基于单片机系统的红外遥控器应用
基于51单片机的红外遥控设计-毕业设计论文

基于51单片机的红外遥控设计摘要很多电器都采用红外遥控,那么红外遥控的工作原理是什么呢?本文将介绍其原理和设计方法。
红外线遥控就是利用波长为0.76~1.5μm之间的近红外线来传送控制信号的。
常用的红外遥控系统一般分发射和接收两个部分。
红外遥控常用的载波频率为38kHz,这是由发射端所使用的455kHz晶振来决定的,在发射端要对晶振进行整数分频,分频系数一般取12,所以455kHz÷12≈37.9 kHz≈38kHz。
也有一些遥控系统采用36kHz、40kHz、56kHz等,一般由发射端晶振的振荡频率来决定。
接收端的输出状态大致可分为脉冲、电平、自锁、互锁、数据五种形式。
“脉冲”输出是当按发射端按键时,接收端对应输出端输出一个“有效脉冲”,宽度一般在100ms左右。
一般情况下,接收端除了几位数据输出外,还应有一位“数据有效”输出端,以便后级适时地来取数据。
这种输出形式一般用于与单片机或微机接口。
除以上输出形式外,还有“锁存”和“暂存”两种形式。
所谓“锁存”输出是指对发射端每次发的信号,接收端对应输出予以“储存”,直至收到新的信号为止;“暂存”输出与上述介绍的“电平”输出类似。
关键词:80c51单片机、红外发光二极管、晶振目录第一章1、引言 (3)2、设计要求与指标 (3)3、红外遥感发射系统设计 (4)4、红外发射电路设计 (4)5、调试结果及分析 (9)6、结论 (10)第二章1、引言 (10)2、设计要求与指标 (11)3、红外遥控系统设计 (11)4、系统功能实现方法 (15)5、红外接收电路 (16)6、软件设计 (17)7、调试结果及分析 (18)8、结论 (19)参考文献附录绪论人的眼睛能看到的可见光按波长从长到短排列,依次为红、橙、黄、绿、青、蓝、紫。
其中红光的波长范围为0.62~0.76μm;紫光的波长范围为0.38~0.46μm。
比紫光波长还短的光叫紫外线,比红光波长还长的光叫红外线。
基于STC89C51单片机的红外遥控智能家居系统设计

基于STC89C51单片机的红外遥控智能家居系统设计1. 本文概述阐述问题:我会指出当前智能家居系统中存在的问题,以及为什么需要基于STC89C51单片机的解决方案。
提出解决方案:接着,我会概述STC89C51单片机在智能家居系统中的作用以及红外遥控技术的优势。
文章结构:我会简要介绍文章的结构,说明接下来的章节将如何展开。
随着科技的不断进步,智能家居系统逐渐成为现代家庭生活的一部分,它们通过提高居住环境的舒适性、安全性和便利性,极大地提升了人们的生活质量。
现有的智能家居系统在集成性、成本效益和用户交互体验方面仍存在不足。
为了解决这些问题,本文提出了一种基于STC89C51单片机的红外遥控智能家居系统设计方案。
STC89C51单片机以其较低的成本、丰富的功能和良好的稳定性,成为实现智能家居控制的理想选择。
结合红外遥控技术,该系统不仅能够实现远程控制家电设备,还能通过简单的编程实现个性化的家居自动化场景,从而为用户提供更加灵活和智能的居住体验。
本文将首先介绍智能家居系统的基本概念和发展趋势,然后详细阐述STC89C51单片机的工作原理及其在智能家居系统中的应用。
接着,本文将描述红外遥控技术的原理,并展示如何将其与STC89C51单片机结合,实现对家居设备的智能控制。
本文将通过一个实际的系统设计案例,展示该设计方案的可行性和实用性。
2. 相关技术综述单片机技术:介绍STC89C51单片机的基本特性,包括其处理能力、内存、IO端口等,并说明其在智能家居系统中的应用优势。
红外通信技术:概述红外通信的基本原理,包括信号的调制、传输和解码过程,以及红外技术在遥控设备中的优势。
智能家居系统架构:描述智能家居系统的一般架构,包括控制中心、通信协议、传感器和执行器等组成部分。
现有智能家居解决方案:简要回顾市场上已有的智能家居解决方案,分析它们的特点和局限性。
设计挑战与创新点:讨论在设计基于STC89C51单片机的红外遥控智能家居系统时面临的技术挑战,以及本设计相对于现有技术的创新之处。
基于51单片机的红外线控制系统 2

单片机原理结课项目项目题目基于51单片机的红外线控制系统基于51单片机的红外线控制系统一、概述:红外遥控是一种无线、非接触控制技术,具有抗干扰能力强,信息传输可靠,功耗低,成本低,易实现等显著优点,被诸多电子设备特别是家用电器广泛采用,并越来越多的应用到计算机系统中。
由于红外线遥控不具有像无线电遥控那样穿过障碍物去控制被控对象的能力,所以在设计红外线遥控器时,不必要像无线电遥控器那样,每套( 发射器和接收器) 要有不同的遥控频率或编码( 否则,就会隔墙控制或干扰邻居的家用电器) ,所以同类产品的红外线遥控器,可以有相同的遥控频率或编码,而不会出现遥控信号“串门”的情况。
这对于大批量生产以及在家用电器上普及红外线遥控提供了极大的方面。
由于红外线为不可见光,因此对环境影响很小,再由红外光波动波长远小于无线电波的波长,所以红外线遥控不会影响其他家用电器,也不会影响临近的无线电设备。
基于51单片机的红外线控制系统。
要求通过单片机发送和接红外信号程序,根据接收的信号,执行有关动作的系统,能够实现近距离的无线通。
二、硬件设计1. 系统框图2. 电路原理图电路由五个模块构成(最小系统模块、红外接收模块、数码管显示模块、编程下载模块、电源模块)1) 最小系统STC12C5410AD 单片机红外接收头红外遥控器复位电路时钟振荡电路数码光显示最小系统由stc12c5410ad单片机,按键复位电路,时钟振荡电路构成。
a.电源电源采用5V直流电供电。
b.时钟、复位电路本电路选用12MHz晶振。
2)红外接收模块3)显示模块三、软件设计1.红外编解码原理红外线发射编码,以脉宽为0.565ms、间隔0.56ms、周期为1.125ms的组合表示二进制‘0’;以脉宽为0.565ms、间隔1.658ms、周期为2.25ms的组合表示二进制‘1’;红外接收头接收的信号和发射编码相反;一组编码由一个引导码,四个字节数据组成;引导码由9ms的高电位和4.5ms的地电位组成。
基于单片机的红外通信系统设计

基于单片机的红外通信系统设计1 简介红外通信是指利用红外线进行信息传输的一种无线通讯方式。
其传输距离在10米以内,速度较快,常用于遥控器、智能家居、安防监控等领域。
本文将介绍基于单片机的红外通信系统设计。
2 系统原理红外通信系统需包含红外发射器、红外接收器和处理器三个部分。
通信原理是将信息编码成红外信号,通过红外发射器发出,再由红外接收器接收,经过解码后传输到处理器中处理。
3 系统设计步骤3.1 红外接收器电路设计红外接收器采用红外管接收器,其特点是灵敏度高,在不同角度能接收到较远的红外信号。
红外管接收器与电路板焊接,电路板再选用较长的电线接到处理器的端口上。
3.2 红外发射器电路设计红外发射器采用红外二极管,其工作电压一般为1.2-1.4V。
通过接通1kHz以上的方波信号控制二极管的导通,使其发出红外光。
为保证其稳定性和较远的有效距离,需在电路中添加反向电流保护二极管。
3.3 处理器设计处理器选用常用的单片机,如AT89C51等。
单片机内置了红外通信模块,可用来发送和接收红外信号。
同时,还需通过编程实现对红外信号的解码和编码,实现信息传输与处理。
4 系统测试测试时,可用遥控器模拟发送红外信号,系统接收并解码后显示在液晶屏幕上。
测试距离一般在10米以内,且需保持天空无其它遮挡物。
5 总结基于单片机的红外通信系统设计,具有灵敏度高、速度快、传输距离短等特点。
其应用广泛,在智能家居、安防监控、车载通信等领域均有应用。
但需注意遮挡物的影响,以及信号干扰等问题。
基于单片机的红外线遥控器设计

De s i g n o f I n f r ar e d Re mo t e Co n t r o l l e r B a s e d O n MCU
W AN G Ho n g r n e i
( T i a n j i n T i a n b o S c i e n c e&T e c h n o l o g y C o . , L T D, T i a n j i n 3 0 0 0 7 2 , C h i n a )
子技 术 , 2 0 0 3 , ( 0 6 ) : 4 0 — 4 1
自动 化应 用 { 2 0 1 3 9期
3 2
图1 单 片 机 遥 控 发射 器 和接 收器 设 计 原 理 图
难度大 因此 , 这几种方式都未能大量使用 。
而 红 外 遥 控 方 式 是 以 红 外 线 作 为 载 体 来 传 送 控 制信息 的 , 因其 反 应 速 度 快 、 传 输效率 高 、 工 作 稳 定 可 靠 等 优 点 而 广 泛 应 用 红 外 线 发 射 装 置 采 用 红 外 发光 二 极管 . 遥 控 发 射 器 易 于 小 型化 且 价 格 低 廉 : 采 用 数 字 信 号 编 码 和二 次 调 制 方 式 . 不 仅 可 以 实 现 多 路 信 息 的控 制 . 增加遥控功能 , 提高信 号传输的率 消 耗 低 : 红 外 线 不 会 向室 外 泄 露 ,
率。
参 考文献
该 系统在实 验过程 中运行 稳定 、 控制 准确 、 操作
一
。
—
5 I X T A L 1 P I . 4  ̄ 1
[ 1 】曹建 军 , 戴 兵. 无 线 遥 控技 术在 施 工现 场 的应 用—— 利 用 弱 电控制 强 电实现 节 能减 材[ J ] . 施 工技 术 , 2 0 1 1 ,
基于51单片机的红外通信设计报告

基于51单片机的红外通信设计报告研究方案:基于51单片机的红外通信设计报告摘要:本研究旨在通过对基于51单片机的红外通信的研究与实践,对红外通信协议进行优化和改进,提高通信的可靠性和稳定性。
通过设计红外发射器和接收器,并利用51单片机进行编程控制,实现了红外信号的发送与接收。
在实验中,采集了一系列数据,通过对这些数据的整理和分析,发现了现有研究成果的不足之处,并提出了一种新的观点和方法,为解决实际问题提供了有价值的参考。
1. 引言红外通信是一种常见的无线通信方式,具有传输速度快、安全可靠等优点,在家庭电器控制、遥控玩具、无线数据传输等领域广泛应用。
本研究基于51单片机进行红外通信协议的设计与实践,旨在优化和改进红外通信的性能。
2. 研究设计2.1 硬件设计2.1.1 红外发射器设计通过使用红外发光二极管作为发射器,并连接到51单片机的IO口,控制IO口的高低电平来实现对发射器的开关控制。
2.1.2 红外接收器设计通过使用红外接收头作为接收器,并将其连接到51单片机的IO口,通过检测接收器的信号电平变化来判断接收到的红外信号。
2.2 软件设计2.2.1 红外信号解析与发送在51单片机上编写红外信号解析与发送的程序,通过对输入信号的解析,将需要发送的红外信号编码成特定协议的数据帧,再通过IO口的控制将数据帧发送出去。
2.2.2 红外信号接收与解析在51单片机上编写红外信号接收与解析的程序,通过IO口的状态变化检测,获取红外接收器接收到的信号,并对接收到的信号进行解析,还原成原始数据。
3. 实验与调查情况在本研究中,我们通过实验和调查采集了一系列的数据来评估所设计的红外通信系统的性能。
3.1 实验设置我们设置了一个包含发射器和接收器的实验平台。
通过按下遥控器上的按键,触发发射器发送特定红外信号,在接收器上探测到红外信号,并通过51单片机进行信号解析。
3.2 数据采集与分析通过对实验中采集到的数据进行整理和分析,我们可以得到以下结论:(1)在传输距离较近的情况下,信号的可靠性和稳定性良好。
基于单片机的红外遥控智能小车设计

基于单片机的红外遥控智能小车设计引言:随着科技的不断发展,智能物联网已经走进了我们的生活。
智能小车作为一种智能化的产品,能够实现远程遥控、自动避障等功能,受到了广大消费者的青睐。
本文就基于单片机的红外遥控智能小车设计进行详细介绍。
一、设计目标本设计的目标是通过红外遥控,实现对智能小车的远程控制,小车能够根据收到的指令进行行驶、避障等操作。
二、设计原理1.主控芯片:本设计使用单片机作为主控芯片,常用的单片机有51系列、AVR系列等,可根据实际需求选择合适的芯片型号。
2.红外遥控模块:红外遥控模块是实现红外通信的设备,可以将遥控器发出的红外信号解码成数据,实现遥控操作。
3.电机驱动模块:电机驱动模块可将单片机的PWM信号转化为电机的动力驱动信号,控制小车的行驶方向和速度。
4.超声波传感器:超声波传感器可以感知到小车前方的障碍物距离,根据测得的距离,进行相应的避障操作。
5.电源模块:小车需要使用适当的电源,通常是锂电池或者直流电源供应。
三、系统设计1.硬件设计:(1)搭建小车底盘:根据所选择的底盘,搭建小车结构,并安装好电机驱动模块、电源模块等硬件设备。
(2)连接电路:将红外遥控模块、超声波传感器等硬件设备与主控芯片进行连接,确保每个模块正常工作。
2.软件设计:(1)红外遥控程序设计:通过红外遥控模块接收红外信号,并解码成相应的指令。
根据指令控制电机驱动模块,实现小车的行驶方向和速度控制。
(2)超声波避障程序设计:根据超声波传感器测得的距离,判断是否有障碍物,如果有障碍物就停止或者转向。
四、实验结果和讨论经过实验验证,本设计的红外遥控智能小车能够准确接收红外信号,并根据指令控制小车的行驶方向和速度。
同时,超声波传感器能够及时感知到前方的障碍物,并进行相应的避障操作。
然而,该设计仍然存在一些不足之处,比如超声波传感器的测距范围有限,可能无法感知到较小的障碍物。
此外,红外遥控信号的传输距离也有一定限制,需要保持遥控器与小车之间的距离不过远。
基于51单片机的红外遥控

基于51单片机的红外遥控红外遥控是无线遥控的一种方式,本文讲述的红外遥控,采用STC89C52单片机,1838红外接收头和38k红外遥控器。
1838红外接收头:红外遥控器:原理:红外接收的原理我不赘述,百度文库上不少,我推荐个网址,这篇文章写得比较清楚,也比较全面,我主要讲下程序的具体意思,在了解原理的基础上,我们知道,当我们在遥控器上每按下一个键,遥控器上的红外发射头都会发出一个32位的编码(32位编码分成4组8位二进制编码,前16位为用户码和用户反码,后16位为数据码和数据反码,用户码表示遥控器类型,数据码表示按键编码),不同的键对应不同的编码,红外接收头接收到这个编码后,发送给单片机,再进行相关操作。
源程序1:(这个程序的功能是将用户码和用户反码,数据码和数据反码显示在1602液晶上,因为遥控器买回来是不会说明按键对应什么码值,所以先自己测试,确定每个按键的码值)#include<reg52.h>#include<stdio.h>#include<intrins.h>#define uint unsigned int#define uchar unsigned char#define _Nop() _nop_()#define TURE 1#define FALSE 0/*端口定义*/sbit lcd_rs_port = P3^5; /*定义LCD控制端口*/sbit lcd_rw_port = P3^6;sbit lcd_en_port = P3^4;#define lcd_data_port P0///////////////////////////////////void delay1 (void)//关闭数码管延时程序{int k;for (k=0; k<1000; k++);}////////////////////////////////////uchar code line0[16]={" user: "};uchar code line1[16]={" data: "};uchar code lcd_mun_to_char[16]={"0123456789ABCDEF"};unsigned char irtime;//红外用全局变量bit irpro_ok,irok;unsigned char IRcord[4];//用来存放用户码、用户反码、数据码、数据反码unsigned char irdata[33];//用来存放32位码值void ShowString (unsigned char line,char *ptr);//////////////////////////////////////////////void Delay(unsigned char mS);void Ir_work(void);void Ircordpro(void);void tim0_isr (void) interrupt 1 using 1//定时器0中断服务函数{irtime++;}void ex0_isr (void) interrupt 0 using 0//外部中断0服务函数{static unsigned char i;static bit startflag;if(startflag){if(irtime<63&&irtime>=33)//引导码TC9012的头码i=0;irdata[i]=irtime;irtime=0;i++;if(i==33){irok=1;i=0;}}else{irtime=0;startflag=1;}}void TIM0init(void)//定时器0初始化{TMOD=0x02;//定时器0工作方式2,TH0是重装值,TL0是初值TH0=0x00;//reload valueTL0=0x00;//initial valueET0=1;//开中断TR0=1;}void EX0init(void){IT0 = 1; // Configure interrupt 0 for falling edge on /INT0 (P3.2)EX0 = 1; // Enable EX0 InterruptEA = 1;}void Ircordpro(void)//红外码值处理函数(关键函数){unsigned char i, j, k=1;unsigned char cord,value;for(i=0;i<4;i++){//处理4个字节for(j=1;j<=8;j++){ //处理1个字节8位cord=irdata[k];value=value>>1;if(cord>7) value=value|0x80; //大于某值为1k++;}IRcord[i]=value;value=0;}irpro_ok=1;//处理完毕标志位置1}///////////////////////////////////////////void lcd_delay(uchar ms) /*LCD1602 延时*/{uchar j;while(ms--){for(j=0;j<250;j++){;}}}//////////////////////////////////////////////void lcd_busy_wait() /*LCD1602 忙等待*/{lcd_rs_port = 0;lcd_rw_port = 1;lcd_en_port = 1;lcd_data_port = 0xff;_Nop();_Nop();_Nop();_Nop();while (lcd_data_port&0x80);lcd_en_port = 0;}///////////////////////////////////////////////void lcd_command_write(uchar command) /*LCD1602 命令字写入*/ {lcd_busy_wait();lcd_rs_port = 0;lcd_rw_port = 0;lcd_en_port = 0;lcd_data_port = command;_Nop();_Nop();_Nop();_Nop();_Nop();_Nop();lcd_en_port = 1;_Nop();_Nop();_Nop();_Nop();_Nop();_Nop();lcd_en_port = 0;}/////////////////////////////////////////void lcd_system_reset() /*LCD1602 初始化*/{lcd_delay(20);lcd_command_write(0x38);lcd_delay(100);lcd_command_write(0x38);lcd_delay(50);lcd_command_write(0x38);lcd_delay(10);lcd_command_write(0x08);lcd_command_write(0x01);lcd_command_write(0x06);lcd_command_write(0x0c);}//////////////////////////////////////////////////void lcd_char_write(uchar x_pos,y_pos,lcd_dat) /*LCD1602 字符写入*/ {x_pos &= 0x0f; /* X位置范围0~15 */y_pos &= 0x01; /* Y位置范围0~ 1 */if(y_pos==1) x_pos += 0x40;x_pos += 0x80;lcd_command_write(x_pos);lcd_busy_wait();lcd_rs_port = 1;lcd_rw_port = 0;lcd_en_port = 0;lcd_data_port = lcd_dat;_Nop();_Nop();_Nop();_Nop();_Nop();_Nop();lcd_en_port = 1;_Nop();_Nop();_Nop();_Nop();_Nop();_Nop();lcd_en_port = 0;}void main(void){uchar i;lcd_system_reset(); /* 初始化LCD1602 */lcd_data_port = 0xff;for(i=0;i<16;i++) lcd_char_write(i,0,line0[i]);for(i=0;i<16;i++) lcd_char_write(i,1,line1[i]);EX0init(); // Enable Global Interrupt FlagTIM0init();while(1){//主循环if(irok){Ircordpro();irok=0;}if(irpro_ok){ /*遥控成功接收*/lcd_char_write(8,0,lcd_mun_to_char[IRcord[0]/0x10]);lcd_char_write(9,0,lcd_mun_to_char[IRcord[0]%0x10]);lcd_char_write(11,0,lcd_mun_to_char[IRcord[1]/0x10]);lcd_char_write(12,0,lcd_mun_to_char[IRcord[1]%0x10]);lcd_char_write(8,1,lcd_mun_to_char[IRcord[2]/0x10]);lcd_char_write(9,1,lcd_mun_to_char[IRcord[2]%0x10]);lcd_char_write(11,1,lcd_mun_to_char[IRcord[3]/0x10]);lcd_char_write(12,1,lcd_mun_to_char[IRcord[3]%0x10]);}//将码值显示在液晶上}}源程序2:(在知道了按键编码的基础上,我们便可以加入判断,判断哪个键被按下,进而执行相关操作)我只修改main函数,其他与源程序1相同sbit led1=P1^0;sbit led2=P1^1;sbit led3=P1^2;sbit led4=P1^3;sbit led5=P1^4;//发光二极管控制端定义void main(void){uchar i;lcd_system_reset(); /* 初始化LCD1602 */lcd_data_port = 0xff;for(i=0;i<16;i++) lcd_char_write(i,0,line0[i]);for(i=0;i<16;i++) lcd_char_write(i,1,line1[i]);EX0init(); // Enable Global Interrupt FlagTIM0init();while(1){//主循环if(irok){Ircordpro();irok=0;}if(irpro_ok){ /*遥控成功接收*/switch(IRcord[2])//为什么判断IRcord[2],因为这个里面存放的是数据码{case 0x0c: led1=0;//按0键,灯1亮break;case 0x18: led2=0; //按1键,灯2亮break;case 0x5e: led3=0; //按2键,灯3亮break;case 0x08: led4=0; //按3键,灯4亮break;case 0x1c: led5=0; //按4键,灯5亮break;}}}}附连接图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥控器应用摘要 (1)Abstract (2)1 红外遥控器信号发射原理简介 (2)2 红外遥控器信号接收芯片外围电路 (3)3 遥控编码 (4)一、编码格式 (5)二、单片机遥控接收电路 (8)4软件解码应用程序 (8)5 结语 (9)参考文献 (9)摘要介绍红外遥控器与单片机的硬件接口,并从原理出发给出软件解码的方法。
通过软件程序对红外遥控器发射的脉冲波形检测得出信,从而为软件解码提供依据。
红外遥控器由于其体积小、功耗低、功能强、成本低的特点,已经在家电产品设备中广泛应用。
现代智能化仪器仪表系统、工业设备中的控制输入也较多地使用红外遥控器。
本文给出红外遥控器信号发射原理、红外接收器的连接方式和单片机软件解码应用程序,并提供了一种对未知格式的遥控器信检测的应用程序。
关键词:遥控器;软件解码;单片机;红外线AbstractIntroduction infrared remote control and microcontroller hardware interface and software decoding are presented and from the principle of the method. Through the infrared remote control software program launched in the letter obtained pulse detection number, and thus provide the basis for software decoding. Infrared remote control because of its small size, low power consumption, strong function, and low costs, has been widely used in home appliances equipment. Modern intelligent instrumentation systems, industrial equipment, the control input is greater use of infrared remote control. In this paper, principle of infrared remote control signal transmission, infrared receiver connection and SCM software decoding applications, and provides a remote control for unknown format letter number detection applications.Keywords: remote control; software decoding; SCM; infrared1 红外遥控器信号发射原理简介通用红外发射器由指令键、指令信号产生电路、调制电路、驱动电路及红外发射器组成。
如图1所示。
遥控器所产生的脉冲编码的格式一般为:引导脉冲(头)─识别码(用户码)─键码─键码的反码其引导脉冲为宽度是10 ms左右的一个高脉冲和一个低脉冲的组合,用来标识指令码的开始。
识别码、键码、键码的反码均为数据编码脉冲,用二进制数表示。
“0”和“1”均由ms量级的高低脉冲的组合代表。
识别码(即用户码)是对每个遥控系统的标识。
通过对识别码的检验,每个遥控器只能控制一个设备动作,有效的防止了多个设备之间的串扰。
当指令键按下时,指令信号产生电路便产生脉冲编码。
键码后面一般还要有键码的反码,用来检验键码接收的正确性,防止误动作,增强系统的可靠性。
这些指令信号由调制电路调制成32~40 kHz的信号,经调制后输出,最后由驱动电路驱动红外发射器件(LED)发出红外遥控信号。
2 红外遥控器信号接收芯片外围电路接收电路可以使用集成红外接收器成品,一般不需要任何外接元件就能完成从红外接收到输出TTL电平兼容信号的所有工作。
注意选择接收器件时要保证接,收器件的中心频率与发射信号的中心频率相匹配。
接收器对外只有3个引脚:VCC GND和1个脉冲信号输出OUT。
与单片机接口非常方便,如图2所示。
脉冲信号输出接CPU的普通输入引脚或中断输入引脚(IO/INT)。
采取这种连接方法,软件解码既可工作于查询方式,也可工作于中断方式。
在实际应用中,还可以进一步增加抑制干扰电路和提高驱动能力电路,增强系统的稳定性。
红外线遥控信号发送器电路 TC9012F的遥控信号,TC9012F为4位专用微控制器,其部振荡电路的振荡频率fosc典型值为455 kHz。
当不按下操作键时,其部455 kHz 的时钟振荡器停止工作,以减少电池消耗。
部分频电路将振荡频率,fosc进行12分频后,变成频率fc=37.9 kHz,占空比为1/3的脉冲载波信号。
红外遥控信号发送器电路由集成电路TC9012F、键盘矩阵电路、驱动器和红外发光二极管组成,遥控信号为37.9 kHz的脉冲载波被遥控编码脉冲调制的已调波,三、遥控信号的解码算法及程序编制,遥控器无键按下。
红外发射二极管不发出信号,遥控接收头输出信号1。
有键按下时.O和1编码的高电平经遥控头倒相后会输出信号O.由于与单片机的中断脚相连,将会引起单片机中断(单片机预先设定为下降沿产生中断)。
单片机在中断时使用定时器0或定时器1开始计时.到下一个脉冲到来时,即再次产生中断时,先将计时值取出。
清零计时值后再开始计时.通过判断每次中断与上一次中断之间的时间间隔。
便可知接收到的是引导码还是 O和1。
如果计时值为9ms。
接收到的是引导码,如果计时值等于1.12ms,接收到的是编码O。
如果计时值等于2 25ms.接收到的是编码1。
在判断时间时,应考虑一定的误差值。
因为不同的遥控器由于晶振参数等原因,发射及接收到的时间也会有很小的误差。
以接收TC9012遥控器编码为例,解码方法如下:(1)设外部中断0(或者1)为下降沿中断,定时器0(或者1)为16位计时器.初始值均为O。
(2)第一次进入遥控中断后,开始计时。
(3)从第二次进入遥控中断起,先停止计时。
并将计时值保存后,再重新计时。
如果计时值等于前导码的时间,设立前导码标志。
准备接收下面的一帧遥控数据,如果计时值不等于前导码的时间,但前面已接收到前导码,则判断是遥控数据的O还是1。
(4)继续接收下面的地址码、数据码、数据反码。
(5)当接收到32位数据时,说明一帧数据接收完毕。
此时可停止定时器的计时,并判断本次接收是否有效.如果两次地址码相同且等于本系统的地址,数据码与数据反码之和等于0FFH,则接收的本帧数据码有效。
否则丢弃本次接收到的数据。
(6)接收完毕,初始化本次接收的数据,准备下一次遥控接收。
3 遥控编码遥控编码脉冲由引导码、用户码、功能码和功能码的相反码组成,用户码是同一组码发送两次,如图2所示。
用户码为8位,所以整个脉冲码为32位。
引导码作为接收数据的准备脉冲,他由8TCP(4.5 ms)的高电平和8TCP(4.5 ms)的低电平组成。
用户码和功能码采用脉冲位置调制(PPM)方式编码,根据脉冲之间的时间间隔来区分码值的"0"或"1"。
对应于二进制数字信号的"0"或"1",脉冲时间间隔分别为2TCP(1.125 ms)和4TCP(2.25 ms),而每一脉冲的宽度仍不变,均为TCP(0.562 6 ms)。
由于用户码发送两次,功能码与其相反码一起发送,因此系统的误动作很少。
本遥控器采用第一次发送的遥控信号的编码脉冲(图3所示)和第二、第三次连续发送的遥控信号的编码脉冲(图4所示)不同的工作方式。
这样,当按键一直按着的时候,从第二次连续发送开始,只发送引导码和用户码第一位SO的相反码SO,因此可减少接收处理时间和红外发光二极管功耗,遥控编码脉冲经脉冲载波调制后由TC9021F的第脚输出,再经激励器驱动红外发光二极管,发送出波长为940nm的脉冲红外光。
假设用户码为十六进制的76H则第一次发送的遥控信号的编码脉冲如图3所示。
解码器硬件以AT89C51单片机为核心,如图5所示,图中只给出接收红外遥控信号的部分电路。
红外遥控信号经过红外接收模块接收后,解调为遥控信号的编码脉冲由输出端A输出,其波形如图3和图4所示,此信号经过反相器74LS04输出到AT89C51的外部中断INT0输入端.单片机通过运行程序对红外遥控器TC9021所发出的编码脉冲进行接收和译码。
用单片机解码红外遥控器遥控器使用方便,功能多.目前已广泛应用在电视机、VCD、DVD、空调等各种家用电器中,且价格便宜,市场上非常容易买到。
如果能将遥控器上许多的按键解码出来.用作单片机系统的输入.则解决了常规矩阵键盘线路板过大、布线复杂、占用I/O口过多的弊病。
而且通过使用遥控器,操作时可实现人与设备的分离,从而更加方便使用。
下面以TC9012编码芯片的遥控器为例。
谈谈如何用常用的51系统单片机进行遥控的解码。
一、编码格式1、0和1的编码遥控器发射的信号由一串O和1的二进制代码组成.不同的芯片对0和1的编码有所不同。
通常有曼彻斯特编码和脉冲宽度编码。
TC9012的O和1采用PWM方法编码,即脉冲宽度调制,其O码和1码如图1所示(以遥控接收输出的波形为例)。
O码由O.56ms低电平和0.56ms高电平组合而成.脉冲宽度为1.12ms.1码由0.56ms低电平和1.69ms高电平组合而成.脉冲宽度为2.25ms。
在编写解码程序时.通过判断脉冲的宽度,即可得到0或1。
2、按键的编码当我们按下遥控器的按键时,遥控器将发出如图2的一串二进制代码,我们称它为一帧数据。
根据各部分的功能。
可将它们分为5部分,分别为引导码、地址码、地址码、数据码、数据反码。
遥控器发射代码时.均是低位在前。
高位在后。
由图2分析可以得到.引导码高电平为4.5ms,低电平为4.5ms。
当接收到此码时.表示一帧数据的开始。
单片机可以准备接收下面的数据。
地址码由8位二进制组成,共256种.图中地址码重发了一次。
主要是加强遥控器的可靠性.如果两次地址码不相同.则说明本帧数据有错.应丢弃。
不同的设备可以拥有不同的地址码.因此。
同种编码的遥控器只要设置地址码不同,也不会相互干扰。
图中的地址码为十六进制的0EH(注意低位在前)。
在同一个遥控器中.所有按键发出的地址码都是相同的。
数据码为8位,可编码256种状态,代表实际所按下的键。
数据反码是数据码的各位求反,通过比较数据码与数据反码.可判断接收到的数据是否正确。