加氢裂化装置危险因素分析及防范措施

合集下载

加氢裂化装置说明、危险因素及防范措施

加氢裂化装置说明、危险因素及防范措施

加氢裂化装置说明、危险因素及防范措施1. 加氢裂化装置的原理和功能加氢裂化装置是炼油厂和化工厂中常用的重要设备之一,主要用于加氢作用和裂化反应。

其中加氢作用是将烃类化合物以及杂质中的硫、氮等异原子化合物与氢气反应,从而降低其含量并改善质量;裂化反应则是将高沸点的原料分子裂解成低沸点分子,以扩大产物种类和提高产量。

加氢裂化装置通常由反应器、加热器、冷却器、分离器等部分构成。

2. 危险因素由于加氢裂化装置操作强度大、工作条件极端,因此安全问题是设备运行过程中必须关注的问题。

加氢裂化装置的安全问题主要有以下几个方面:(1) 高温高压加氢裂化反应的温度一般在300 ~ 500℃,压力在0.5 ~ 5.0MPa,过程中产生大量的热量和压力,如果这些热量和压力不能得到有效控制,就会造成严重安全事故。

(2) 爆炸由于裂化反应的产物在高温高压下存在相当的不稳定性,稍有不慎就可能引发爆炸危险。

(3) 毒性气体泄露加氢裂化装置原料中含有大量的有毒有害物质,如硫化氢、苯、甲醛等,一旦泄露就会对人身造成巨大的危害。

3. 防范措施为确保加氢裂化装置的安全、稳定、顺畅运行,必须采取以下防范措施:(1) 设备压力检测应对设备各部位都配备相应的安全阀、爆破片、限压器等泄压装置,以保障设备用压力在安全范围内。

(2) 加热控制通过对加热器的温度、压力、通风等参数的控制,实现设备加热过程的安全和平稳。

(3) 有毒气体监控应使用封闭式设备,设有监测采样点,定期监测有毒气体的浓度值,并及时排除。

(4) 废气处理设施中应该设有废气处理设备,将产生的有毒气体通过处理实现安全排放。

对于裂解过程中产生的高浓度硫化氢、甲硫醇等有毒气体,应采取吸收、洗涤等措施。

(5) 人员安全教育操作人员必须经过专业的培训,了解加氢裂化装置的反应原理、安全措施和应急措施,并熟练掌握各种操作技能。

4. 结语加氢裂化装置是工业生产中不可或缺的设备之一,只有采取科学的防范措施,加强安全管理,才能做到安全生产、高效生产。

加氢裂化装置的腐蚀与防护

加氢裂化装置的腐蚀与防护

加氢裂化装置的腐蚀与防护加氢裂化是炼油厂重要的二次加工手段,可以获得高质量的轻质燃料油。

其特点是对原料适应性强,可加工直镭重柴油、催化裂化循环油、焦化镭出油,甚至可以用脱沥青重残油生产汽油、航煤、和低凝点柴油。

其次,生产方案灵活,可根据不同的季节改变生产方案,并且产品质量好,产品收率高。

加氢裂化操作条件:温度380-450°C,操作压力8-20Mpa,采用的催化剂含有Pt、Pd、W、Mo、Ni、Co等金属氧化物作为加氢组分,以硅酸铝、氟化氧化铝或结晶硅铝酸盐为载体。

原料油经加氢、裂化、异构化等反应转化为轻油产品,收率一般可达100%(体积),可以获得优质重整原料、高辛烷值汽油、航煤、和低凝点柴油,同时产品含硫、氮、烯坯低,安定性好。

加工含酸、高酸原油主要对原料油进料系统有严重影响,加氢反应器也应选择防护措施。

6.1腐蚀形态6.1.1氢损伤高温高压条件下扩散在钢中的氢与钢中不稳定的碳反应生成甲烷,可引起钢的内部脱碳,甲烷不能从钢中逸出,聚集在晶界及其附近的空隙、夹杂物等不连续处,压力不断升高,形成微小裂纹和鼓泡,钢材的延展性、韧性等显著降低,随之变成较大的裂纹,致使钢最终破坏。

因为路铝钢具有良好的高温力学性能和抗氢损伤性能,近年来加氢反应器大多选用2.25CrlMo 钢制造。

6.1.2堆焊层氢致开裂在高温高压的氢气氛中,氢气扩散侵入钢材,当反应器停工冷却过程中,温度降至150°C以下时,由于氢气来不及向外释放,钢中吸藏了一定量的氢,这样在一定条件下就有可能发生开裂。

裂纹的产生和钢中的氢气含量有很大关系,曾经有实验证明,停工7个月后的加氢反应器,堆焊层仍有29ppm的氢含量,在堆焊层上取样进行弯曲实验,弯曲角度在19-750范围内试样就发生了开裂,取试样进行脱氢处理后,试样中氢含量降到1.2ppm,试样弯曲到1800也没有发生开裂。

实验证明了氢脆的危害性,同时也证明了氢脆是可逆的。

氢气裂化停工时的危险因素及其防范措施正式版

氢气裂化停工时的危险因素及其防范措施正式版

氢气裂化停工时的危险因素及其防范措施正式版氢气裂化是将石油或其他烃类物质通过高温和高压条件下分解成氢气和碳氢化合物的过程。

这是一个高风险的工艺过程,存在多种危险因素。

本文将对氢气裂化停工时的危险因素及其防范措施进行详细介绍。

一、危险因素1.高压氢气裂化过程中,需要维持高压运行,常见的运行压力在10-30MPa之间。

这种高压如果失控,可能导致爆炸事故或设备破裂。

2.高温氢气裂化过程中,需要提供高温环境以进行反应。

高温容易引发燃烧或爆炸,尤其是在存在易燃物质的情况下,可能导致火灾事故。

3.毒性物质氢气裂化过程中,会产生一些有毒物质,如苯和一氧化碳等。

这些有毒物质如果泄漏或排放不当,可能对工人的健康造成严重危害。

4.高能源氢气裂化过程中,需要大量的能源供应。

如果能源供应不稳定或失控,可能引发火灾、爆炸或电气事故。

二、防范措施1.设备安全确保氢气裂化设备的完整性和稳定性。

定期检查和维护设备,确保设备符合相关法规和标准。

定期进行设备测试和漏气测试,及时修复设备漏气问题。

2.安全阀在氢气裂化过程中安装安全阀,用于控制和释放过高的压力。

安全阀必须定期检查和校准,确保其正常工作。

考虑使用双安全阀系统以增加安全性。

3.温度控制严格控制氢气裂化过程中的温度,确保在安全范围内。

采用可靠的温度传感器和温度控制系统,及时发现和修复温度异常。

4.防爆设备在氢气裂化场所安装防爆设备,如隔爆器、防爆灯具和防爆电气设备。

这些设备必须符合相关标准,并进行定期检查和维护。

5.现场通风在氢气裂化场所设置有效的通风系统,确保室内空气流通和新鲜空气的供应。

必要时使用气体检测仪器监测氢气和有毒物质的浓度,及时采取措施控制泄漏。

6.健康监测对从事氢气裂化操作的工人进行健康监测,并提供必要的个人防护设备,如呼吸器和防护服等。

教育工人了解有毒物质的危害性,并提供紧急情况下的逃生和救援培训。

综上所述,氢气裂化停工时存在高压、高温、毒性物质和高能源等危险因素。

加氢裂化装置安全特点和常见事故分析

加氢裂化装置安全特点和常见事故分析

加氢裂化装置安全特点和常见事故分析摘要:对某公司五百万吨/年加氢裂化装置的工作原理进行了简单的阐述,并对该装置的安全特性、安全设计等方面进行了探讨,并对该装置的常见事故进行了归纳,并对该装置的运行和检修进行了分析。

关键词:加氢裂化;开工;安全一、装置的生产原理及简介加氢是指在高压条件下,碳氢和碳氢在催化上进行的催化分解和加氢,形成低分子的加氢工艺,以及加氢脱硫、脱氮和不饱和烃的加氢。

它的化学反应包括饱和,还原,裂化和异构。

碳氢化合物在加氢时的反应方向与深度与碳氢化合物组成、催化剂性能、运行环境有关。

加氢装置由反应、分馏、蒸汽发生三部分构成,利用 UOP单管双药全周期加氢裂解技术,实现了最大程度的中馏份,并将其用作洁净燃油的混合成分。

反应段为两组式串联全周期、预混氢、高温生产,并以湿法硫为原料进行硫化。

以低氮油钝化工艺对催化剂进行钝化,利用器外部再生技术对催化剂进行再生;分馏系统主要包括汽提塔、常压分馏塔和石脑油、航煤柴油等。

该设备的主要原材料是降压蜡和炼油,以液化石脑油、石脑油、航空煤油、轻柴油、重柴油等为主。

二、加氢裂化装置安全特点2.1临氢、易燃易爆氢是一种易扩散、燃烧和爆炸的气体。

氢是一种非常活跃的化学物质,它的火焰具有“不可见性”,它的燃烧非常迅速,如果是在空中,哪怕是一点点的火星,哪怕是剧烈的碰撞,都会引起它的爆炸。

2.2系统高温高压在此基础上,对加氢厂的加氢工艺进行了严格的实验研究,提出了高压15.89 MPa和382摄氏度的工艺要求,在生产过程中,必须保证液位的稳定性,避免了串压,不然会引起一场爆炸。

2.3有毒有害化学品多该设备含有大量有毒、有毒的化工原料,包括硫化剂、催化剂、碱液、液氨等,同时还会产生大量有毒的气体,如硫化氢、 CO、羰基镍、苯等,这些有毒的化合物中含有羰基镍和苯,硫化氢对神经系统的毒性很大,所以必须进行严格的监测。

能预防渗漏,熟悉危险化学品的特性和保护。

一旦发现问题,要立即进行处置,并向上级报告,避免事态进一步恶化。

加氢装置——重点部位设备说明及危险因素及防范措施

加氢装置——重点部位设备说明及危险因素及防范措施

加氢装置——关键设备、风险因素和预防措施说明一、关键部件和设备(一)关键部件1.加热炉和反应器区域加氢装置的加热炉和反应器区域布置有加氢反应加热炉、分馏部分加热炉、加氢反应加热器、高压热交换器等设备,其中大部分设备为高压设备,介质温度比较高,而且加热炉又有明火,因此,该区域潜在的危险性比较大,主要危险为火灾、爆炸是安全上重点防范的区域。

2.高压分离器和高压空气冷却区高压分离器和高压空气冷却区内有高压分离器及高压空气冷却器,若高压分离器的液位控制不好,就会出现严重问题。

主要危险为火灾、爆炸和H2S中毒,因此该区域是安全上重点防范的区域。

3.加氢压缩机厂房循环氢压缩机布置在加氢压缩机厂房内、氢气增压机,该区域为临氢环境,氢气的压力较高,而且压缩机为动设备,出现故障的机率较大,因此,该区域潜在的危险性比较大,主要危险为火灾、爆炸中毒,是安全上重点防范的区域。

4.分馏塔区域分馏塔区域的设备数量较多,介质多为易燃、易爆物料,高温热油泵是应重点防范的设备,高温热油一旦发生泄漏,就可能引起火灾事故,分馏塔区域内有大量的燃料气、液态烃及油品,如发生事故,后果将十分严重,此外,脱丁烷塔及其干气、液化气中H2S浓度高,有中毒危险,因此,该区域也是安全防范的关键区域。

(二)主要设备1.加氢反应器加氢反应器多为固定床反应器,加氢反应属于气-液-固三相涓流床反应,加氢反应器分为冷壁反应器和热壁反应器:冷壁反应器内有隔热衬里,反应器材质等级较低;热壁反应器没有隔热衬里,而是采用双层堆焊衬里,材质多为2×1/4Cr-1Mo。

加氢反应器内的催化剂需分层装填,中间使用急冷氢,因此加氢反应器的结构复杂,反应器入口设有扩散器,内有进料分配盘、集垢篮筐、催化剂支承盘、冷氢管、冷氢箱、再分配盘、出口集油器等内构件。

加氢反应器的操作条件为高温、高压、临氢,操作条件苛刻,是加氢装置最重要的设备之一。

2.高压热交换器反应器出料温度较高,具有很高热焓,应尽可能回收这部分热量,因此加氢装置都设有高压热交换器,用于反应器排放与原料油和循环氢之间的热交换。

氢气裂化停工时的危险因素及其防范措施

氢气裂化停工时的危险因素及其防范措施

氢气裂化停工时的危险因素及其防范措施氢气裂化工艺是工业化生产中广泛应用的一种技术,但其生产过程中存在一定的安全风险。

停工时,氢气裂化装置内残留的气体和液体可能会因为某些原因引发事故。

因此,在停工期间,必须采取相应的安全防范措施,以避免潜在的危险。

危险因素:1.氢气残留在停工时,氢气裂化装置内残留的氢气如果未能排放干净,可能会因为某些原因引发爆炸。

因此,在停工时要彻底排放氢气,确保装置内没有残留气体。

2.液相氢气液态氢气在温度升高时会转化成气态,产生大量氢气,从而增加火灾和爆炸的风险。

因此,在停工时必须排空液态氢,避免液态氢发生意外。

3.高温氢气裂化工艺需要高温进行,停工后装置内温度下降较慢,导致装置内可能存在高温区域。

这些高温区域可能导致装置内发生爆炸或起火,因此在停工时要确保装置内温度降低到安全范围内。

防范措施:1.彻底排空停工前要对装置内残留的氢气进行排放,确保装置内没有氢气。

排放前要仔细检查气路、液路管道是否畅通,确保排放管道的安全。

排放过程要稳妥进行,注意周围的环境和设备安全。

2.液态氢处理液态氢的处理方法有两种,一种是将氢气气化,逐步排放;另一种是使用燃烧器,在适当条件下将液态氢燃烧成水蒸汽,然后排放。

无论采用哪种方法,都要确保操作人员的安全。

3.温度控制为了避免停工期间装置内出现高温区域,需要采取降温措施,如使用空气或其他热交换媒介进行降温。

同时,在装置内安装温度传感器,定期监测装置内的温度变化,以保持装置内温度在安全范围内。

总之,对于氢气裂化装置,安全防范措施应该始终贯穿于整个工艺的全过程。

在停工期间,更要加强危险因素的防范和控制,确保工人的安全和装置的完好无损。

加氢裂化装置说明危险因素及防范措施

加氢裂化装置说明危险因素及防范措施

加氢裂化装置说明危险因素及防范措施集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-加氢裂化装置说明、危险因素及防范措施一、装置简介(一)装置的发展及类型1.加氢装置的发展加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构化等,下面重点介绍加氢裂化加工过程。

加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。

1959年美国谢夫隆公司开发出了Isocrosking加氢裂化技术,其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司开发出了Uicraking加氢裂化技术。

加氢裂化技术在世界范围内得到了迅速发展。

早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966年我国建成了第一套4000kt/a的加氢裂化装置。

进入20世纪90年代以后,国内开发的中压加氢裂化及中压加氢改质技术也得到了应用和发展。

2.装置的主要类型加氢装置按加工目的可分为:加氢精制、加氢裂化、渣油加氢处理等类型,这里主要介绍加氢裂化装置。

加氢裂化按操作压力可分为:高压加氢裂化和中压加氢裂化,高压加氢裂化分离器的操作压力一般为16MPa左右,中压加氢裂化分离器的操作压力一般为9.OMPa左右。

加氢裂化按工艺流程可分为:一段加氢裂化流程、二段加氢裂化流程、串联加氢裂化流程。

一段加氢裂化流程是指只有一个加氢反应器,原料的加氢精制和加氢裂化在一个反应器内进行。

该流程的特点是:工艺流程简单,但对原料的适应性及产品的分布有一定限制。

二段加氢裂化流程是指有两个加氢反应器,第一个加氢反应器装加氢精制催化剂,第二个加氢反应器装加氢裂化催化剂,两段加氢形成两个独立的加氢体系,该流程的特点是:对原料的适应性强,操作灵活性较大,产品分布可调节性较大,但是,该工艺的流程复杂,投资及操作费用较高。

加氢裂化装置说明、危险因素及防范措施正式样本

加氢裂化装置说明、危险因素及防范措施正式样本

文件编号:TP-AR-L5179In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives.(示范文本)编制:_______________审核:_______________单位:_______________加氢裂化装置说明、危险因素及防范措施正式样本加氢裂化装置说明、危险因素及防范措施正式样本使用注意:该解决方案资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。

材料内容可根据实际情况作相应修改,请在使用时认真阅读。

一、装置简介(一)装置的发展及类型1.加氢装置的发展加氢是指石油馏分在氢气及催化剂作用下发生化学反应的加工过程,加氢过程可分为加氢精制、加氢裂化、临氢降凝、加氢异构化等,下面重点介绍加氢裂化加工过程。

加氢技术最早起源于20世纪20年代德国的煤和煤焦油加氢技术,第二次世界大战以后,随着对轻质油数量及质量的要求增加和提高,重质馏分油的加氢裂化技术得到了迅速发展。

1959年美国谢夫隆公司开发出了Isocrosking 加氢裂化技术,其后不久环球油品公司开发出了Lomax加氢裂化技术,联合油公司开发出了Uicraking加氢裂化技术。

加氢裂化技术在世界范围内得到了迅速发展。

早在20世纪50年代,我国就已经对加氢技术进行了研究和开发,早期主要进行页岩油的加氢技术开发,60年代以后,随着大庆、胜利油田的相继发现,石油馏分油的加氢技术得到了迅速发展,1966年我国建成了第一套4000kt/a的加氢裂化装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加氢裂化装置危险因素分析及防范措施加氢裂化装置是一种常见的石油炼制设备,用于将重质石油馏分转化为轻质产品。

由于其涉及高温、高压和易燃气体的处理,加氢裂化装置存在一定的危险因素。

以下是对加氢裂化装置危险因素进行分析及防范措施的详细讨论:
1.高温、高压环境:加氢裂化装置的操作温度和压力很高,这可能导致爆炸、烫伤和压力容器失效等危险。

防范措施包括进行严格的设备检测和维护,确保设备的可靠性和安全性。

同时,操作人员应接受专业培训,了解设备操作程序,并采取必要的个体防护措施。

2.氢气泄漏:加氢裂化过程需要大量的氢气供应,氢气泄漏可能导致爆炸和火灾。

防范措施包括建立有效的检测系统,例如氢气泄漏传感器和气体监测装置。

同时,设立紧急切断阀以及紧急撤离和逃生计划,以应对可能的危险情况。

3.操作错误:不正确的操作可能导致设备失控、爆炸和火灾。

防范措施包括操作人员的严格培训和技能认证,强调正确操作程序和注意事项,以及建立安全监控和控制系统,控制操作参数,并及时警报和采取应对措施。

4.化学品泄漏:在加氢裂化过程中使用的化学品可能泄漏,对人员和环境造成危害。

防范措施包括使用正确的储存和搬运设备,建立紧急泄漏应急预案,设立泄漏控制设备如泄漏检测器和紧急疏散装置,以及进行必要的防护措施如化学品接触个体防护装备。

5.火灾和爆炸风险:加氢裂化装置中操作的高温、高压环境以及易燃气体的存在,使得火灾和爆炸风险变得更高。

防范措施包括使用防火和防爆设备、建立火灾报警和满足灭火系统,完善紧急疏散和撤离计划。

6.设备失效:设备故障可能导致操作失控和危险情况的发生。

防范措施包括进行定期设备检测和维护,实施预防性维护计划,及时更换老化设备,以及建立备用设备和应急备件库存。

7.环境污染:加氢裂化装置的操作会产生废气和废水,其中可能含有有毒物质。

防范措施包括建立废气和废水处理系统,确保其符合环境法规标准。

此外,通过合理的能源利用和废弃物管理措施,减少对环境的不良影响。

综上所述,加氢裂化装置是一种复杂的设备,涉及多种危险因素。

为了确保操作人员和设备的安全,必须采取相应的防范措施,包括设备的维护与检测、操作员的培训、应急预案的建立等。

这些措施将有效地减少事故的发生,并确保工作环境的安全和稳定。

相关文档
最新文档