人类对光本性的认识
对光的认识

爱因斯坦
爱因斯坦提出了光电效应 光电效应——光照射到金属表面上,可使电子 溢出。 他也因此获得诺贝尔奖(1921年)
光的本质
光是一种物质形态,具有波粒二象性;波动性和 粒子性是光在不同场合下反映出来的两种属性; 光既是具有粒子性的电磁波,又是具有波动性的 光子流。
光的本质的认知过程
1666年 牛顿
光的认识历程
光是地球生命的来源之一。光是人类认 识外部世界的工具。光是信息的理想载体或 传播媒质。
据统计,人类感官收到外部世界的总信 息中,至少90%以上通过眼睛……
人们对光的本性的认识经历了漫长的岁 月。
17世纪~18世纪
光的微粒学说(1666年)
牛顿
17世纪曾为牛顿等所提倡。 这种学说认为
光由光源发出的微粒、它从光源沿直线行进
19世纪中
麦克斯韦在18Βιβλιοθήκη 3年提出光的詹姆斯·克拉克·麦克斯韦
电磁理论
电磁辐射不仅与光相同,并且其反射、折
射以及偏振之性质也相同,由麦克斯韦的理 论研究表明,空间电磁场是以光速传播。这 一结论已被赫兹的实验证实。
他认为光是一种电磁现象,即光是电磁波
机械波与电磁波
机械波由机械振动产生,电磁波由电磁振荡产生; 机械波传播需特定的介质,真空中不能传播,电磁波
可在真空中传播; 机械波可以是横波或引纵波,电磁波只能是横波
✓ 横波——振动方向与波传播方向垂直。 ✓ 纵波——振动方向与波传播方向相同。
19世纪末20世纪初
德国物理学家普朗克提出了量子假说 马克斯·普朗克
光子的能量为普朗克常量和电磁辐射频率的 乘积,E=hv 他开创了量子物理学先河, 并于1918年获得诺贝尔奖
由于普朗克常数极小,频率不十分高的光子能量和 动量很小,在很多情况下,个别光子不易显示出可 观测的效应.人们平时看到的是大量光子的统计行 为,只有在一些特殊场合,尤其是牵涉到光的发射 与吸收等过程时,个别光子的粒子性会明显地表现 出来,波长越短、粒子性越明显.
高考物理复习——光的本性

5.光既具有波动性,又具有粒子性,也就 是说光具有波粒二象性。
但是接受光的波粒二象性,就要求我们既不可以把 光当成宏观观念中的波,也不可以把光当成宏观观念中 的粒子。一般说来,大量光子产生的效果往往显示出波 动性,这种波动性可以看做是表明大量光子运动规律的 一种几率波。而个别光子产生的效果往往显示出粒子性, 这种粒子性体现在有能量、有动量,却没有静止质量。
(1)连续光谱
连续分布的包含有从红光到紫光各种色光的光谱叫 做连续光谱。炽热的固体、液体和高压气体的发射光谱 是连续光谱。例如电灯丝发出的光、炽热的钢水发出的 光都形成连续光谱。 (2)明线光谱
只含有一些不连续的亮线的光谱叫做明线光谱。明 线光谱中的亮线叫谱线,各条谱线对应不同波长的光。 稀薄气体或金属的蒸气的发射光谱是明线光谱。明线光 谱是由游离状态的原子发射的,所以也叫原子的光谱。 实践证明,原子不同,发射的明线光谱也不同,每种原 子只能发出具有本身特征的某些波长的光,因此明线光 谱的谱线叫原子的特征谱线。
(4)光谱分析
由于每种原子都有自己的特征谱线,因此可以根据 光谱来鉴别物质和确定的化学组成。这种方法叫做光 谱分析。 原子光谱的不连续性反映出原子结构的不连续性, 所以光谱分析也可以用于探索原子的结构。
四、光电效应与光子说
1.光电效应 现象:在光的照射下,使物体中的电 子逸出的现象叫做光电效应。 实验规律: (1)任何一种金属都有一个极限频率, 入射光的频率必须大于这个极限频率,才 能产生光电效应;低于这个频率的光不能 产生光电效应。 (2)光电子的最大初动能与入射光的 强度无关,只随入射光的频率的增大而增 大。 (3)入射光照到金属上时,光电子的发 射几乎是瞬时的,一般不超过10-9秒。 (4)当入射光的频率大于极限频率时, 光电流的强度与入射光的强度成正比。
2020年高考回归复习—光学选择之光电效应 包含答案

高考回归复习—光学选择之光电效应1.爱因斯坦对于光电效应的解释使人类对于光的本性的认识更加透彻,下列关于光电效应的说法中正确的是( )A .在光电效应中,光电子的最大初动能与入射光强度成正比B .入射光光子能量小于金属逸出功时也可能发生光电效应的C .对于某种金属,只要入射光强度足够大,照射时间足够长,就会发生光电效应D .用频率大于金属的极限频率的入射光照射金属时,光越强,饱和电流越大2.在某次实验中,用频率为ν的一束绿光照射极限频率(也称“截止频率”)为0ν金属时发生了光电效应现象,则下列说法正确的是( ) A .该金属的逸出功为W h ν=B .若改用红光来照射,则一定不能发生光电效应C .若把这束绿光遮住一半,则逸出的光电子最大初动能将减小一半D .在本实验中,调节反向电压可使光电流恰好为零,此电压大小()c 0hU eνν=- 3.在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示。
则可判断出( )A .甲光的频率大于乙光的频率B .乙光的波长大于丙光的波长C .乙光对应的截止频率大于丙光的截止频率D .甲光对应的光电子最大初动能大于丙光的光电子最大初动能4.如图所示,分别用频率为ν、2ν的光照射某光电管,对应的遏止电压之比为1:3,普朗克常量用h 表示,则( )A.用频率为13ν的光照射该光电管时有光电子逸出B.该光电管的逸出功为12 hνC.用2ν的光照射时逸出光电子的初动能一定大D.加正向电压时,用2ν的光照射时饱和光电流一定大5.关于光电效应,下列说法正确的是()A.光电子的动能越大,光电子形成的电流强度就越大B.光电子的最大初动能与入射光的频率成正比C.对于任何一种金属,都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应D.用不可见光照射金属一定比用可见光照射同种金属逸出的光电子的初动能大6.关于光电效应,下列说法正确的是()A.光电效应是原子核吸收光子向外释放电子的现象B.饱和光电流的强度与入射光的强度有关,且随入射光强度的增强而减弱C.金属的逸出功与入射光的频率成正比D.用不可见光照射某金属,不一定比用可见光照射同种金属产生的光电子的最大初动能大7.如图所示,是研究光电效应的电路图,对于某金属用绿光照射时,电流表指针发生偏转.则以下说法正确的是()A.将滑动变阻器滑动片向右移动,电流表的示数一定增大B.如果改用紫光照射该金属时,电流表无示数C.将K极换成逸出功小的金属板,仍用相同的绿光照射时,电流表的示数一定增大D.将电源的正负极调换,仍用相同的绿光照射时,将滑动变阻器滑动片向右移动一些,电流表的读数可能不为零8.频率为ν的入射光照射某金属时发生光电效应现象。
对光本质认识不断深入的启示

第21卷 第5期 运城学院学报V ol.21 No.5 2003年10月 Journal of Yuncheng University Oct.2003对光本质认识不断深入的启示高润梅①(太原市教育学院物理系,山西太原030001) 摘 要:回顾光学发展的历程,不同时代对光本质的认识都有它的时代局限性。
从几何光学时代、波动展示光本质的不断深入的认识过程,从中获得有益的启示:敢于争论、善于挑战、勇于创新。
关键词:光本质;挑战;创新中图分类号:O431 文献标识码:A 文章编号:1008-8008(2003)05-0021-02 人类认识自然的历史经历了由简单到复杂,由低级到高级,由部分到全面的过程。
人们对光的认识过程同样如此。
从有人类文明到今天,人们对光不断观察、研究,由现象到本质。
光的本质越来越清楚。
其认识过程经历了以下几个时代。
而今,光学作为一门既古老又现代的学科,已经渗透到科学技术的方方面面。
回顾光学的发展史、对光本质的不断再认识,对今天的科学发展和科学教育会产生一些有益的启示。
1. 不同时代对光本质的认识1.1 前几何光学时代光学是一门古老的学科,早在我国春秋战国时期,《墨经》就记载了光影的形成和针孔成象、光的镜面反射等现象。
在希腊欧几里德所著的《光学》中,提出了光的反射定律。
从此开始了漫长的两千多年的光学萌芽时期,在这个阶段,人们逐渐认识到光的直线传播、反射和折射等现象,了解到光线来自于物体,光以球面形式从光源发出,发明了凸透镜,了解了凹面镜、凸面镜、凸透镜的成像规律,并发明了眼镜、幻灯、透镜和暗箱等光学元件。
这个阶段人们主要是通过直接观察和生活经验对光现象进行记录和应用。
1.2 几何光学时代这个时期大约是从16世纪到18世纪近300年,在这个时期人们建立了光的反射定律和折射定律发明了光学仪器,如望远镜、显微镜,费马在1657年发现了费马原理,即光在介质中传播时所走的光程取极值的原理。
笛卡儿在1630年给出了折射定律的正弦定律,这一时期关于光的本性的认识是以光的直线传播为基础的,但从17世纪开始,发现了与光的直线传播不符合的事实,如点光源下,直杆的影子要比假设光沿直线传播所应具有的宽度稍大一点,这就是后来认识到的衍射问题。
人类对光本性的认识

人类对光本性的认识
人类对光本性的认识,始于古希腊的有关光的思考。
他们认为光是航行太空中的一种能量。
后来苏格拉底等哲学家就光的性质建立了一套理论,并指出光会呈折射现象,这个命题在科学史上被认为是重要的一点。
由此,古希腊以及古罗马文化就给予了我们关于光本质的一些观点——光穿透空气,以弹射方式传播。
后来,16世纪的科学家对色彩的研究也对我们对光本质的认识有帮助。
红、黄和蓝为混合色,立马把光的三种波长特性提及出来,这是人类对于光的一个重要发展。
科学发展非常迅速,20世纪以来,主要由物理学家和光学家,以及电子技术的发展,加之现代的计算机技术的应用,现代的光学理论也在不断推进。
现代理论证明,光具有粒子和波之性质,是电磁波的特殊形式,在物理活动中发挥着重要作用。
因此,光已经成为科学研究中的重要内容之一。
许多领域,如激光、通信、精密测量等都建立在日益深入的人类对光本性的认识之上。
人类对光和光的本性的认识PPT教学课件

❖ 由于激光的出现,光学的重要发展之一,是 将数学中的付里叶(法国人,1768-1830) 变换和通讯中的线性系统理论引入光学,形 成了一个新的光学分支——付里叶光学。
❖ 在激光器出现一年以后,非线性光学(也称 强光学)作为光学的一个分支也发展起来了。
二、人类对光的本性的认识
❖ 关于光的本性究竟是什么?人类进行了 大约三百年的争论,其间有各种不同的 学派,但总的来说不外乎粒子说和波动 说两种。这两种学说在不同时期各自占 据着统治地位,随着认识的发展,人们 对粒子和波的概念的看法也有所发展。 最后当爱因斯坦和德布罗意提出波粒二 象性后,争论才告一段落。
1924年德布罗意法国人1892一创立了物质波学说他大胆地设想每一物质的粒子的运动都和一定的波动相联系二十世纪五十年代以来尤其是在激光问世以后光学和许多科学技术领域紧密结合相互渗透派生了不少崭新的分支学科因此光学开始了一个新的发展时期成为现代物理学和现代科学技术的前沿阵地之一在激光器诞生以后为摄影术向前发展提供了可能因此出现了全息摄影术
普朗克公式
❖ 在1900年,普朗克(德国人,1858— 1947)大胆地提出了能量子假说,认为 各种频率的电磁波只能从一定的能量子 方式从振子发射,能量子是不连续的, 它的值是光的频率和普朗克常数的乘积 的整数倍,它和实验结果完全符合。不 仅如此,量子论还以全新的方式提出了 光与物质相互作用的整个问题。它不但 给光学而且给整个物理学提供了新的概 念,因此,它的诞生被看作近代物理学 的起点。
2019-2020年高中物理 第2章 第3、4节 康普顿效应及其解释 光的波粒二象性学案 粤教版选修3-5

2019-2020年高中物理第2章第3、4节康普顿效应及其解释光的波粒二象性学案粤教版选修3-51.用X射线照射物体时,一部分散射出来的X射线的波长会变长,这个现象称为康普顿效应.2.按照经典电磁理论,散射前后光的频率不变,因而散射光的波长与入射光的波长相等,不应该出现波长变长的散射光.3.光子不仅具有能量,其表达式为ε=hν,还具有动量,其表达式为p=hλ.4.光的干涉和衍射实验表明,光是一种电磁波,具有波动性;光电效应和康普顿效应则表明,光在与物体相互作用时,必须看成是一颗颗光子的形式出现的,具有粒子性.5.双缝干涉中每次穿过双缝的只有一个光子,它不可能跟其他光子产生干涉.但光的干涉还是发生了.可见,波动性是每一个光子的属性.光既有粒子性,又有波动性,单独使用波或粒子都无法完整地描述光的所有性质.6.光既有波动性,又有粒子性,我们把光的这种性质叫做光的波粒二象性.7.干涉条纹是光子在感光片上各点的概率分布的反映.这种概率分布就好像波的强度的分布,称光波是一种概率波.基础达标1.人类对光的本性的认识经历了曲折的过程.下列关于光的本性的陈述不符合科学规律或历史事实的是(A)A.牛顿的“ 微粒说” 与爱因斯坦的“ 光子说” 本质上是一样的B.光的双缝干涉实验显示了光具有波动性C.麦克斯韦预言了光是一种电磁波D.光具有波粒二象性解析:牛顿的“微粒说”认为光是一种物质微粒,爱因斯坦的“光子说”认为光是一份一份不连续的能量,显然A错;干涉、衍射是波的特性,光能发生干涉说明光具有波动性,B正确;麦克斯韦根据光的传播不需要介质,以及电磁波在真空中的传播速度与光速近似相等认为光是一种电磁波,后来赫兹用实验证实了光的电磁说,C正确;光具有波动性与粒子性,称为光的波粒二象性,D正确.2.康普顿效应证实了光子不仅具有能量,也有动量,如图给出了光子与静止电子碰撞后,电子的运动方向,则碰后光子可能沿方向________运动,并且波长________(选填“ 不变” 、“ 变短” 或“ 变长” ).解析:根据动量守恒定律知,光子与静止电子碰撞前后动量守恒,相碰后合动量应沿2方向,所以碰后光子可能沿1方向运动,由于动量变小,故波长应变长.答案:1 变长3.(多选)下列有关光的说法正确的是(BD )A .光电效应表明在一定条件下,光子可以转化为电子B .大量光子易表现出波动性,少量光子易表现粒子性C .光有时是波,有时是粒子D .康普顿效应表明光子和电子、质子等实物粒子一样也具有能量和动量 4.下列实验中,能证实光具有粒子性的是(A ) A .光电效应实验 B .光的双缝干涉实验 C .光的圆孔衍射实验 D .泊松亮斑实验解析:光电效应证明光具有粒子性,A 正确.光的干涉和衍射可证明光具有波动性.B 、C 、D 错误.5.下列现象能说明光具有波粒二象性的是(D ) A .光的色散和光的干涉 B .光的干涉和光的衍射 C .光的反射和光电效应 D .泊松亮斑和光电效应解析:光的色散、光的反射可以从波动性和粒子性两方面分别予以理解,故A 、C 选项错误.光的干涉、衍射现象只说明光的波动性,B 选项错误.泊松亮斑能说明光具有波动性,光电效应说明光具有粒子性,故D 选项正确.能力提升6.下列关于光的波粒二象性的理解,正确的是(D )A .大量的光子中有些光子表现出波动性,有些光子表现出粒子性B .光在传播时是波,而与物质相互作用时就转变成粒子C .高频光是粒子,低频光是波D .波粒二象性是光的属性,有时它的波动性显著,有时它的粒子性显著 解析:光的波粒二象性是光的属性,不论其频率的高低还是光在传播或者是与物质相互作用,光都具有波粒二象性,大量光子的行为易呈现出波动性,个别光子的行为易表现出粒子性,光的频率越高,粒子性越强,光的频率越低,波动性越强,故A 、B 、C 错误,D 正确.7.(多选)下列各种波是概率波的是(CD ) A .声波 B .无线电波 C .光波 D .物质波解析:声波是机械波,A 错.电磁波是一种能量波,B 错.由概率波的概念和光波以及物质波的特点分析可以得知光波和物质波均为概率波,故C 、D 正确.8.根据爱因斯坦的“光子说”可知(B ) A .“光子说”的本质就是牛顿的“微粒说” B .光的波长越长,光子的能量越小 C .一束单色光的能量可以连续变化 D .只有光子数很多时,光才具有粒子性解析:爱因斯坦的“光子说”认为光是一份一份的,是不连续的,它并不否定光的波动性,而牛顿的“微粒说”与波动说是对立的,因此A 错误.在爱因斯坦的“光子说”中光子的能量ε=h ν=hcλ;可知波长越长,光子的能量越小,因此B 正确.某一单色光,波长恒定,光子的能量也是恒定的,因此C 错误.大量光子表现为波动性,而少数光子才表现为粒子性,因此D 错误.9.在做双缝干涉实验时,发现100个光子中有96个通过双缝后打到了观察屏上的b 处,则b 处是(A )A .亮纹B .暗纹C .既有可能是亮纹也有可能是暗纹D .以上各种情况均有可能解析:由光子按波的概率分布的特点去判断,由于大部分光子都落在b 点,故b 处一定是亮纹,选项A 正确.10.在康普顿效应实验中,X 射线光子的动量为h νc,一个静止的C 原子吸收了一个X 射线光子后将(B )A .仍然静止B .沿着光子原来运动的方向运动C .沿光子运动的相反方向运动D .可能向任何方向运动解析:由动量守恒定律知,吸收了X 射线光子的原子与光子原来运动方向相同,故正确选项为B.2019-2020年高中物理 第2章 第3节 欧姆定律教案 新人教版选修3-1三维目标 知识与技能1.理解电阻的概念,明确导体的电阻是由导体本身的特性所决定; 2.理解欧姆定律,并能用来解决有关电路的问题;3.知道导体的伏安特性曲线,知道什么是线性元件和非线性元件。
高中物理光学实验知识点研究方法

高中物理光学实验知识点研究方法光学包括两大部分内容:几何光学和物理光学.几何光学(又称光线光学)是以光的直线传播性质为基础,研究光在煤质中的传播规律及其应用的学科;物理光学是研究光的本性、光和物质的相互作用规律的学科.小编在这里整理了相关资料,希望能帮助到您。
高中物理光学实验知识点研究方法一、重要概念和规律(一)、几何光学基本概念和规律1、基本规律光源发光的物体.分两大类:点光源和扩展光源.点光源是一种理想模型,扩展光源可看成无数点光源的集合.光线——表示光传播方向的几何线.光束通过一定面积的一束光线.它是温过一定截面光线的集合.光速——光传播的速度。
光在真空中速度最大。
恒为C=3×108m/s。
丹麦天文学家罗默第一次利用天体间的大距离测出了光速。
法国人裴索第一次在地面上用旋转齿轮法测出了光这。
实像——光源发出的光线经光学器件后,由实际光线形成的.虚像——光源发出的光线经光学器件后,由发实际光线的延长线形成的。
本影——光直线传播时,物体后完全照射不到光的暗区.半影——光直线传播时,物体后有部分光可以照射到的半明半暗区域.2.基本规律(1)光路可逆原理光线逆着反射线或折射线方向入射,将沿着原来的入射线方向反射或折射.(2)光的独立传播规律光在传播时虽屡屡相交,但互不扰乱,保持各自的规律继续传播。
(3)光的直线传播规律先在同一种均匀介质中沿直线传播。
小孔成像、影的形成、日食、月食等都是光沿直线传播的例证。
(4)光的反射定律反射线、人射线、法线共面;反射线与人射线分布于法线两侧;反射角等于入射角。
(5)光的折射定律折射线、人射线、法织共面,折射线和入射线分居法线两侧;对确定的两种介质,入射角(i)的正弦和折射角(r)的正弦之比是一个常数.介质的折射串n=sini/sinr=c/v。
全反射条件①光从光密介质射向光疏介质;②入射角大于临界角A,sinA=1/n。
3.常用光学器件及其光学特性(1)棱镜光密煤质的棱镜放在光疏煤质的环境中,入射到棱镜侧面的光经棱镜后向底面偏折。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人类对光本性的认识
摘要:光给我们带来了五彩世界的美丽,“光的本性是什么?”一直以来人们对此曾有过各种猜测和争论。
从人们最初认为的光是一种“很小的微粒”,到光是一种电磁波,最后到人们对光的
认识既具有粒子性又具有波动性,经历了几个世纪的争论。
本文将重温历史上那些物理学家的经典实验,结合理论公式推导,带你走进“光的世界”!
关键词:光的粒子性、光的波动性、波粒二象性
1、前言:光到底是什么?
17世纪,牛顿认为光是一股微粒流,沿直线传播,由此形
成了几何光学,他以光的折射、反射定律为基础,研究光的直线传播和成像的规律。
由于当时的实验条件和牛顿的威信,人们普遍接承认“光的微粒学说”。
可是到了19世纪初人们观测到了许多光的干涉、衍射、和偏振现象,这些事实不禁让人们对光产生了新的认识……
2、第一部分:光的波动性
1801年,英国物理学家托马斯·杨成功地实现了光的干涉实验,首次有力地证明了光是一种波动。
下面介绍一下这个有名
的杨氏双缝干涉实验。
实验装置如图所示:
为什么我们会观察到屏上的干涉条纹?下面我对屏上的条纹位置作定量分析:
S为线光源,其后是一个遮光屏,其上有两条与S平行的狭缝S1、S2,且与S等距离,因此S1、S2是相干光源,且相位相同;S1、S2之间的距离是d ,到屏的距离是D。
P为屏上任意一点,P到S1、S2的距离分别为r1、r2,在屏上取坐标轴O x,向上为正,坐标原点位于关于双缝的对称中心。
P到屏中心O点的距离为x,在D>>d、x,则从S1和S2发出的相干光到达P点的光程差为
δ=r2+r1
由图可见
r12 =D2+(x−d
2
)2 ,r22 =D2+(x+
d
2
)2
两式相减,得
r22−r12=2dx
由于D>>d、x,所以r2+r1≈2D,由此得
δ=dx
D
故当光程差为半波长的偶数倍时,相位差就是π的偶数倍,两束光相干加强,P点为明纹;而当光程差为半波长的奇数倍时,相位差就为π的奇数倍,两束光相干减弱,P点为暗纹。
此外,光的衍射和偏振现象都对“光的波动学说”提供了重要的实验证据。
到了19世纪60年代,麦克斯韦建立的电磁场理论又赋予光以电磁波的本质。
在这样的背景下,人们更加倾向于将光看做是一种电磁波。
难道光真的只是电磁波么?探索其实并没有停止……
3、第二部分:光的粒子性
随着光学向微观领域里的渗透,人们逐渐发现用经典的波动理论无法解释光与物质的相互作用。
从19世纪末到20世纪初,随着对光电效应和康普顿效应等实验规律的研究,人们又发现了光的一些新性质。
光电效应最早是由德国物理学家赫兹在做实验时发现的。
1887年,他发现,当紫外线照射在金属上时,能使金属发射带电粒子。
光电效应的实验简图如图所示:
这个实验最终得到了如下4个重要的实验规律:
(1)饱和光电流。
饱和光电流I M与入射光强I成正比, 即单位时间内从K极逸出的光电子数目N与入射光强I 成正比。
(2)截止电压。
U C:光电流为0时, 反向电势差的绝对值叫截止电压。
由能量关系可得出,截止电压UC与光电子的最大初动能之间有如下关系
1
mV m2=eU c
2
式中m和e分别是电子的质量和电量,V M是光电子逸出金属表面的最大速度。
并从上式看出光电子最大初动能等于电子的电量和截止电势差的乘积,与入射光强无关。
(3)截止频率。
实验发现,当入射光的频率ν增大时,截止电压U C将随之线性增大,即
U C=kv−U0
其中,k是与阴极金属材料性质无关的普适常量,而U0是与金属材料有关的量。
结合(2)中的公式可得
12
mV M 2=ekv −eU 0 即光电子最大初动能与入射光频率成线性关系; 当入射光频率ν >ν0时, 才会产生光电效应。
(4)弛豫时间。
实验发现光电效应具有瞬时性,弛豫时间不超过10-9s 。
然而这个实验却给人们带来了巨大的困惑,因为光的经典波动理论无法解释光电效应的实验结果。
按照经典波动理论,入射光的光强越大,光波的电场强度的振幅也越大,作用在金属中电子上的力也就越大,光电子逸出的能量也应该越大。
也就是说,光电子的能量应该随着光强度的增加而增大,不应该与入射光的频率有关,更不应该有什么截止频率。
光电效应的瞬时性在经典波动理论上也被看做是不可能的。
经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。
直到1905年,为了解释光电效应,爱因斯坦提出了光量子的概念。
他认为:频率为ν 的光是由大量能量为 ε =h ν 光子组成的粒子流,这些光子沿光的传播方向以光速 c 运动。
光不仅在发射和吸收时以能量为h ν的微粒形式出现,而且在空间传播时也是如此。
由此得到的光电效应方程
A h m -=νυ22
1 便合理的解释了光电效应的全部试验规律。
光的量子化是人们认识到光的粒子性的以重大进步。
而康普顿效应则又为光具有粒子
性提供了重要实验依据。
1923年,美国物理学家康普顿在观察X 射线被石墨等物质散射时,发现有波长改变的散射现象。
实验装置如下图所示:
实验结果表明:波长的偏移只与散射角ϕ 有关,与散射物质的性质无关,他们的关系是
0λλλ-∆= )cos 1(ϕλ-=c
这按照经典波动理论,波长改变的现象时无法解释的。
而根据光子理论,康普顿将这种散射看成是X 射线光子与静止的自由电子之间的弹性碰撞,并假设在碰撞过程中能量和动量守恒,有如下推导:
设碰前入射光子的频率为0ν,其能量为0νh ,动量为00ˆn c
h ν;静止的自由电子能量为20c m ,动量为0。
碰撞后反冲电子的能量为2mc 其动量为v v 220
/1c m -;散射光子的能量为νh ,其动量为n c
h ˆν。
有能量和动量守恒定律可列出方程:
2200mc h c m h +=+νν
v m n c
h n c h +=ˆˆ00νν 其中第二个式子为矢量式,可写成两个分量式
ϕθννvcos m c
h c h +=cos 0 ϕθνsin mv c
h =sin 消去变量φ解得波长偏移量与散射角θ的关系为
2
sin 2)cos 1(Δ2c 00θλθλλλ=--==c m h 由此,可以看到康普顿散射的理论推导和实验结果完全一致,有力的证明了爱因斯坦光量子理论的正确性,同时也验证了在微观粒子的相互作用过程中,能量和动量守恒定律是严格成立的。
人们也普遍接受了光的粒子性。
4、第三部分:光的波粒二象性
通过光的干涉等实验,人们认识到光具有波动性;而通过光电效应和康普顿效应等,人们有认识到广海具有粒子性。
由此得到了关于光的本性的全面认识因该是:光具有波粒二象性。
根据光子理论,一个光子的能量为
ε=hυ
由质能方程进一步求的光子的质量为
m=ℎcλ
动量为
p=ℎυ
c
=
ℎ
λ
在这三个方程中,光的粒子性由能量、质量、动量描述出来,而波动性由频率和波长描述。
而光的波动性和粒子性通过普朗克常数h联系在一起。
至此为止,人们较为全面的认识了光的本性。
5、结语:一切还没有结束
量子世界的大门才刚刚为我们敞开,对于光的本性的探索也并不会到此为止。
随着时代的发展与科技的进步,我相信人类对于光的本性认识会变得更加和谐统一。
而我们这些大学生,也更应该好好学习,也许将来就会有我们改变!
2012年12月参考文献:
[1]芶秉聪胡云海,《大学物理上册》,国防工业出版社,第二版
[2]芶秉聪胡云海,《大学物理下册》,国防工业出版社,第二版
[3]郑少波,《大学物理讲义》,2012。