初中数学七年级。测试题(含答案)
【解析版】衡水市初中数学七年级下期末测试题(含解析)

一、选择题1.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52-2.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)4.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1 B .a =2,b =3 C .a =-2,b =3 D .a =-2,b =15.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个6.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.87.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠8 8.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-3 9.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 10.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度11.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行12.若0a <,则下列不等式不成立的是( )A .56a a +<+B .56a a -<-C .56a a <D .65a a< 13.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,014.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( )A .453560(2)35x y x y -=⎧⎨-=-⎩B .453560(2)35x y x y =-⎧⎨-+=⎩C .453560(1)35x y x y +=⎧⎨-+=⎩D .453560(2)35x y y x =+⎧⎨--=⎩15.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题16.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.17.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________.18.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.19.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是_____. 20.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 21.3的平方根是_________.22.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.23.已知关于x 的不等式组40339ax x +<⎧⎨-<⎩恰好有2个整数解,则整数a 的值是___________. 24.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.25.如果点M (a-1,a+1)在x 轴上,则a 的值为___________.三、解答题26.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A,B两种笔记本作为奖品,已知A,B两种每本分别为12元和20元,设购入A种x本,B种y本.(1)求y关于x的函数表达式.(2)若购进A种的数量不少于B种的数量.①求至少购进A种多少本?②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有______本(直接写出答案)27.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?28.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?29.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?30.解方程组:1234311236x yx y-+⎧-=⎪⎪⎨--⎪-=⎪⎩【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.D3.D4.A5.B6.C7.D8.A9.A10.B11.A12.C13.B14.B15.D二、填空题16.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>17.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点18.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=19.a>﹣1【解析】分析:∵由得x≥﹣a;由得x<1∴解集为﹣a≤x<1∴﹣a<1即a>﹣1∴a的取值范围是a>﹣120.【解析】将代入方程得a-2=3解得a=5故答案为521.【解析】试题解析:∵()2=3∴3的平方根是故答案为:22.0【解析】【分析】根据二元一次方程的定义可以得到x的次数等于1且系数不等于0由此可以得到m的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程23.【解析】【分析】首先确定不等式组的解集先利用含a的式子表示根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解:解得不等式组的解集为:且∵不等式组只有224.145【解析】【分析】如图:延长AB交l2于E根据平行线的性质可得∠AED=∠1根据可得AE//CD根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB交l2于E∵l25.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2C,B,,∵点C是AB的中点,则设点A的坐标是x,则∴点A表示的数是故选C.【点睛】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.2.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 4.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.5.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.6.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.7.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.8.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A9.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.10.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P 到直线l 的距离是线段PB 的长度,故选B.11.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.12.C解析:C【解析】【分析】直接根据不等式的性质进行分析判断即可得到答案.【详解】A .0a <,则a 是负数,56a a +<+可以看成是5<6两边同时加上a ,故A 选项成立,不符合题意;B .56a a -<-是不等式5<6两边同时减去a ,不等号不变,故B 选项成立,不符合题意;C .5<6两边同时乘以负数a ,不等号的方向应改变,应为:56a a >,故选项C 不成立,符合题意;D .65a a<是不等式5<6两边同时除以a ,不等号改变,故D 选项成立,不符合题意. 故选C .【点睛】 本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;不等式两边同乘以(或除以)同一个负数,不等号的方向改变.13.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.14.B解析:B【解析】根据题意,易得B.15.D解析:D【解析】解:∵直线l 1∥l 2,∴∠3=∠1=44°.∵l 3⊥l 4,∠2=90°-∠3=90°-44°=46°.故选D .二、填空题16.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>解析:m>-2【解析】【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-=+⎧⎨+=⎩①②,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.17.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a≤<.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x <3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7, ∴7833a ≤<. 故答案为:7833a ≤<. 【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a 的代数式的取值范围.18.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S 空白部分=(10-2)×(8-2)=解析:48cm 2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S 空白部分=(10-2)×(8-2)=48(cm 2)故答案为48 cm 2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.19.a >﹣1【解析】分析:∵由得x≥﹣a ;由得x <1∴解集为﹣a≤x <1∴﹣a <1即a >﹣1∴a 的取值范围是a >﹣1解析:a >﹣1【解析】分析:∵由x a 0+≥得x≥﹣a ;由12x x 2-->得x <1.∴x a 0{12x x 2+≥-->解集为﹣a≤x <1. ∴﹣a <1,即a >﹣1.∴a 的取值范围是a >﹣1.20.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12x y =⎧⎨=⎩代入方程,得 a-2=3解得a=5,故答案为5.21.【解析】试题解析:∵()2=3∴3的平方根是故答案为:解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为:22.0【解析】【分析】根据二元一次方程的定义可以得到x 的次数等于1且系数不等于0由此可以得到m 的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x 的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.23.【解析】【分析】首先确定不等式组的解集先利用含a 的式子表示根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解:解得不等式组的解集为:且∵不等式组只有2 解析:4-,3-【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:解得不等式组40339ax x +<⎧⎨-<⎩的解集为: 4-<x<4a 且a<0 ∵不等式组只有2个整数解∴不等式组的整数解是:2,3∴41-2a≤< ∴-4a<2≤-,∵a 为整数∴整数a 的值是-4, -3故答案为:4-,3-【点睛】此题考查一元一次不等式组的整数解,熟练掌握运算法则是解题关键24.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∵l 1//l 2,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD 是解题关键.25.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0解析:-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值.【详解】∵点M(a-1,a+1)在x轴上,∴a+1=0,解得a=-1,故答案为:-1.【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.三、解答题26.(1)y=30035x-,(2)①至少购进A种40本,②30.【解析】【分析】(1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;(2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;②设B种的数量m本,C种的数量n本,根据题意找出m,n的关系式,再根据调换后C 种的数量多于B种的数量,列出不等式,可求解.【详解】解:(1)∵12x+20y=1200,∴y=30035x-,(2)①∵购进A种的数量不少于B种的数量,∴x≥y,∴x≥30035x-,∴x≥752,∵x,y为正整数,∴至少购进A种40本,②设A种的数量为x本,B种的数量y本,C种的数量c本,根据题意得:12x+20y+8c=1200∴y=300235c x--∵C种的数量多于B种的数量∴c>y∴c>300235c x--∴c>30037x-,∵购进A种的数量不少于B种的数量,∴x≥y∴x≥300235c x--∴c≥150﹣4x∴c>30037x-,且x,y,c为正整数,∴C种至少有30本故答案为30本.【点睛】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.27.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.28.安排25人加工甲部件,则安排60人加工乙部件,共加工200套.【解析】试题分析:首先设安排甲部件x个人,则(85-x)人生产乙部件,根据甲零件数量的3倍等于乙零件数量的2倍列出方程进行求解.试题解析:设甲部件安排x人,乙部件安排(85-x)人才能使每天加工的甲、乙两种部件刚好配套由题意得:3×16x=2×10(85-x)解得:x=25 则85-x=85-25=60(人)答:甲部件安排20人,乙部件安排60人才能使每天加工的甲、乙两种部件刚好配套.考点:一元一次方程的应用.29.(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.【解析】【分析】(1)设每台电脑机箱的进价是x元,液晶显示器的进价是y元,根据“若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元”即可列方程组求解;(2)设购进电脑机箱z台,根据“可用于购买这两种商品的资金不超过22240元,所获利润不少于4100元”即可列不等式组求解.【详解】解:(1)设每台电脑机箱、液晶显示器的进价各是x,y元,根据题意得:1087000254120x y x y +=⎧⎨+=⎩, 解得:60800x y =⎧⎨=⎩, 答:每台电脑机箱、液晶显示器的进价各是60元,800元;(2)设该经销商购进电脑机箱m 台,购进液晶显示器(50-m )台,根据题意得:60800(50)2224010160(50)4100m m m m +-≤⎧⎨+-≥⎩, 解得:24≤m≤26,因为m 要为整数,所以m 可以取24、25、26,从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台,②电脑箱:25台,液晶显示器:25台;③电脑箱:26台,液晶显示器:24台.∴方案一的利润:24×10+26×160=4400, 方案二的利润:25×10+25×160=4250, 方案三的利润:26×10+24×160=4100, ∴方案一的利润最大为4400元.答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器.第①种方案利润最大为4400元.【点睛】考点:方案问题,方案问题是初中数学的重点,在中考中极为常见,一般难度不大,需熟练掌握.30.42x y =⎧⎨=⎩【解析】【分析】本题应对两个方程进行化简,把分数化为整数,然后运用加减消元法进行运算.【详解】 解:原方程组化为:12034311236x y x y -+⎧-=⎪⎪⎨--⎪-=⎪⎩即4310328x y x y -⎧⎨-⎩=①=②将①×2-②×3,得x =4. 将x =4代入①,得y =2.∴原方程组的解为42 xy=⎧⎨=⎩。
苏科版初中数学七年级上册第2章综合测试试卷-含答案02

第二章综合测试一、选择题(共15小题)1.如果盈利2元记为“2 元”,那么“2 元”表示( )A .亏损2元B .亏损2 元C .盈利2元D .亏损4元 2.下列说法中正确的是( )A .任何有理数的绝对值都是正数B .最大的负有理数是1C .0是最小的数D .如果两个数互为相反数,那么它们的绝对值相等 3.如图,数轴上的A 、B 、C 三点所表示的数分别为a ,b ,c ,点A 与点C 到点B 的距离相等,如果a c b >>,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点A 与点B 之间C .点B 与点C 之间D .点C 的右边 4.相反数等于其本身的数是( )A .1B .0C .1D .0,1 5.一个正数的绝对值小于另一个负数的绝对值,则两数和一定是( )A .正数B .负数C .零D .不能确定和的符号 6.已知0|31|a b ,则a b 的值是( )A .4B .4C .2D .2 7.12019的倒数是( ) A .12019 B .12019C .2019D .2019 8.绝对值小于5的所有整数的和为( ) A .0 B .8 C .10 D .209.在 1.732,3.14四个数中,无理数的个数是( )A .4个B .3个C .2个D .没有10.在3.14,227,2 )个. A .1个 B .2个C .3个D .4个11,0.32 ,227,3 ,01) ,,0.101 001 000 1中,其中无理数共有( ) A .2个 B .3个C .4个D .5个12,③1729,④0.777…,⑤2 ,是无理数的是( ) A .①③⑤ B .①②⑤ C .①④ D .①⑤13.在1.732,,157,3 ,3 ,3.02中,无理数的个数是( ) A .1 B .2C .3D .414.在实数 1.414 , ,3.14 ,2 ,3.212 212 221…,3.14中,无理数的个数是( )个.A .1B .2C .3D .415.下列实数中,无理数是( )A .2B .12C .3.14 D二、填空题(共6小题)16.吐鲁番盆地低于海平面155米,记作155 m ,南岳衡山高于海平面1 900米,则衡山比吐鲁番盆地高________m .17.在有理数集合中,最小的正整数是________,最大的负整数是________.18.在数轴上将点A 向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是________. 19.请写出一个比3大比4小的无理数:________.20.请写出一个无理数________.21.下列各数中:0.3、3 、3.14、1.515 115 11…,有理数有________个,无理数有________个.三、解答题(共3小题)22.蜗牛从某点O 开始沿一东西方向直线爬行,规定向东爬行的路程记为正数,向西爬行的路程记为负数.爬过的各段路程依次为(单位:厘米):5 ,3 ,10 ,8 ,6 ,12 ,10 .(1)求蜗牛最后是否回到出发点?(2)蜗牛离开出发点O 最远时是多少厘米?(3)在爬行过程中,如果每爬1厘米奖励一粒芝麻,则蜗牛一共得到多少粒芝麻?23.(1)将下列各数填入相应的圈内:122,5,0,1.5,2,3.(2)说出这两个圈的重叠部分表示的是什么数的集合:________.24.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为是无理数.可以这样证明:ab,a与b是互质的两个整数,且0b .则222222aa bb因为b是整数且不为0,所以,a是不为0的偶数,设2a n,(n是整数),所以222b n,所以b也是偶数,与a,b无理数.第二章综合测试答案解析一、1.【答案】A【解析】 盈利2元记为“2 元”, “2 元”表示亏损2元.故选:A .本题考查了正数和负数的定义.解本题的根据是掌握正数和负数是互为相反意义的量.2.【答案】D【解析】A 、0的绝对值是0,故选项A 错误;B 、没有最大的负有理数也没有最小的负有理数,故选项B 错误;C 、没有最大的有理数,也没有最小的有理数,故选项C 错误;D 、根据绝对值的几何意义:互为相反数的两个数绝对值相等,故选项D 正确.故选:D .本题考查了绝对值的几何意义及互为相反数的两个数在数轴上的位置特点,以及有理数的概念,难度适中.3.【答案】C 【解析】a c b >>, 点A 到原点的距离最大,点C 其次,点B 最小,又AB BC , 原点O 的位置是在点B 、C 之间且靠近点B 的地方.故选:C .本题考查了实数与数轴,理解绝对值的定义是解题的关键.4.【答案】B【解析】根据相反数的定义,则相反数等于其本身的数只有0.故选:B .主要考查了相反数的定义,要求掌握并灵活运用.5.【答案】B【解析】一个正数的绝对值小于另一个负数的绝对值, 两数和一定是负数.故选:B .本题考查了绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.【答案】D【解析】根据题意得,30a ,10b ,解得3a ,1b ,所以,312a b .故选:D .本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.7.【答案】C 【解析】12019的倒数是1=201912019.故选:C .考查了倒数的定义,考查了学生对概念的记忆,属于基础题. 8.【答案】A 【解析】绝对值小于5的所有整数为:0,1 ,2 ,3 ,4 ,之和为0.故选:A .此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.9.【答案】C【解析】无理数有: 故选:C .本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:0.101 001 000…等;③字母,如 等.10.【答案】B【解析】无理数有:,2 共2个.故选:B .此题主要考查了无理数的定义,其中初中范围内学习的无理数有: ,2 等;开方开不尽的数;以及像0.101 001 000 1…,等有这样规律的数.11.【答案】B,,3共有3个.故选:B .此题主要考查了无理数的定义,其中初中范围内学习的无理数有: ,2 等;开方开不尽的数;以及像0.101 001 000 1…,等有这样规律的数.12.【答案】D2 ,⑤2 .故选:D .本题考查了无理数的定义,属于基础题,解析本题的关键是熟练掌握无理数的三种形式.13.【答案】C【解析】在1.732,,157,3 ,3,3.02中,无理数有:,3,3 共3个.故选:C .此题主要考查了无理数的定义.判断一个数是否是无理数时,可紧密联系无理数的概念以及无理数常见的几种形式进行判断.14.【答案】D【解析】 1.414 是无理数, 是无理数,3.14 无限循环小数是有理数,2 是无理数,3.212 212 221…是无限不循环小数是无理数,3.14有限小数是有理数.故选:D .本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.15.【答案】D 【解析】A 、2是整数,是有理数,选项不符合题意;B 、12是分数,是有理数,选项不符合题意;C 、3.14是有限小数,是有理数,选项不符合题意;D 是无理数,选项符合题意.故选:D .本题考查了无理数的定义:无限不循环小数叫无理数.二、16.【答案】2 055【解析】吐鲁番盆地低于海平面155米,记作155 m ,则南岳衡山高于海平面1900米,记作1900 米; 衡山比吐鲁番盆地高1900(155)2055 (米).17.【答案】1 1【解析】在有理数集合中,最小的正整数是1,最大的负整数是1 .故答案为1;1 .本题主要考查了有理数的分类及定义.认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.特别注意:整数和正数的区别,注意0是整数,但不是正数.18.【答案】3【解析】设点A 表示的数为x ,由题意得,740x ,解得3x ,所以,点A 表示的数是3 .故答案为:3 .本题考查了数轴,主要利用了向右平移加,向左平移减,熟记并列出方程是解题的关键.19.【答案】【解析】比3大比4小的无理数很多如 .故答案为: .此题主要考查了无理数的定义,解题时注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.20.本题考查了无理数,牢记无理数的定义是解题的关键.21.【答案】3 3【解析】0.32 、3.14这三个数是有理数,31.515 115 11…这三个数是无理数,故答案为3、3.此题主要考查了无理数和有理数的知识点.三、22.【答案】(1) 531086121027270,所以,蜗牛最后能回到出发点.(2)蜗牛离开出发点0的距离依次为:5、2、12、4、2、10、0,所以,蜗牛离开出发点0最远时是12厘米.(3)1 053108612531086121054 厘米, 每爬1厘米奖励一粒芝麻, 蜗牛一共得到54粒芝麻.【解析】(1)把爬过的路程记录相加,即可得解.(2)求出各段距离,然后根据正负数的意义解析.(3)求出爬行过的各段路程的绝对值的和,然后解析即可.23.【答案】(1)(2)正整数【解析】(1)答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
初中七年级上册数学试卷【含答案】

初中七年级上册数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少?A. 3厘米B. 10厘米C. 23厘米D. 17厘米3. 一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的周长是多少?A. 22厘米B. 32厘米C. 34厘米D. 44厘米4. 下列哪个数是偶数?A. 101B. 103C. 105D. 1065. 一个正方形的边长为5厘米,那么它的面积是多少平方厘米?A. 10B. 15C. 20D. 25二、判断题(每题1分,共5分)1. 两个质数的乘积一定是合数。
()2. 任何一个三角形的内角和都是180度。
()3. 等边三角形的三条边都相等。
()4. 0是偶数。
()5. 两个负数相乘的结果是正数。
()三、填空题(每题1分,共5分)1. 1千米等于______米。
2. 一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的周长是______厘米。
3. 下列各数中,最大的质数是______。
4. 一个正方形的边长为5厘米,那么它的面积是______平方厘米。
5. 如果一个数的因数只有1和它本身,那么这个数是______。
四、简答题(每题2分,共10分)1. 请列举出前五个质数。
2. 请解释什么是等腰三角形。
3. 请解释什么是偶数。
4. 请解释什么是正方形的面积。
5. 请解释什么是因数。
五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。
2. 一个等边三角形的边长是8厘米,求这个三角形的周长。
3. 请找出30以内的所有质数。
4. 一个正方形的边长是6厘米,求这个正方形的面积。
5. 请找出50的所有因数。
六、分析题(每题5分,共10分)1. 请分析一个三角形的内角和为什么是180度。
人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)

人教版七年级数学上册第三章《一元一次方程》单元测试题(含答案)姓名: 考号: 分数:一、单选题(共 24 分)1 .下列各选项是一元一次方程的是( )A .3x 2 + 4 = 5B .m + 2n = 0C .2y +1 = 一3D .4x + 2 > 3 2 .下列运用等式的性质,变形不正确的是( )A .若a = b ,则 a + c = b + cB .若a = b ,则 a 一 3 = b + 3C .若a = b ,则 a 尝 5 = b 尝 5D .若a = b ,则 一2a = 一2b3 .已知方程(k 一 4)x |k|一3 + 5 = 6 是关于x 的一元一次方程,则k 的值为( )A .4B .一4C .4 或一4D .11 4 .如果单项式 x 2m y 与2x 4 y n +3 是同类项,那么n m = ( )A .一9B .9C .一4D .45 .已知x = 1 是关于 x 的方程ax + 2x 一 3 = 0 的解,则 a 的值为( )A .一1B .1C .一3D .36 .若代数式 —1一2x 的值是 1,则 x 的值是( ) 3A .一1B .0C .1D .27 .将一个周长为 42cm 的长方形的长减少 3cm ,宽增加 2cm ,能得到一个正方形.若设长 方形的长为 x cm ,根据题意可列方程为( )A .x + 2 = (42 一 x )一 3B .x 一 3 = (42 一 x )+ 2C .x + 2 = (21一 x )一 3D .x 一 3 = (21一 x )+ 28 .一套仪器由一个 A 部件和三个 B 部件构成,用1m 3 钢材可做 40 个 A 部件或 240 个 B 部 件。
现要用6m 3 钢材制作这种仪器,为了使制作的 A 、B 部件恰好配套,设应用xm 3 钢材制 作 A 部件,则可列方程为( )A .40x 根 3 = 240 根 (6 一 x )B .40x = 240 根 (6 一 x )根 3C .4=40 根 (6 一 x )根 3 = 240xD .40 根 (6 一 x )= 240x 根 33二、填空题(共24 分)9 .若x = 1 是关于x 的方程2x + a = 1 的解,则a = .10 .若代数式2(x - 3) 的值与9 - x 的值互为相反数,x 的值为.11 .如果a + 1 + b - 2 = 0 ,则a -(-b)= .12 .用符号※定义一种新运算a※b =ab+2(a﹣b),若3※x =2021,则x 的值为.13 .已知a:b:c=2:3:5 ,a -b + c = 36 ,则2a +b - 2c = .14 .若方程2x-m =1 和方程3x =2(x-1)的解相同,则m 的值为.15 .某商品标价100 元,现在打6 折出售仍可获利25% ,则这件商品的进价是元.16 .两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是30 千米/时,3 小时后甲船能比乙船多航行60 千米,设水流速度是x 千米/时,则可列方程.__________三、解答题(共72 分)17 .解下列方程:(1)16x - 40 = 9x +16 ;(2)4x = 20 x + 16 ;3(3)2(3 - x) = -4(x + 5) ;(4)3(-2x - 5) + 2x = 9 ;(5)1(x - 4) - (3x + 4) = -15;(6)x - 7 - 5x + 8 = 1 .2 2 4 318 .已知 x =2 是方程6x mx + 4 = 0 的解,求m 2 2m 的值.19 .若方程2x 1 = 3 和方程4x a = 2 的解相同,求 a 的值.20 .关于 x 的方程1 ax = 2x + 2a 的解比方程2x 3 =1 的解小 3,求 a 的值.3x 121 .关于 x 的一元一次方程 ── + m = 3 ,其中 m 是正整数.2 (1)当m =2 时,求方程的解;(2)若方程有正整数解,求 m 的值.22 .把一些图书分给某班学生阅读,如果每人分 3 本则剩余 20 本;如果每人分 4 本,则还缺 25 本.这个班有多少学生?23.制作一张桌子需要一个桌面和四个桌腿,1m3 木材可制作20 个桌面或制作400 条桌腿,现有12m3 的木材,应怎样计划才能使桌面和桌腿刚好配套?能制成多少套桌椅?24 .某校为承办县初中学校内涵建设,需制作一块活动展板,请来师徒两名工人.已知师傅单独完成需4 天,徒弟单独完成需6 天.(1)两个人合作需要多少天完成?(2)现由徒弟先做1 天,师徒两人再合作完成这项工作,问:徒弟共做了几天?25 .如图,在数轴上点A 表示数a ,点B 表示数b ,并且a ,b 满足a +13 +(5 -b)2 = 0 .(1)求点A ,B 之间的距离;(2)点C 在点A 的右侧,点D 在点B 的左侧,AC 为15 个单位长度,BD 为8 个单位长度,求点C ,D 之间的距离;(3)动点P 以3 个单位长度/秒的速度从点A 出发沿数轴正方向运动,同时点Q 以2 个单位长度/秒的速度从点 B 出发沿数轴负方向运动,则它们几秒钟相遇?相遇点E 表示的数是多少?参考答案1 .C2 .B3 .B4 .D5 .B6 .A7 .D8 .A9 ._110 ._311 .112 .201513 ._2714 .-515 .4816 .3(30 + x)_ 3 (30 _ x)= 60317 .(1)x = 8 ;(2)x = _6 ;(3)x = _13 ;(4)x = _6 ;(5)x = ;(6)518 .4819 .a = 620 .321 .(1) x=1(2) m=222 .这个班有45 名学生.23 .用10 立方米做桌面,用2 立方米做桌腿,可以配成200 套桌椅.1224 .(1)两个人合作需要—天完成5(2)3 天25 .(1)18(2)518 (3) 5 ;11565x = _ -17。
七年级数学上册测试题及答案全套

七年级数学上册测试题及答案全套七年级(上)数学第一章有理数检测题满分100分 答题时间 90分钟班级 学号 姓名 成绩一、填空题(每小题3分 共36分) 1、下面说法错误的是( )(A))5(--的相反数是)5(- (B)3和3-的绝对值相等(C)若0>a ,则 a 一定不为零 (D)数轴上右边的点比左边的点表示的数小2、已知a a -=、b b =、0>>b a ,则下列正确的图形是( ) (A )(B )(C )(D )3、若a a +-=+-55,则a 是( )(A )任意一个有理数 (B )任意一个负数或0(C )任意一个非负数 (D )任意一个不小于5的数 4、对乘积)3()3()3()3(-⨯-⨯-⨯-记法正确的是( ) (A )43-(B )4)3(-(C )4)3(+-(D )4)3(-- 5、下列互为倒数的一对是( )(A )5-与5 (B )8与125.0 (C )321与231 (D )25.0与4-6、互为相反数是指( )(A )有相反意义的两个量。
(B )一个数的前面添上“-”号所得的数。
(C )数轴上原点两旁的两个点表示的数。
(D )相加的结果为O 的两个数。
7、下列各组数中,具有相反意义的量是( ) (A )节约汽油10公斤和浪费酒精10公斤 (B )向东走5公里和向南走5公里 (C )收入300元和支出500元 (D )身高180cm 和身高90cm 8、下列运算正确的是( )(A )422=- (B )4)2(2-=- (C )6)2(3-=- (D )9)3(2=-9、计算:22)2(25.03.0-÷⨯÷-的值是( )(A )1009-(B )1009(C )4009(D )4009- 10、下列的大小排列中正确的是( )(A ))21()32(43)21(0+-<-+<--<--<(B ))21(0)21()32(43--<<+-<-+<-- (C ))21()32(043)21(+-<-+<<--<--(D ))21(043)32()21(--<<--<-+<+-11、将边长为1的正方形对折5次后,得到图形的面积是( )(A )0.03125 (B )0.0625 (C )0.125 (D )0.25 12、已知5=x 、2=y ,且0<+y x ,则xy 的值等于( )(A )10和-10 (B )10 (C )-10 (D )以上答案都不对 二、填空题:13、用计算器计算68)2()9(-+-,按键顺序是: 、 、 、 、 、、 + 、 、 、 、 、 、 ;结果是 。
苏教版七年级上册数学测试卷(含答案)

20XX 年无锡实验初中秋学期初一数学质量调研(考试时间:120分钟 卷面总分:150分)一、选择题(本大题共8小题,每小题3分,共24分,每小题所给的选项中只有一项符合题目要求,请把答案直接写在答题纸相应的位置上)1、-2的相反数是( )A 、21B 、2C 、-21D 、-2 2、将(+5)-(+2)—(-3)+(-9)写成省略加号的和的形式,正确的是( ) A 、-5-2+3-9 B 、5-2-3-9 C 、 5-2+3-9 D 、(+5)(+2)(-3)(-9)3、据有关资料显示,20XX 年末,盐城全市户籍人口828.5万人,将828.5万用科学记数法可表示为( )A 、 8.285×103B 、828.5×104C 、8.285×105D 、8.285×106 4、下列说法正确的是( )A 、同号两数相乘,取原来的符号B 、两个数相乘,积大于任何一个乘数C 、一个数与0相乘仍得这个数D 、一个数与-1相乘,积为该数的相反数 5、已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A 、a +b >0B 、a >bC 、ab <0D 、b ﹣a >06、小虎做了以下4道计算题:①0-(-1)=1;②12121-=⎪⎭⎫ ⎝⎛-÷;③613121-=+-;④()201512015-=-,请你帮他检查一下,他一共做对了()A 、1题B 、2题C 、3题D 、4题7、已知a 为不等于2,b 为不等于-1的有理数,则1122a +++--b b a 的值不可能是( )A 、2B 、-2C 、1D 、0 8、如图,M ,N ,P ,R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是( )A 、M 或RB 、N 或PC 、M 或ND 、P 或R二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接写在答题纸相应的位置上)9、-1.5的绝对值是______10、如果小华向东走30米,记作+30米,那么-40米,表示小华______ 11、 用“>”、“<”、“=”号填空-π____-3.14 12、绝对值不大于4.5的所有整数的和为______13、设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为______14、在数轴上与-3相距5个单位长度的点表示的数是______ 15、若(x +2)2+|y -3|=0,则x y 的值为______16、若2x =4,y=1且x <y <0,则x +y =_____17、如图所示是计算机程序计算,若开始输入x =1,则最后输出的结果是____18、古希腊数学家把数1,3,6,10,15,21,…,叫做三角形数,它有一定的规律性.若把第一个三角形数记为a 1,第二个三角形数记为a 2,…,第n 个三角形数记为a n ,计算a 2-a 1,a 3-a 2,a 4-a 3,……,由此推算,可知a 100=_____初一数学答题纸9、_____ 10、_____ 11、_____ 12、_____13、_____ 14、_____ 15、_____ 16、_____17、_____ 18、_____三、解答题(本大题共有9题,共96分.请在答题纸指定区域内作答,解题时写出必要的文字说明,推理步骤或演算步骤) 19、(本题6分)把下列各数分别填入相应的集合里2,0,34-,-4,157, 103-, 2014, -2012, -( +6 ),1.010010001...(每两个1之间多一个0),+1.99,π (1)正数集合:{ …};(2)非正整数集合:{ …};(3)无理数集合:{ …}。
七年级上册数学各单元测试题(含答案)人教版

第 一 章 有 理 数班级 学号 姓名 得分一、选择题(4分³10=40分) 1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( )A 、0.334³710人B 、33.4³510人C 、3.34³210人D 、3.34³610人 4、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8)5、计算(-1)÷(-5)³51的结果是( )A 、-1B 、1C 、251D 、-256、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ²y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1³20)mmB 、(0.1³40)mmC 、(0.1³220)mmD 、(0.1³202)mm二、填空题(5分³4=20)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么12、一个正整数,加上-10,其和小于0,则这个正整数可能是 .(写出两个即可)13、某同学用计算器计算“2÷13”时,计算器上显示结果为0.153846153,将此结果保留三位有效数字为 .14、观察下列各数,按规律在横线上填上适当的数。
2024-2025学年初中七年级上学期数学第一次月考卷及答案(北师大版)

2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥 4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A 点M B. 点N C. 点P D. 点Q5. 下列运算中,错误的是( ) A. ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数的和为0,则它们必定互为相反数D. 倒数是它本身的数只有17. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的.面展开图可能是( )A. B. C. D. 9. 有理数,a b 在数轴上的位置如图所示,则化简a b a −+的结果为( )A. bB. b −C. 2a b −−D. 2a b −10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1112=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A 3 B. 23 C. 12− D. 无法确定二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C表示.的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 17. 计算: (1)1564358−÷×; (2)35344 +−−−−; (3)()()0.350.60.25 5.4+−++−;(4)()457369612 −×−+− ; (5)18991819−×; (6)22218134333 ×−+×−×. 四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,.19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.21 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km ,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情.的况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm ,求出小明所搭的几何体的表面积(包括底面).23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.2024-2025学年北师大新课标七年级上册数学第一次月考测试卷(一)一、选择题:本题共10小题,每小题3分,共30分.每小题给出的选项中,只有一项是符合题目要求的.1. 在下列各数中,最小的数是( )A. 1.5−B. 3−C. 1−D. 5−【答案】D【解析】【分析】根据正数大于0,0大于负数,两个负数比较,绝对值大的反而小,进行比较判断即可. 【详解】解:53 1.51−>−>−>− 53 1.51∴−<−<−<−故选D .【点睛】本题考查了有理数比较大小,解决本题的关键是掌握有理数间的大小比较方法. 2. 若数据3150000000用科学记数法表示为10n a ×,则a 和n 的值分别是( )A. 3.15,8B. 3.15,9C. 3.15,10D. 0.315,10 【答案】B【解析】【分析】本题考查了绝对值大于1的科学记数法的表示,解题的关键在于确定a n ,的值. 根据绝对值大于1的数,用科学记数法表示为10n a ×,其中110a ≤<,n 的值为整数位数少1,即可得出结果.【详解】解:3150000000大于1,用科学记数法表示为10n a ×,其中 3.15a =,9n =, 故选:B .3. 不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A. 三棱柱B. 四棱柱C. 三棱锥D. 四棱锥【答案】D【解析】【详解】解:根据有四个三角形的面,且有8条棱,可知是四棱锥,而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.4. 如图,四个有理数在数轴上分别对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最大的数的点是( )A. 点MB. 点NC. 点PD. 点Q【答案】D【解析】【分析】本题考查了数轴、相反数以及绝对值的意义,解题的关键是确定原点的位置.由“点M ,N 表示的有理数互为相反数”可知原点在点M 与点N 的中点,再根据离原点越远,绝对值越大即可解答.【详解】 点M ,N 表示的有理数互为相反数, ∴原点在点M 与点N 的中点,根据数轴可知,点Q 到原点的距离最大,即点Q 的绝对值最大,故选:D5. 下列运算中,错误的是( )A ()()15555÷−=×− B. ()()()15522 −÷−=−×−C. ()18484 ÷−=×−D. 080÷=【答案】A【解析】 【分析】本题考查有理数的除法.掌握有理数的除法运算的法则是解题关键.根据有理数的除法运算法则逐项计算即可. 【详解】()1115555 ÷−=×−,故A 错误,符合题意; ()()()15522 −÷−=−×−,故B 正确,不符合题意; ()18484 ÷−=×−,故C 正确,不符合题意; 080÷=,故D 正确,不符合题意..6. 下列判断正确的是( )A. 一个有理数不是正数就是负数B. 绝对值等于它本身的数是正数C. 若两个有理数和为0,则它们必定互为相反数D. 倒数是它本身的数只有1【答案】C【解析】【分析】分别利用有理数的定义、绝对值的性质、有理数的加法法则、倒数的定义得出即可.【详解】解:A 、一个有理数可能是正数、0、负数,故此选项错误;B 、绝对值等于它本身的数是非负数,故此选项错误;C 、若两个有理数的和为0,则它们必定互为相反数,此选项正确;D 、倒数等于它本身的数有:±1,故此选项错误.故选:C .【点睛】此题主要考查了有理数的定义、绝对值的性质、有理数的加法、倒数,正确区分它们是解题关键.7. 下列各组数中,互为相反数的一组是( )A. 2(3) 与23−B. 23−与23C. 213 − 与213D. 23−−与23− 【答案】A【解析】【分析】本题考查了相反数的定义,有理数的乘方以及化简绝对值,先分别算出每个选项的值,再结合相反数的定义进行逐个比较分析,即可作答.【详解】解:A 、229(33)9, ,它们是互为相反数,符合题意,故该选项是正确的; B 、223939−==,,它们不是互为相反数,不符合题意,故该选项是错误的; C 、2211113939−== ,,它们不是互为相反数,不符合题意,故该选项是错误的; D 、223939−−=−−=−,,它们不是互为相反数,不符合题意,故该选项是错误的;故选:A .8. 如图,一个正方体纸盒的六个面上分别印有1,2,3,4,5,6,并且相对面上的两数之和为7,它的表的面展开图可能是()A. B. C. D.【答案】D【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,∵相对面上的两数之和为7,∴3与4相对,5与2相对,6与1相对观察选项,只有选项D符合题意.故选D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 有理数,a b在数轴上的位置如图所示,则化简a b a−+的结果为()A. bB. b−C. 2a b−− D. 2a b−【答案】A【解析】【分析】根据数轴上点的位置判断出绝对值里式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【详解】由数轴得:0a b<<,即0a b−<则原式b a a b=−+=故选:A【点睛】本题考查了数轴和绝对值,解答此题的关键是明确绝对值里的数值是正是负,然后根据绝对值的性质进行化简.10. a 是不为1的有理数,我们把11a−称为a 的差倒数,如:2的差倒数是1121=−−,1−的差倒数是()11112=−−,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数……以此类推,则2024a =( )A. 3B. 23C. 12−D. 无法确定 【答案】C【解析】【分析】此题主要考查学生对倒数和数字变化类知识点的理解和掌握,解答此题的关键是依次计算出2a 、3a 、4a ,找出数字变化的规律.根据规则计算出2a 、3a 、4a ,即可发现每3个数为一个循环,然后用2024除以3,即可得出答案.【详解】解:由题意可得,13a =,211213a =−=−, 3121312a == −−, 413213a ==−, …,由上可得,每三个数一个循环,202436742÷=⋅⋅⋅,∴202412a =−. 故选:C . 二、填空题:本题共5小题,每小题3分,共15分.11. 硬币在桌面上快速地转动时,看上去像球,这说明了_________.【答案】面动成体【解析】分析】根据点动成面、面动成体原理即可解答.【详解】解:硬币桌面上快速地转动时,看上去像球,这说明了面动成体.【在故答案为:面动成体.【点睛】本题主要考查了面动成体,这是面动成体的原理在现实中的具体表现.12. 在桌上摆着一个由若干个相同正方体组成的几何体,从正面看和从左面看得到的形状如图所示,设组成这个几何体的小正方体的个数为n ,则n 的最小值为__________.【答案】7【解析】【分析】本题主要考查了从不同方向看几何体,从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,得出组成这个几何体的小正方体的个数最少有7个.【详解】解:从正面看和从左面看可得此几何体底层正方体最少有5个小正方体,第二层最少有2个正方体,∴组成这个几何体的小正方体的个数最少有7个,∴n 的最小值为7,故答案为:7.13. 数学家发明了一个魔术盒,当任意 “数对 ” (,)a b 进入其中时,会得到一个新的数:21a b −+,例如把(3,2)−放入其中,就会得到23(2)112−−+=,现将 “数对”(3,2)−−放入其中后,得到的数是__________.【答案】12【解析】【分析】根据题中“数对”的新定义,求出所求即可.【详解】解:根据题中的新定义得:(-3)2+2+1=9+2+1=12,故答案为:12.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.14. 已知:2x =,3y =,且0xy <,0x y +<,则x y −=____________.【答案】5【解析】【分析】根据绝对值的意义和正负数的意义,求出x 和y 的值然后求解即可. 【详解】∵2x =, 3y =,∴xx =2或-2,3y =或-3,∵0xy <,∴x 和y 异号,又∵0x y +<,∴xx =2,3y =−,∴()235x y −=−−=,故答案为:5.【点睛】本题考查了绝对值和正负数的意义,解决本题的关键是正确理解题意,熟练掌握绝对值的意义.15. 如图,在数轴上点A 表示的数是a ,点B 表示的数是b ,且a ,b 满足|2||1|0a b +++=,点C 表示的数是17的倒数.若将数轴折叠,使得点A 与点C 重合,则与点B 重合的点表示的数是______.【答案】6【解析】【分析】先由|2||1|0a b +++=,根据绝对值的非负性,得出a 和b 的值,根据倒数的定义,得出点C 表示的数,再根据对折的要求,得出对折点,从而根据对折的性质得出与点B 重合的点表示的数.【详解】解:∵|2||1|0a b +++=,|2|0a +≥,|1|0b +≥, ∴20a +=,10b +=, ∴2a =−,1b =−,∵点C 表示的数是17的倒数, ∴点C 表示的数是7,∵7(2)9−−=, 将数轴折叠,使得点A 与点C 重合, ∴对折点表示的数为:97 2.52−=, ∴[]2.5(2.5(1) 2.5 3.56+−−=+=.【点睛】本题考查了绝对值非负性、倒数的定义,对折的性质等基础知识,根据题意正确地用数学语言表示相关概念,是解题的关键.三、计算题:本大题共2小题,共30分.16. 计算:(1)()()2832+−×−;(2)()()22100223 ÷−−−÷−; (3)()()3434⎛⎫ ⎪-÷-⨯- ⎪⎝⎭; (4)231114332 −÷−−×−. 【答案】(1)10−(2)22(3)16−(4)52− 【解析】(1)先计算乘方,再计算乘法,最后计算加法即可;(2)先计算乘方,再计算除法,最后计算减法即可;(3)先计算除法,再计算乘法即可;(4)先计算乘方,再计算乘除法,最后计算减法即可.【小问1详解】解:()()2832+−×− ()892=+×−818=−10=−;【小问2详解】解:()()22100223 ÷−−−÷−的()1004232=÷−−×−25322=;【小问3详解】解:()()3434⎛⎫⎪-÷-⨯- ⎪⎝⎭()()4433=−×−×−16=−;【小问4详解】 解:231114332−÷−−×−1811394=−÷−×−132=−+52=−.17. 计算:(1)1564358−÷×;(2)35344+−−−− ;(3)()()0.350.60.25 5.4+−++−;(4)()457369612−×−+− ;(5)18991819−×;(6)22218134333×−+×−× .【答案】(1)252−(2)1−(3) 5.4−(4)7(5)1179919− (6)6−【解析】【分析】本题考查了有理数的混合运算,乘法运算律,绝对值等知识.熟练掌握有理数的混合运算,乘法运算律,绝对值是解题的关键.(1)先进行除法运算,然后进行乘法运算即可;(2)先去括号,计算绝对值,然后进行加减运算即可;(3)利用乘法运算律计算求解即可;(4)利用乘法运算律计算求解即可;(5)利用乘法运算律计算求解即可;(6)利用乘法运算律计算求解即可.【小问1详解】 解:1564358−÷× 5564168=−×× 252=−; 【小问2详解】 解:35344 +−−−− 35344=+− 23=−1=−;【小问3详解】解:()()0.350.60.25 5.4+−++−0.350.60.25 5.4−+−()0.350.250.6 5.4=+−−5.4=−;【小问4详解】解:()457369612 −×−+−()()()4573636369612 =−×−+−×−−×163021=−+7=;【小问5详解】 解:18991819−× 11001819 =−−×1100181819=−×+× 18180019=−+ 1179919=−; 【小问6详解】 解:22218134333 ×−+×−× ()2181343=×−+− ()293=×− 6=−四、解答题:本题共6小题,共45分.解答应写出文字说明,证明过程或演算步骤. 18. (1)指出图中数轴上A B C D E ,,,,各点分别表示的有理数,并用“<”将它们连接起来;(2)在数轴上把下列各数表示出来,并比较它们的大小:447 3.5053−−,,,,. 【答案】(1)3−,3.5,2, 0,0.5;300.52 3.5−<<<<(2)见详解,443.50753−<−<<< 【解析】【分析】本题考查了有理数大小比较,数轴,准确熟练地进行计算是解题的关键.(1)先根据数轴得出各点代表的有理数,然后根据数轴比较有理数的大小即可.(2)先在数轴上把各数表示出来,然后根据数轴比较有理数的大小即可.【详解】解:(1)点A 表示的有理数为:3−,点B 表示的有理数为:3.5,点C 表示的有理数为:2,点D 表示的有理数为:0,点E 表示的有理数为:0.5,用<将它们连接起来为:300.52 3.5−<<<<.(2)各数在数轴上的表示如图:大小如下:443.50753−<−<<< 19. 计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【详解】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣12+26) =6÷(﹣16) =6×(﹣6)=﹣36【点睛】本题考查有理数的混合运算,解答本题的关键是掌握乘法分配律.20. 用棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,第1个几何体的表面积为6,第2个几何体的表面积为18.(1)求第3个几何体的表面积;(2)求第10个几何体的表面积.【答案】(1)36 (2)330【解析】【分析】本题主要考查了图形类的规律探索,根据已知图形的面积得出变化规律,第n 个几何体的表面积为:()31n n +是解题的关键.(1)只需要写出第3个几何体露在外面的小正方形面即可得到答案;(2)根据前3个几何体的表面积找到规律第n 个几何体的表面积为:()31n n +,在代入10n =进行求解即可.【小问1详解】解:由题意得,第3个几何体的表面积是66666636+++++=;【小问2详解】解:第1个几何体的表面积为()31116××+=, 第2个几何体的表面积为()322118××+=, 第3个几何体的表面积是()333136××+=, ......,以此类推,第n 个几何体的表面积是()31n n +,∴第10个几何体的表面积为()310101330××+=. 21. 如图,一辆货车从超市出发,向东走了3 km 到达小彬家,继续走了1.5 km 到达小颖家,然后向西走了9.5 km 到达小明家,最后回到超市.(1)小明家在超市的什么方向,距超市多远?以超市为原点,以向东的方向为正方向.用1个单位长度表示1 km,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?【答案】(1)图详见解析,小明家在超市西边,距超市5km;(2)8km;(3)19km.【解析】【分析】(1)根据题意画出数轴,根据数轴信息即可知小明家在超市的方向;(2)根据题意列出算式,计算即可得到结果;(3)将行驶的路程相加即可得到结果.【详解】(1)如图,小明家在超市西边,距超市5km;(2)小明家距小李家3-(-5)=8(千米).答:小明家距小李家有8千米.(3)3+1.5+9.5+5=19(千米).答:货车一共行驶了19千米.【点睛】此题考查了有理数加减混合运算的应用,弄清题意是解本题的关键.22. 小明在学习《展开与折叠》这一课后,明白了正方体能展开成多种平面图形.课后,小明用剪刀将一个正方体纸盒剪开,一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的(1)和(2),根据你所学的知识解答:(1)小明想把剪断的(2)重新粘贴到(1)上去,而且经过折叠后,仍然可以还原成一个正方体纸盒,你认为他应该将剪断的纸盒粘贴到(1)中的什么位置?请在图(1)的备用图上补全(画出所有可能的情况);(2)小明将若干个同样大小的正方体纸盒搭建成一个几何体,该几何体的三视图如下:①请你观察:小明用了多少个正方体盒子组成这个几何体?②若正方体纸盒的棱长为10cm,求出小明所搭的几何体的表面积(包括底面).【答案】(1)见解析(2)①10个;②表面积为3800平方厘米【解析】【分析】本题主要考查了正方体的展开图,求几何体的表面积:(1)根据正方体展开图“33型”有1种,“222型”有1种,“141型”有6种,“132型”有3种,结合已给图形进行求解即可;(2)①根据从不同方向看的图形分别确定每个位置小正方体的个数即可得到答案;②根据几何体表面积计算公式求解即可.【小问1详解】解:如图所示,即为所求;【小问2详解】解:①如图所示,每个位置的小立方体数如下所示:+++++=个正方体盒子组成这个几何体;∴小明用了23111210第16页/共17页 ②()()26662210103800cm ++×+××=,答:表面积为3800平方厘米. 23. 已知有理数a ,b ,c 在数轴上的位置如图所示且||||a b =,(1)求值:a b +=__________; (2)分别判断以下式子的符号(填“>”或“<”或“=”):b c +__________0;a c −__________0;ac __________0;(3)化简:|2|||||||c b c a b c −+−+−+−.【答案】(1)0 (2)<;>;<(3)a【解析】【分析】(1)根据相反数的意义,即可求解;(2)观察数轴得:0c b a <<<,且c b a >=,即可求解; (3)先根据绝对值的性质化简,再合并,即可求解.【小问1详解】解:∵||||a b =,且a ,b 所对应的点分别位于原点的两侧,∴a ,b 互为相反数,∴0a b +=;故答案为:0【小问2详解】解:观察数轴得:0c b a <<<,且c b a >=, ∴0b c +<;0a c −>;0ac <;故答案为:<;>;<【小问3详解】解:|2|||||||c b c a b c −+−+−+−()2c b a c b c =−−−+−+−2c b a c b c −+−+−a =.【点睛】本题主要考查了数轴,绝对值的性质,整式的加减,利用数形结合思想解答是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学七年级。
测试题(含答案) 七年级数学试卷满分:110分,考试时间:100分钟一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,哪一个是圆锥的侧面展开图?A。
B。
C。
D。
2.下列计算正确的是:A。
3a^2 + a = 4a^2B。
-2(a-b) = -a+bC。
5a-4a=1D。
a^2b-2ba^2 = -a^2b3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖4 400 000 000人,这个数用科学记数法表示为:A。
44×10^8B。
4.4×10^9C。
4.4×10^8D。
4.4×10^104.一元一次方程3x+6=2x-8移项后正确的是:A。
3x-2x=6-8B。
3x-2x=-8+6C。
3x-2x=8-6D。
3x-2x=-6-85.在-(-8),(-1),2007,-3,-2/53,π中,负有理数共有:A。
4个B。
3个C。
2个D。
1个6.下列说法中正确的是:A。
过一点有且仅有一条直线与已知直线平行B。
若AC=BC,则点C是线段AB的中点C。
两点之间的所有连线中,线段最短D。
相等的角是对顶角7.如图,小亮用6个相同的小正方体搭成立体图形研究几何体的三视图变化情况,若由图①变到图②,不改变的是:A。
主视图B。
主视图和左视图C。
主视图和俯视图D。
左视图和俯视图8.某商品实施促销“第二件半价”,若购买2件该商品,则相当于这2件商品共打了:A。
7.5折B。
7折C。
5.5折D。
5折9.已知线段AB=6,在直线AB上取一点P,恰好使AP=2PB,点Q为PB的中点,则线段AQ的长度是:A。
5cmB。
9cmC。
5cm或9cmD。
3cm或5cm10.如图,这些图案均是长度相同的火柴按一定的规律拼搭而成。
第1个图案需7根火柴,第2个图案需13根火柴,….依此规律,第11个图案所需火柴的数量是:二、填空题(本大题共8小题,每小题2分,共16分)11.代数式3xmy与﹣4x3y的和是一个单项式,则m= -212.已知∠α=76°36′,则∠α的补角为13°24′13.若a2﹣3b=4,则3b﹣a2+2018= 201114.已知关于x的方程(k-1)xk-1 = 0是一元一次方程,则k的值为 215.长方体的主视图与俯视图如图所示,则这个长方体的体积是 3616.已知∠AOB=24°,自∠AOB的顶点O引射线OC,若∠AOC:∠BOC=7:5,则∠AOC的度数是 42°17.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以0.7为例进行说明:设0.7=x,由0.7=0.7777…可知,无限循环小数0.7= 7/9.写成分数的形式是l0x=7.7777…,所以l0x﹣x=7,解方程,得x= 7/9.得0.7将0.7表示的等式为7/9=0.7777…18.下面是一种利用图形计算正整数乘法的方法,请根据图1﹣图4四个算图所示的规律,可知图5.无法确定图5.三、解答题(本大题共9小题,共64分)19.(本题满分6分,每小题3分)计算:(1)-2-(-3)-|(-4)| = -12)-2+3×(-1)2+2016-9÷(-3) = -200720.(本题满分8分,每小题4分)解方程:(1)5x+3x=2+6x+12-3x8x+12=2+6x+122x=-2x=-12)6x-3x+2=63x=4x=4/321.(本题满分6分)先化简,后求值:3(a2﹣4ab)﹣2(a2+2ab),其中a,b满足|a +1|+(2﹣b)2= 0.化简得:a2-10ab-2a-4b因为|a+1|>=0,所以(2-b)2=0,即b=2代入得:a2-14a-4解得:a=7-3√5或a=7+3√5代入得:-10√5或10√5答案为±10√522.(本题满分7分)利用网格画图:1)过点C画AB的平行线;如图2)过点C画AB的垂线,垂足为E;如图3)连接CA、CB,在线段CA、CB、CE中,线段最短,理由:三角形CEB的斜边最短4)点C到直线AB的距离是线段CD的长度;如图答案:223.(本题满分6分)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件。
1)这个零件的表面积是 102)请在边长为1的网格图里画出这个零件的主视图和俯视图。
如图24.(本题满分6分)如图,线段AB的中点为M,C点将线段MB分成MC:CB=1:3的两段,若AC=10,求AB的长。
AMCB设AB=2x,则MB=x,MC=x/4,CB=3x/4由勾股定理得:AC2=AM2+MC210^2=x^2+(x/4)^216x^2=1600x=10AB=2025.(本题满分8分)略。
1) ∠AOF的余角是∠COB和∠COD;2) 根据垂直角定理,∠BOD=90°-∠AOC/2=90°-80°=10°;3) 根据角平分线定理,∠2=∠1=32°,根据三角形内角和定理,∠3=180°-∠1-∠2=116°.26.(本题满分8分)1) 第5节套管的长度为34cm;2) 设第1节套管的长度为x,则第2节套管的长度为x-4,第3节套管的长度为x-8,以此类推,第5节套管的长度为x-16,所以x+x-4+x-8+x-12+x-16=311,解得x=57,所以相邻两节套管间的重叠长度为x-50=7cm.27.(本题满分9分)1) 动点P从A运动到C需要14秒;2) 相遇点M对应的数是-4;3) 当t=28秒时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.评分标准:19.(1) 2分,(2) 4分:计算过程正确,答案正确得2分,计算过程正确但答案错误得1分,只有公式或答案错误得0分;1.解:原式 = -2 + 3 - 4 + … = 2/3 (2分)解:原式 = -4 + 3×1 + 3 + … = -3 (3分) = 2 (3分)改写:首先按照题目要求计算出原式的值,然后将两个结果填入空格中,第一个空格填2/3,第二个空格填2.2.解:5x - 2 = 3x + 6 (1分)5x - 3x = 6 + 2 (2分)8x = 8 (3分)x = 1 (4分)改写:将方程按照步骤解出,逐步填入空格中,第一个空格填5x - 2 = 3x + 6,第二个空格填8x = 8,第三个空格填1.3.解:6 - (2x - 1) = 2(2x + 1) (1分)6 - 2x + 1 = 4x + 2 (2分)2x - 4x = -6 - 1 + 2 (3分)6x = -55x = 6 (4分)改写:将方程按照步骤解出,逐步填入空格中,第一个空格填6 - (2x - 1) = 2(2x + 1),第二个空格填-6x = -5/6,第三个空格填6.4.解:原式 = 3a - 12ab - 2a - 4ab (1分)2 = a - 16ab (2分)由题意得a = -1,b = 2 (4分)2原式 = (-1) - 16×(-1)×2 (5分)1 + 3233 (6分)改写:首先将原式按照题目要求计算出值,然后将计算结果填入空格中,第一个空格填2原式 = 33.5.(1) 平行线要经过1×3或2×6矩形的格点(2分)2) 垂线要经过3×1或6×2矩形的格点(4分)3) CE (5分),垂线段最短(6分)4) CE (7分)改写:将每个问题的答案填入对应的空格中即可。
6.(1) 24 (2分)2) 如图,视图每个正确2分(6分)主视图俯视图改写:将答案填入对应的空格中即可。
7.解:∵MC : CB = 1 : 3 ∴设MC = x,BC = 3x,MB = 4x (1分)M为AB的中点.∴AM = MB = 4x (3分)AC = AM + MC = 4x + x = 10,即x = 2.(5分)AB = 2AM = 8x = 16.(6分)改写:将每个步骤的计算结果填入对应的空格中即可。
8.(1) ∠BOC、∠AOD (2分)2) 对顶角相等;160;(4分)3) ∵OE平分∠AOD。
AOD = 2∠1 = 64°(5分)2 = ∠AOD = 64°(6分)OF ⊥ OCDOF = 90°(7分)改写:将每个问题的答案填入对应的空格中即可。
26.解:(1)第5节套管长度为:50-4×(5-1)=34cm。
2)第10节套管长度为:50-4×(10-1)=14cm。
设相邻两节套管间重叠的长度为xcm,则根据题意得:(50+46+42+。
+14)-(10-1)x=311,即320-9x=311.解得:x=1.因此,每相邻两节套管间重叠的长度为1cm。
27.解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19秒。
2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x,则10÷2+x÷1=8÷1+(10-x)÷2,解得x=16/3.因此,相遇点M所对应的数是16/3.3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则8-t=10-2t,解得t=2;②动点Q在CB上,动点P在OB上,则8-t=(t-5)×1,解得t=6.5;③动点Q在BO上,动点P在OB上,则2(t-8)=(t-5)×1,解得t=11;④动点Q在OA上,动点P在BC上,则10+2(t-15)=t-13+10,解得t=17.。