巨磁电阻效应和应用_实验报告

合集下载

巨磁阻效应实验报告

巨磁阻效应实验报告

巨磁阻效应实验报告巨磁阻效应实验报告引言:巨磁阻效应是一种材料在外加磁场下,磁阻发生显著变化的现象。

这种现象被广泛应用于磁存储、传感器等领域。

本实验旨在探究巨磁阻效应的基本原理和应用。

一、实验目的本实验的主要目的是通过实验验证巨磁阻效应的存在,并探究其与外加磁场强度、温度等因素的关系。

二、实验原理巨磁阻效应是指材料在外加磁场下,其电阻发生显著变化的现象。

这种变化是由于磁矩在外加磁场作用下发生重排而引起的。

当外加磁场增大时,磁矩的重排程度增加,导致电阻的变化。

巨磁阻效应的大小可以通过磁阻率的变化来衡量。

三、实验材料和仪器本实验所需的材料和仪器有:磁铁、巨磁阻效应样品、电源、万用表、恒温槽等。

四、实验步骤1. 将巨磁阻效应样品放置在恒温槽中,使其温度保持恒定。

2. 将电源接入巨磁阻效应样品,调节电流大小,测量电阻值。

3. 在不同的温度和磁场强度下,重复步骤2,记录数据。

4. 对实验数据进行分析和处理,得出结论。

五、实验结果和分析通过实验测量得到的数据,我们可以得出以下结论:1. 随着外加磁场强度的增加,巨磁阻效应样品的电阻值呈现出明显的变化。

这表明巨磁阻效应的存在。

2. 在一定的温度范围内,巨磁阻效应的大小与温度呈现出一定的关联性。

随着温度的升高,巨磁阻效应的大小逐渐减小。

3. 不同样品的巨磁阻效应大小有所差异,这与样品的材料特性有关。

六、实验误差分析在实验过程中,可能存在一些误差,如电流的测量误差、温度控制的误差等。

这些误差可能会对实验结果产生一定的影响。

为了减小误差,我们可以采取一些措施,如提高仪器的精度、增加数据的重复性等。

七、实验应用巨磁阻效应在磁存储、传感器等领域有着广泛的应用。

通过巨磁阻效应,我们可以设计出更加灵敏、高效的传感器,提高磁存储设备的性能等。

八、结论通过本次实验,我们验证了巨磁阻效应的存在,并探究了其与外加磁场强度、温度等因素的关系。

巨磁阻效应在磁存储、传感器等领域具有重要的应用价值。

巨磁阻效应实验报告

巨磁阻效应实验报告

巨磁阻效应实验报告篇一:磁阻效应实验报告近代物理实验报告专业2011级应用物理学班级(2) 指导教师彭云雄姓名同组人实验时间 2013 年 12 月23 日实验地点 K7-108 实验名称磁阻效应实验一、实验目的1、2、3、4、测量电磁铁的磁感应强度与励磁电流的关系和电磁铁磁场分布。

测量锑化铟传感器的电阻与磁感应强度的关系。

作出锑化铟传感器的电阻变化与磁感应强度的关系曲线。

对此关系曲线的非线性区域和线性区域分别进行拟合。

二、实验原理图1磁阻效应原理1一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。

如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍耳电场。

如果霍耳电场作用和某一速度载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大,表现出横向磁阻效应。

若将图1中a端和b端短路,则磁阻效应更明显。

通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。

其中ρ(0)为零磁场时的电阻率,设磁电阻在磁感应强度为B的磁场中电阻率为ρ(B),则Δρ=ρ(B)-ρ(0)。

由于磁阻传感器电阻的相对变化率ΔR/R(0)正比于Δρ/ρ(0),这里ΔR=R(B)-R(0),因此也可以用磁阻传感器电阻的相对改变量ΔR/R(0)来表示磁阻效应的大小。

图2图2所示实验装置,用于测量磁电阻的电阻值R与磁感应强度B之间的关系。

实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性关系。

磁阻传感器的上述特性在物理学和电子学方面有着重要应用。

2如果半导体材料磁阻传感器处于角频率为ω的弱正弦波交流磁场中,由于磁电阻相对变化量ΔR/R(0)正比于B,则磁阻传感器的电阻值R将随角频率2ω作周期性变化。

巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用实验报告引言巨磁电阻(GMR)效应是一种在特定材料中的电阻随着磁场强度的改变而发生改变的现象,这个现象在1988年被发现并且被认为是一种非常重要的物理现象。

GMR效应的发现因其在信息存储和传输方面的应用而获得广泛的关注。

本实验旨在通过对GMR效应的测量来研究其基本性质以及应用。

实验器材本实验的器材包括:恒流源、磁场控制器、数显万用表、集成电路(IC)芯片、电阻板和薄膜,其中集成电路芯片是一种悬挂在磁性薄膜上的表面贴装器件,薄膜是一种金属薄膜,可以产生磁场。

实验步骤1.将IC芯片放置在电阻板的中心位置。

2.将磁性薄膜放置在IC芯片顶部,注意不要碰到芯片。

3.将恒流源的电流调节到正确的数值,根据实验需求选择恒流源的最大或最小电流值。

4.打开磁场控制器,使用磁场控制器来控制磁场的强度,根据需要进行改变。

5.使用数显万用表来测量芯片中的电压。

6.根据实验的需要调整电阻板和薄膜之间的距离。

实验结果实验结果表明,在施加不同大小的磁场时,IC芯片的电阻会发生变化,这种变化非常灵敏,能够实现高精度的控制。

此外,IC芯片的电阻随着磁场的强度增加而减小,这表明芯片的电阻具有“负巨磁电阻”效应。

讨论与结论巨磁电阻效应是一种非常重要的物理现象,它在信息存储和传输方面具有非常广泛的应用。

本实验展示了GMR效应的基本特性,并探讨了其在实际应用中的潜在价值。

我们可以通过调整材料的性质来提高其敏感度和精度,从而扩展其现有应用。

总之,GMR效应在信息技术领域是一个革命性的技术,它为我们提供了一种新的方式来控制和处理信息。

通过进一步研究和优化,我们可以更好地利用这个效应,实现更高效的数据传输和处理。

巨值电阻实验报告

巨值电阻实验报告

一、实验目的1. 了解巨磁电阻效应的基本原理和实验方法。

2. 通过实验测量巨磁电阻材料的电阻随磁场的变化规律。

3. 掌握测量电阻的基本方法和误差分析。

二、实验原理巨磁电阻效应(Giant Magneto-Resistance,GMR)是指在外加磁场的作用下,某些材料的电阻值发生显著变化的现象。

实验中,我们利用巨磁电阻材料的这种特性,通过测量电阻随磁场的变化,来研究其磁阻特性。

三、实验器材1. 巨磁电阻材料样品2. 磁场发生器3. 电阻测量仪4. 电流源5. 电压表6. 信号发生器7. 数据采集系统8. 电脑及实验软件四、实验步骤1. 将巨磁电阻材料样品放置在磁场发生器中,调整磁场方向。

2. 接通电流源,使电流通过巨磁电阻材料样品。

3. 利用电阻测量仪测量样品的电阻值。

4. 改变磁场强度,记录不同磁场下的电阻值。

5. 将实验数据输入电脑,利用实验软件进行分析和处理。

五、实验结果与分析1. 实验数据根据实验数据,绘制巨磁电阻材料电阻随磁场的变化曲线。

如下所示:图1 巨磁电阻材料电阻随磁场的变化曲线2. 结果分析(1)从实验结果可以看出,巨磁电阻材料的电阻值随着磁场强度的增加而减小,且变化趋势呈现出非线性。

在磁场强度较小时,电阻值下降较快;而在磁场强度较大时,电阻值下降速度逐渐变慢。

(2)根据实验结果,可以分析出巨磁电阻材料在磁场作用下的电阻变化机制。

当外加磁场较小时,材料内部的磁畴发生旋转,导致电阻值下降。

随着磁场强度的增加,磁畴逐渐趋于平行排列,电阻值下降速度逐渐变慢。

(3)实验过程中,对测量数据进行误差分析。

主要误差来源包括:电流源和电压表的精度、磁场发生器的稳定性、实验环境的温度和湿度等。

通过对实验数据进行多次测量,并计算平均值,可以减小误差的影响。

六、实验结论1. 巨磁电阻材料在磁场作用下的电阻值发生显著变化,符合巨磁电阻效应的基本原理。

2. 通过实验测量,获得了巨磁电阻材料电阻随磁场的变化规律,为相关应用研究提供了实验依据。

巨磁阻效及应用报告

巨磁阻效及应用报告

巨磁阻效及应用报告巨磁阻效应是一种在外加磁场作用下发生显著磁电阻变化的物理现象。

这种效应是在1992年由巴黎莱旺研究机构的阿尔贝特罗蒂埃教授和他的团队首次发现的。

巨磁阻效应的应用前景巨大,因此引起了广泛的关注和研究。

巨磁阻效应基于磁电阻效应,即磁场对材料电阻的影响。

一般情况下,材料的电阻对磁场的变化不敏感。

然而,当材料中存在特殊的磁性结构时,如磁共振等,电阻对磁场的变化就会显著地变化,这就是磁电阻效应。

而巨磁阻效应是磁电阻效应中最明显的一种。

巨磁阻效应以具有巨大磁电阻变化的磁性材料为基础。

当这些材料处于没有外加磁场时,它们的电阻是最小的,可以达到几个百分点。

然而,当外加磁场作用于这些材料时,它们的电阻会迅速增加,甚至可以增加到几十个百分点。

这种磁电阻的巨大变化使得巨磁阻效应具有很大的应用潜力。

巨磁阻效应的应用非常广泛,尤其在磁存储技术中具有重要地位。

巨磁阻材料可以用来制造磁头,这是计算机硬盘驱动器中不可或缺的部分。

通过利用巨磁阻效应,磁头可以以非常小的尺寸来探测和读取硬盘上的磁场信息。

巨磁阻材料还可以用于制造磁阻随机存储器(MRAM),这是一种新兴的存储技术,具有快速的读写速度和非易失性的特点。

此外,巨磁阻效应还可以应用于传感器技术中。

例如,巨磁阻材料可以用于制造磁传感器,用来检测和测量磁场强度和方向。

磁传感器广泛应用于导航、地震监测、医疗诊断等领域。

此外,巨磁阻效应在自动控制领域也具有重要的应用。

例如,巨磁阻材料可以用于制造磁阻变结构,这种结构可以根据外界磁场的变化实时调节其电阻,从而实现对电路的精确控制和调节。

尽管巨磁阻效应在磁存储、传感器和自动控制等领域有着广泛的应用,但是该效应的原理和机制还需要进一步研究和理解。

目前,巨磁阻材料的性能还有待进一步提高和优化,以满足不同领域的应用需求。

随着材料科学和纳米技术的不断发展,相信巨磁阻效应的应用前景会越来越广阔。

巨磁电阻实验报告

巨磁电阻实验报告

巨磁电阻实验报告巨磁电阻实验报告引言:巨磁电阻(Giant Magnetoresistance,简称GMR)是一种在外加磁场下电阻发生巨大变化的现象。

它是由诺贝尔物理学奖得主阿尔伯特·菲尔斯和彼得·格鲁伯尔于1988年发现的。

GMR效应的发现不仅在科学界引起了轰动,而且也在技术领域引发了革命性的变革。

本实验旨在通过测量巨磁电阻效应,探索其原理和应用。

实验目的:1.了解巨磁电阻效应的基本原理;2.熟悉巨磁电阻材料的制备和测量方法;3.通过实验数据分析,探索巨磁电阻在信息存储和传感器领域的应用。

实验原理:巨磁电阻效应是指在外加磁场下,磁性材料中的电阻发生显著变化的现象。

这一现象的基础是磁性材料中的自旋极化和磁化方向之间的相互作用。

当自旋极化与磁化方向平行时,电阻较小,而当自旋极化与磁化方向反平行时,电阻较大。

巨磁电阻效应的大小与磁化方向的相对变化有关。

实验装置:本实验采用了一台巨磁电阻测量仪。

该测量仪包括一个磁场供应器和一个电阻测量器。

磁场供应器用于产生可调的磁场,而电阻测量器则用于测量样品的电阻值。

实验步骤:1.准备样品:将巨磁电阻材料切割成适当大小的样品,并确保其表面平整清洁。

2.安装样品:将样品固定在测量仪的夹持装置上,确保样品与磁场平行。

3.调整磁场:通过调节磁场供应器,使得磁场的大小和方向符合实验要求。

4.测量电阻:使用电阻测量器测量样品在不同磁场下的电阻值,并记录数据。

5.分析数据:根据测得的电阻数据,绘制电阻随磁场变化的曲线,并进行数据分析。

实验结果与讨论:通过实验测量,我们得到了样品在不同磁场下的电阻值。

根据这些数据,我们可以绘制出电阻随磁场变化的曲线。

根据曲线的形状和变化趋势,我们可以得出以下结论:1.在低磁场下,电阻值变化较小,巨磁电阻效应不显著。

2.随着磁场的增大,电阻值迅速增加,巨磁电阻效应开始显现。

3.在较高磁场下,电阻值趋于稳定,巨磁电阻效应达到饱和。

巨磁阻效应及其应用实验报告

巨磁阻效应及其应用实验报告

巨磁阻效应及其应用实验报告篇一:巨磁阻效应实验报告数据数据处理实验一线圈电流由零开始变化测得输出电压V和磁场B的关系如下图示由上图可以看出2mT以下部分传感器的输出电压和磁场变化情况接近线性变化,其灵敏度K= 相关系数为由RB/R0=/ 计算出不同磁感应强度下的RB/R0值,绘制RB/R0-B关系图如下可以看出RB/R0的值随磁场B增大而逐渐减小,在2mT以后趋于饱和,RB/R0的饱和值约为。

则该传感器的电阻相对变化率/R0的最大值约为=-=-10% 实验二测量时,巨磁阻传感器工作电压V+为,线圈电流为。

利用实验所得数据作V输出—COSθ关系图如下示:从图中可以看出在COSθ=附近有一个瑕点外,具有较良好的线性关系V=θ,相关系数为,即传感器的输出电压与传感器敏感轴—磁场间夹角θ成余弦关系。

问题思考1.如何避免地磁场影响,并解释原因。

本次实验中亥姆霍兹线圈产生磁场来验证材料在有无磁场的情况下电阻的变化,必然会受到地磁场的影响,故我们在实验过程中每次旋转角度后,应重新调零,减小每次旋转角度地磁场对实验误差的积累。

篇二:巨磁电阻效应及其应用研究性实验报告北京航空航天大学基础物理实验巨磁电阻效应及其应用研究性实验报告摘要本报告研究了巨磁电阻效应及其应用。

报告详细的阐述了该实验的实验背景、实验原理、实验仪器及实验内容。

数据处理部分,报告将原始数据绘制成表格,并将用Matlab绘制成图像,能够较清晰的表示出物理量之间的关系。

另外,本报告对巨磁电阻的应用进行了大量的探究,列举了一些巨磁电阻于当今时代的应用,阐述了巨磁电阻的应用前景。

关键字巨磁电阻、传感器、磁感应强度、电压、电流目录摘要................................................................. . (1)关键字................................................................. (1)一、实验背景................................................................. (5)二、实验原理................................................................. (5)三、实验仪器................................................................. (7)1、实验仪主机................................................................. .. (7)2、基本特性组件模块................................................................. .. (8)3、电流测量组件................................................................. . (9)4、角位移测量组件................................................................. (9)5、磁读写组件................................................................. .. (9)四、实验内容................................................................. (10)1、GMR模拟传感器的磁电转换特性测量 (10)2、GMR磁阻特性测量............................................................... .. (11)3、GMR开关(数字)传感器的磁电转换特性曲线测量 (12)4、用GMR模拟传感器测量电流............................................................135、GMR梯度传感器的特性及应用 (14)6、磁记录与读出................................................................. .. (15)五、数据处理................................................................. . (15)1、GMR模拟传感器的磁电转换特性测量 (15)2、GMR磁阻特性测 (17)3、GMR开关(数字)传感器的磁电转换特性曲线测量 (18)4、用GMR模拟传感器测量电流............................................................195、GMR梯度传感器的特性及应用 (20)6、磁记录与读出................................................................. .. (21)六、实验思考................................................................. . (22)1、推导公式????????=????????????????? ................. . (22)2、实验感想................................................................. . (23)七、GMR传感器在有关领域的应用231、基于GMR传感器阵列的生物检测 (23)2、将GMR用于导航及高速公路的车辆监控系统 (24)3、GMR磁敏传感器在磁性介质的探测和磁性油墨鉴伪点钞机中的应用............................................................. .................................................................25八、实验总结................................................................. . (25)图 1 多层膜GMR结构图............................................................... . (6)图 2 某种GMR材料的磁阻特性............................................................... . (6)图 3 自旋阀SV-GMR结构图............................................................... (7)图4巨磁阻实验仪操作面板................................................................. .. (8)图 5 基本特性组件................................................................. .. (8)图 6 电流测量组件................................................................. .. (9)图7 角位移测量组件................................................................. . (9)图8 磁读写组件................................................................. (9)图9 GMR模拟传感器结构图............................................................... .. (10)图10 GMR模拟传感器的磁电转换特性........................................................10图11模拟传感器磁电转换特性实验原理图...................................................11图12磁阻特性测量原理图................................................................. .. (11)图13 GMR开关传感器............................................................... (12)图14 GMR开关传感器磁电转换特性............................................................12图15模拟传感器测量电流实验原理图...........................................................13图16 GMR梯度传感器结构图............................................................... (14)图17 用GMR梯度传感器检测齿轮位移......................................................14图18 磁电转换特性曲线................................................................. .. (16)图19 磁阻特性曲线................................................................. . (18)图20 GMR开关传感器磁电转换特性曲线....................................................19图21 输出电压与待测电流的关系曲线..........................................................20图22 用GMR梯度传感器检测齿轮位移的电压和转角关系图..................21图23 电路连接图................................................................. .. (22)图24 直接标记法................................................................. .. (23)图25 两部标记法................................................................. (24)表格 1 电流随磁感应强度变化表................................................................. (15)表格 2 磁阻随磁感应强度变化表................................................................. (17)表格 3 电平随励磁电流变化表................................................................. . (18)表格 4 输出电压随待测电流变化关系表........................................................19表格 5 电压和齿轮转角间的关系................................................................. (21)表格 6 二进制数的写入与读出................................................................. . (22)篇三:巨磁电阻效应及其应用数据处理五、实验数据及处理模拟传感器的磁电转换特性测量实验数据及由公式B = μ0nI算得的(n=24000匝/m)磁感应强度如下表所示:以B为横坐标,输出电压U为纵坐标,作图得:误差分析:(1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负以内,反应在图像上就是最低处的输出都在y轴上,实际上应当是分别分布在y轴左右两侧的;(2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响;(3)使用Excel表格处理数据的过程中可能会有精度损失;2. GMR的磁阻特性曲线的测量根据实验数据由公式B = μ0nI算得的磁感应强度,由R=U/I算得的电阻如下表所示:(磁阻两端电压U=4V)作图如下:误差分析:(1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负以内,反应在图像上就是最高处的输出都在y 轴上,实际上应当是分别分布在y轴左右两侧的;(2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响;(3)使用Excel表格处理数据的过程中可能会有精度损失;。

巨磁电阻效应和应用_实验报告

巨磁电阻效应和应用_实验报告

巨磁电阻效应和应⽤_实验报告巨磁电阻效应及其应⽤【实验⽬的】1、了解GMR效应的原理2、测量GMR模拟传感器的磁电转换特性曲线3、测量GMR的磁阻特性曲线4、⽤GMR传感器测量电流5、⽤GMR梯度传感器测量齿轮的⾓位移,了解GMR转速(速度)传感器的原理【实验原理】根据导电的微观机理,电⼦在导电时并不是沿电场直线前进,⽽是不断和晶格中的原⼦产⽣碰撞(⼜称散射),每次散射后电⼦都会改变运动⽅向,总的运动是电场对电⼦的定向加速与这种⽆规散射运动的叠加。

称电⼦在两次散射之间⾛过的平均路程为平均⾃由程,电⼦散射⼏率⼩,则平均⾃由程长,电阻率低。

电阻定律 R=l/S 中,把电阻率视为常数,与材料的⼏何尺度⽆关,这是因为通常材料的⼏何尺度远⼤于电⼦的平均⾃由程(例如铜中电⼦的平均⾃由程约34nm),可以忽略边界效应。

当材料的⼏何尺度⼩到纳⽶量级,只有⼏个原⼦的厚度时(例如,铜原⼦的直径约为0.3nm),电⼦在边界上的散射⼏率⼤⼤增加,可以明显观察到厚度减⼩,电阻率增加的现象。

电⼦除携带电荷外,还具有⾃旋特性,⾃旋磁矩有平⾏或反平⾏于外磁场两种可能取向。

早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡⾦属中,⾃旋磁矩与材料的磁场⽅向平⾏的电⼦,所受散射⼏率远⼩于⾃旋磁矩与材料的磁场⽅向反平⾏的电⼦。

总电流是两类⾃旋电流之和;总电阻是两类⾃旋电流的并联电阻,这就是所谓的两电流模型。

在图2所⽰的多层膜结构中,⽆外磁场时,上下两层磁性材料是反平⾏(反铁磁)耦合的。

施加⾜够强的外磁场后,两层铁磁膜的⽅向都与外磁场⽅向⼀致,外磁场使两层铁磁膜从反平⾏耦合变成了平⾏耦合。

电流的⽅向在多数应⽤中是平⾏于膜⾯的。

电阻\欧姆磁场强度/ ⾼斯图3 某种GMR材料的磁阻特性⽆外磁场时顶层磁场⽅向⽆外磁场时底层磁场⽅向图2 多层膜GMR 结构图图3是图2结构的某种GMR 材料的磁阻特性。

由图可见,随着外磁场增⼤,电阻逐渐减⼩,其间有⼀段线性区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巨磁电阻效应及其应用【实验目的】1、 了解GM 效应的原理2、 测量GM 模拟传感器的磁电转换特性曲线3、 测量GM 的磁阻特性曲线4、 用GM 传感器测量电流5、 用GM 梯度传感器测量齿轮的角位移,了解GM 转速(速度)传感器的原理【实验原理】根据导电的微观机理, 电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向 加速与这种无规散射运动的叠加。

称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。

电阻定律R= I/S 中,把电阻率视为常数, 与材料的几何尺度无关, 这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约 34nn ),可以忽略边界效应。

当材料的几何尺度小到纳米量级,只有几 个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可 以明显观察到厚度减小,电阻率增加的现象。

电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。

早在1936年,英国物理学家,诺贝尔奖获得者 N.F.Mott 指出,在过渡金属中,自旋磁矩与材 料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。

总电流是两类自旋电流之和 ;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。

在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合 的。

施加足够强的外磁场后, 两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。

电流的方向在多数应用中是平行于膜面的。

图3 某种GMR 材料的磁阻特性电阻\欧姆4HH470C i6X -HO433諏-CT磁场强度/高斯无外磁场时顶层磁场方向*■无外磁场时底层磁场方向图2多层膜GMR结构图图3是图2结构的某种GM材料的磁阻特性。

由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。

当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。

磁阻变化率△ R/R达百分之十几,加反向磁场时磁阻特性是对称的。

注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。

有两类与自旋相关的散射对巨磁电阻效应有贡献。

其一,界面上的散射。

无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。

有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射几率很小,对应于低电阻状态。

其二,铁磁膜的散射。

即使电流方向平行于膜面,由于无规散射,电子也有一定的几率在上下两层铁磁膜之间穿行。

无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程,两类自旋电流的并联电阻相似两个中等阻值的电阻的并联,对应于高电阻状态。

有外磁场时,上下两层铁磁膜的磁场方向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联,对应于低电阻状态。

多层膜GM结构简单,工作可靠,磁阻随外磁场线性变化的围大,在制作模拟传感器方面得到广泛应用。

在数字记录与读出领域,为进一步提高灵敏度,发展了自旋阀结构的GMR【实验仪器】主要包括:巨磁电阻实验仪、基本特性组件、电流测量组件、角位移测量组件、磁读写组件。

基本特性组件由GM模拟传感器,螺线管线圈及比较电路,输入输出插孔组成。

用以对GM的磁电转换特性,磁阻特性进行测量。

GM传感器置于螺线管的中央。

螺线管用于在实验过程中产生大小可计算的磁场,由理论分析可知,无限长直螺线管部轴线上任一点的磁感应强度为:B =卩Onl (1)式中n为线圈密度,I为流经线圈的电流强度,o 4 10 7 H /m为真空中的磁导率。

采用国际单位制时,由上式计算出的磁感应强度单位为特斯拉(1特斯拉=10000高斯)。

【实验容及实验结果处理】一、GMR模拟传感器的磁电转换特性测量在将GMR勾成传感器时,为了消除温度变化等环境因素对输出的影响,一般采用桥式结构。

a几何结构 b 电路连接GMR模拟传感器结构图对于电桥结构,如果4个GMF电阻对磁场的影响完全同步,就不会有信号输出。

图17-9中,将处在电桥对角位置的两个电阻R3, R4覆盖一层高导磁率的材料如坡莫合金,以屏蔽外磁场对它们的影响,而R1,R2阻值随外磁场改变。

设无外磁场时4个GMF电阻的阻值均为R, R1、R2在外磁场作用下电阻减小△ R,简单分析表明,输出电压:OUTU =U IN(2R- R) (2)屏蔽层同时设计为磁通聚集器,它的高导磁率将磁力线聚集在R1、R2电阻所在的空间,进一步提高了R1,R2的磁灵敏度。

从几何结构还可见,巨磁电阻被光刻成微米宽度迂回状的电阻条,以增大其电阻至k 数量级,使其在较小工作电流下得到合适的电压输出。

GMR 莫拟传感器的磁电转换特性模拟传感器磁电转换特性实验原理图将GMR 莫拟传感器置于螺线管磁场中,功能切换按钮切换为“传感器测量”。

实验仪的4V 电压源接至基本特性组件“巨磁电阻供电” ,恒流源接至“螺线管电流输入”,基本特性 组件“模拟信号输出”接至实验仪电压表。

按表1数据,调节励磁电流,逐渐减小磁场强度,记录相应的输出电压于表格“减小 磁场”列中。

由于恒流源本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。

再次增大电流i ,此时流经螺线管的电流与磁感应强度的方向为负,从上到下记录相应的输出电压。

电流至 -100mA 后,逐渐减小负向电流,电流到 0时同样需要 交换恒流输出的极性。

从下到上记录数据于表一 “增大磁场”列中。

理论上讲,外磁场为零时,GMF 传感器的输出应为零,但由于半导体工艺的限制,4个桥臂电阻值不一定完全相同,导致外磁场为零时输出不一定为零,在有的传感器中可以观 察到这一现象。

根据螺线管上表明的线圈密度,由公式(1)计算出螺线管的磁感应强度 B 。

以磁感应强度B 作横坐标,电压表的读数为纵坐标作出磁电转换特性曲线。

不同外磁场强度时输出电压的变化反映了 GMR 传感器的磁电转换特性,同一外磁场强度下输出电压的差值反映了材料的磁滞特性。

表1 GMR 模拟传感器磁电转换特性的测量(电桥电压4V ,线圈密度为24000匝/米)丄三4GMR 模拟传感器的磁电转换特性测量、GMF 磁阻特性测量为加深对巨磁电阻效应的理解,我们对构成GMR 模拟传感器的磁阻进行测量。

将基本特 性组件的功能切换按钮切换为“巨磁阻测量”,此时被磁屏蔽的两个电桥电阻R3、R4被短路,而R1、R2并联。

将电流表串连进电路中,测量不同磁场时回路中电流的大小,就可以 计算磁阻。

实验装置:巨磁阻实验仪,基本特性组件。

将GMR 模拟传感器置于螺线管磁场中,功能切换按钮切换为“巨磁阻测量” 。

实验仪的4伏电压源串连电流表后,接至基本特性组件“巨磁电阻供电” ,恒流源接至“螺线管电流输入”。

按表2数据,调节励磁电流,逐渐减小磁场强度,记录相应的磁阻电流于表格“减小 磁场”列中。

由于恒源流本身不能提供负向电流,当电流减至 0后,交换恒流输出接线的极性,使电流反向。

再次增大电流,此时流经螺线管的电流与磁感应强度的方向为负,从 上到下记录相应的输出电压。

电流至一 100mA 后,逐渐减小负向电流,电流到0时同样需要交换恒流输出接线的极40 -―—系歹y i系列2-30-20-10 0 10 输出电压/MV203040斯甘戶度强应感磁性。

从下到上记录数据于“增大磁场”列中。

根据螺线管上表明的线圈密度,由公式(1)计算出螺线管的磁感应强度B。

由欧姆定律R=U/I计算磁阻。

以磁感应强度B作横坐标,磁阻为纵坐标做出磁阻特性曲线。

应该注意,由于模拟传感器的两个磁阻是位于磁通聚集器中,与图3相比,我们作出的磁阻曲线斜率大了约10倍,磁通聚集器结构使磁阻灵敏度大大提高。

不同外磁场强度时磁阻的变化反映了GMR勺磁阻特性,同一外磁场强度的差值反映了材料的磁滞特性。

GMR 磁阻特性的测量*系歹【11.系歹y 22400.00002350.00004/2300.00002250.00007/F2200.00002150.00002100.0000-30. 0000-20. 0000-10. 00000. 0000 10. 0 00 020. 000030. 00004 0. 00 00磁感应强度/高斯三、GRM 开关(数字)传感器的磁电转换特性曲线测量四、用GM 模拟传感器测量电流GM 模拟传感器在一定的围输出电压与磁场强度成线性关系,且灵敏度高,线性围大, 可以方便的将GM 制成磁场计,测量磁场强度或其它与磁场相关的物理量。

作为应用示例, 我们用它来测量电流。

由理论分析可知,通有电流I 的无限长直导线,与导线距离为r 的一点的磁感应强度为:B =卩 0I/2 n r =2 I X 10-7/r(3)磁场强度与电流成正比,在 r 已知的条件下,测得 B ,就可知I 。

h减小磁场 增大磁场开关动 作励磁电流 /mA 磁感应强度/ 咼斯 开关动 作 励磁电流 /mA 磁感应强度/ 咼斯关 20.4 6.1525 关: 20.76.2430「 开 23.67.1176 开 23.3 7.0271表3 GRM 开关传感器的磁电转换特性测量 高电平=1V 低电平=0V戶阻磁在实际应用中,为了使 GM 模拟传感器工作在线性区,提高测量精度,还常常预先给传 感器施加一固定已知磁场,称为磁偏置,其原理类似于电子电路中的直流偏置。

模拟传感器测量电流实验原理图实验装置:巨磁阻实验仪,电流测量组件实验仪的4伏电压源接至电流测量组件 “巨磁电阻供电”,恒流源接至“待测电流输入”, 电流测量组件“信号输出”接至实验仪电压表。

将待测电流调节至0。

将偏置磁铁转到远离 GM 传感器,调节磁铁与传感器的距离,使输出约25mV将电流增大到300mA 按表4数据逐渐减小待测电流, 从左到右记录相应的输出电压于表 格“减小电流”行中。

由于恒流源本身不能提供负向电流,当电流减至0后,交换恒流输出接线的极性,使电流反向。

再次增大电流,此时电流方向为负,记录相应的输出电压。

逐渐减小负向待测电流,从右到左记录相应的输出电压于表格“增加电流”行中。

当电流减至0后,交换恒流输出接线的极性,使电流反向。

再次增大电流,此时电流方向为正, 记录相应的输出电压。

相关文档
最新文档