本种类繁多。

从最早的肌细胞(心肌、平滑肌、骨骼肌)、神经元和内分泌细胞发展到血细胞、肝细胞、耳窝毛细胞、胃壁细胞、上皮细胞、内皮细胞、免疫细胞、精母细胞等多种细胞;从急性分散细胞和培养细胞(包括细胞株)发展到组织片(如脑片、脊髓片)乃至整体动物;从蜗牛、青蛙、蝾螈、爪蟾卵母细胞发展到鸡细胞、大鼠细胞、人细胞等等;从动物细胞发展到细菌、真菌以及植物细胞。

此外,膜片钳技术还广泛地应用到平面双分子层(Planar bilayer)、脂质体(Liposome)等人工标本上。

3、研究对象
研究对象已经不局限于离子通道。

从对离子通道(配体门控性、电压门控性、第二信使介导的离子通道、机械敏感性离子通道以及缝隙连接通道等等)的研究发展到对离子泵、交换体以及可兴奋细胞的胞吞、胞吐机制的研究等。

4、应用举例:
(1) 膜片钳技术在通道研究中的重要作用
应用膜片钳技术可以直接观察和分辨单离子通道电流及其开闭时程、区分离子通道的离子选择性、同时可发现新的离子通道及亚型,并能在记录单细胞电流和全细胞电流的基础上进一步计算出细胞膜上的通道数和开放概率,还可以用以研究某些胞内或胞外物质对离子通道开闭及通道电流的影响等。

同时用于研究细胞信号的跨膜转导和细胞分泌机制。

结合分子克隆和定点突变技术,膜片钳技术可用于离子通道分子结构与生物学功能关系的研究。

利用膜片钳技术还可以用于药物在其靶受体上作用位点的分析。

如神经元烟碱受体为配体门控性离子通道,膜片钳全细胞记录技术通过记录烟碱诱发电流,可直观地反映出神经元烟碱受体活动的全过程,包括受体与其激动剂和拮抗剂的亲和力,离子通道开放、关闭的动力学特征及受体的失敏等活动。

使用膜片钳全细胞记录技术观察拮抗剂对烟碱受体激动剂量效曲线的影响,来确定其作用的动力学特征。

然后根据分析拮抗剂对受体失敏的影响,拮抗剂的作用是否有电压依赖性、使用依赖性等特点,可从功能上区分拮抗剂在烟碱受体上的不同作用位点,即判断拮抗剂是作用在受体的激动剂识别位点,离子通道抑或是其它的变构位点上。

(2) 与药物作用有关的心肌离子通道
心肌细胞通过各种离子通道对膜电位和动作电位稳态的维持而保持正常的功能。

近年来,国外学者在人类心肌细胞离子通道特性的研究中取得了许多进展,使得心肌药理学实验由动物细胞模型向人心肌细胞成为可能。

(3) 对离子通道生理与病理情况下作用机制的研究
通过对各种生理或病理情况下细胞膜某种离子通道特性的研究,了解该离子的生理意义及其在疾病过程中的作用机制。

如对钙离子在脑缺血神经细胞损害中作用机制的研究表明,缺血性脑损害过程中,Ca2+介导现象起非常重要的作用,缺血缺氧使Ca2+通道开放,过多的Ca2+进入细胞内就出现Ca2+超载,导致神经元及细胞膜损害,膜转运功能障碍,严重的可使神经元坏死
(4) 对单细胞形态与功能关系的研究
将膜片钳技术与单细胞逆转录多聚酶链是反应技术结合,在全细胞膜片钳记录下,将单细胞内容物或整个细胞(包括细胞膜)吸入电极中,将细胞内存在的各种mRNA全部快速逆转录成cDNA,再经常规PCR扩增及待检的特异mRNA的检测,借此可对形态相似而电活动不同的结果做出分子水平的解释或为单细胞逆转录多聚酶链式反应提供标本,为同一结构中形态非常相似但功能不同的事实提供分子水平的解释。

目前国际上掌握此技术的实验室较少,我国北京大学神经科学研究所于1994年在国内率先开展。

(5) 对药物作用机制的研究
在通道电流记录中,可分别于不同时间、不同部位(膜内或膜外)施加各种浓度的药物,研究它们对通道功能的可能影响,了解那些选择性作用于通道的药物影响人和动物生理功能的分子机理。

这是目前膜片钳技术应用最广泛的领域,既有对西药药物机制的探讨,也广泛用在重要药理的研究上。

如开丽等报道细胞贴附式膜片钳单通道记录法观测到人参二醇组皂苷可抑制正常和"缺血"诱导的大鼠大脑皮层神经元L-型钙通道的开放,从而减少钙内流,对缺血细胞可能有保护作用。

陈龙等报道采用细胞贴附式单通道记录法发现乌头碱对培养的Wistar大鼠心室肌细胞L-型钙通道有阻滞作用。

(6) 在心血管药理研究中的应用
随着膜片钳技术在心血管方面的广泛应用,对血管疾病和药物作用的认识不仅得到了不断更新,而且在其病因学与药理学方面还形成了许多新的观点。

正如诺贝尔基金会在颁奖时所说:"Neher和Sadmann的贡献有利于了解不同疾病机理,为研制新的更为特效的药物开辟了道路"。

(7) 创新药物研究与高通量筛选
目前在离子通道高通量筛选中主要是进行样品量大、筛选速度占优势、信息量要求不太高的初级筛选。

最近几年,分别形成了以膜片钳和荧光探针为基础的两大主流技术市场。

将电生理研究信息量大、灵敏度高等特点与自动化、微量化技术相结合,产生了自动化膜片钳等一些新技术。

相关文档
最新文档