2010-北航-应用数理统计-习题参考答案
应用数理统计 杨虎 第三章习题及答案

习题三2.设总体的分布密度为:(1),01(;)0,x x f x ααα+<<=⎧⎨⎩其它1(,,)n X X 为其样本,求参数α的矩估计量1ˆα和极大似然估计量2ˆα .现测得样本观测值为:0.1,0.2,0.9,0.8,0.7,0.7,求参数α的估计值 .解 计算其最大似然估计:()()11111(,)11ln (,)ln(1)ln nnnn i i i i nn ii L x x x x L x x n x αααααααα===⎡⎤=+=+⎣⎦=++∏∏∑1121ln (,)ln 01ˆ10.2112ln nn i i n ii d n L x x x d nx ααααα====+=+=--=∑∑ 其矩估计为:()1 3.40.10.20.90.80.70.766X =+++++= 3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以:12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑, 12ˆˆ0.3077,0.2112αα≈≈.3. 设元件无故障工作时间X 具有指数分布,取1000个元件工作时间的记录数据,经分组后得到它的频数分布为:如果各组中数据都取为组中值,试用最大似然法求参数的点估计. .解 最大似然估计:11(,),ln ln i nx n nx n i L x x e e L n nx λλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05X λ==.4. 已知某种灯泡寿命服从正态分布,在某星期所生产的该种灯泡中随机抽取10只,测得其寿命(单位:小时)为:1067,919,1196,785,1126,936,918,1156,920,948 设总体参数都未知,试用极大似然法估计这个星期中生产的灯泡能使用1300小时以上的概率.解 设灯泡的寿命为x ,2~(,)x N μσ,极大似然估计为:2211ˆˆ,()ni i x x x n μσ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.81μσ== . 经计算得,这个星期生产的灯泡能使用1300小时的概率为0.0075.5. 为检验某种自来水消毒设备的效果,现从消毒后的水中随机抽取50升,化验每升水中大肠杆 菌的个数(假定一升水中大肠杆菌个数服从Poisson 分布),其化验结果如下:试问平均每升水中大肠杆菌个数为多少时,才能使上述情况的概率为最大? 解 设x 为每升水中大肠杆菌个数,~()x P λ,Ex λ=,由3题(2)问知,λ的最大似然估计为x ,所以().150/1*42*310*220*117*0ˆ=++++==X L λ所以平均每升氺中大肠杆菌个数为1时,出现上述情况的概率最大 .7. 设1234,,,X X X X 是总体X 的样本,设有下述三个统计量: 123411163ˆ()()X X X X a ++=+12342234ˆ()/10X X X X a +++= 12343ˆ()/4X X X X a +++=指出1ˆ,a2ˆ,a 3ˆa 中哪几个是总体均值a =EX 的无偏估计量,并指出哪一个方差最小? 解22222111111ˆˆ()(),()()0.2763369E D ααααααασσσσσ=+++==+++= 2ˆ(234)/10E αααααα=+++=,22ˆ0.3D ασ= 223314ˆˆ(),0.25416E D ααααααασσ=+++=== 所以 123ˆˆˆ,,ααα无偏,3ˆα方差最小.8. 设1,...,n X X 是来自总体X 的样本,并且EX =μ,DX = 2σ,2,X S 是样本均值和样本方差,试确定常数c ,使22X cS -是2μ的无偏估计量 .解2222222222()E X cS EX cES DX E X c c nσσμσμ-=-=+-=+-=所以1c n =.9. 设1ˆθ,2ˆθ是θ的两个独立的无偏估计量,并且1ˆθ的方差是2ˆθ的方差的两倍 .试确定常数c 1, c 2,使得11ˆc θ+22ˆc θ为θ的线性最小方差无偏估计量 . 解: 设22122,2D D θσθσ==112212121221(()11E c c c c c c c c c c θθμμμμ+=+=+=+==-),,()()222222211221211(2221D c c c c c c θθσσσ+=+=+-)()222111121321c c c c +-=-+当1212*33c -=-=,上式达到最小,此时21213c c =-= .10. 设总体X 具有如下密度函数,1,01(,)0,x x f x θθθθ-<<=>⎧⎨⎩,0其它1,...,n X X 是来自于总体X的样本,对可估计函数1()g θθ=,求()g θ的有效估计量ˆ()gθ,并确定R-C 下界 .解 因为似然函数1111L(,),ln ln (1)ln i i nn n n n i i x x x x L n x θθθθθ--====+-∑∏∏111ln ln ln ln ()0i i i d n L x n x n x g d n n θθθθ⎛⎫⎛⎫=+=---=---= ⎪ ⎪⎝⎭⎝⎭∑∑∑ 所以取统计量1ln i T x n=-∑ 11111101ln ln ln ln i E X x x dx xdx x x x dx θθθθθθ--===-=-⎰⎰⎰得1ET θ==()g θ,所以1ln i T x n=-∑是无偏估计量 令()c n θ= 由定理2.3.2知 T 是有效估计量,由221()1()g DT c n n θθθθ-'===- 所以 C-R 方差下界为21n θ.11. 设1,...,n X X 是来自于总体X 的样本,总体X 的概率分布为:||1||(,)()(1),1,0,1,012x x f x x θθθθ-=-=-≤≤1) 求参数θ的极大似然估计量ˆθ;2) 试问极大似然估计ˆθ是否是有效估计量?如果是,请求它的方差ˆD θ和信息量()I θ;3 试问θ是否是相合估计量?(书上没有这个问题) 解 1)()()111(,)1122ln ln (n )ln(1)iii ix x nx n x n i i i L x x L x x θθθθθθθ--=∑⎛⎫⎛⎫∑=-=- ⎪ ⎪⎝⎭⎝⎭=+--∏∑∑n 1ln 01(1)n xi xi d n L xi d θθθθθθ-⎛⎫=-=-= ⎪--⎝⎭∑∑∑ 得到θ最大似然估计量1ˆxi nθ=∑ 2)()()110011,10122Exi E xi E xi n n θθθθθ⎛⎫⎛⎫==-++-= ⎪ ⎪⎝⎭⎝⎭∑∑所以11Exi E xi n nθ==∑∑ 所以ˆθ是无偏估计量,()(1)n c θθθ=-,由定理2.3.2得到1ˆxi n θ=∑是θ有效估计量信息量c()1()(1)I n θθθθ==-3)1(1)ˆD 0,(n )c()nθθθθ-==→→∞ 所以,T 也是相合估计量 .12 从一批螺钉中随机地取16枚,测得其长度(单位:cm)为:2.14,2.10,2.13,2.15,2.13,2.12,2.13,2.10,2.15, 2.12,2.14,2.10,2.13,2.11,2.14,2.11设钉长分布为正态,在如下两种情况下,试求总体均值μ的90%置信区间,1)若已知σ=0.01cm ; 2)若σ未知;解 因为 2.125,16,0.171,X n s ===()0.950.9510.95, 1.65,15 1.7532t αμ===-1) 计算0.950.952.1209, 2.1291X b a X αμμ-===+== 所以 置信区间为[]1.1212.129,2) 计算((0.950.9515 2.1175,15 2.1325X t b X t α-==+== 所以 置信区间为[]2.1152.135,.13 随机地取某种炮弹9发做试验,测得炮口速度的样本标准差s=11(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差σ的置信度为95%的置信区间 .解 由题意标准差σ的置信度为0.95的置信区间为0.9750.0252222(1)(1)(,)(8)(8)n S n S χχ-- 计算得0.9750.0252222(1)(1)11,9,0.05,7.431,21.072(8)(8)n S n S S n a b αχχ--=======所以 置信区间为 [7.431,21.072].14. 随机地从A 批导线中抽取4根,并从B 批导线中抽取5根,测得其电阻(Ω)为:A 批导线:0.143,0.142,0.143,0.137B 批导线:0.140,0.142,0.136,0.138,0.140设测试数据分别服从21(,)N μσ和22(,)N μσ,并且它们相互独立,又212,,μμσ均未知,求参数12μμ-的置信度为95%的置信区间 .解 由题意,这是两正太总体,在方差未知且相等条件下,对总体均值差的估计:置信区间为121221(2)X Y tn n S n α--±+- 计算得2626A B 120.14125,0.1392,8.25*10, 5.2*10,4,5,0.05x y S S n n α--======= 26W W 0.9756.5710,0.00255,(7) 2.365,0.0022,0.0063S S t a b -====-=所以[0.0022,0.0063]-.15. 有两位化验员A 、B ,他们独立地对某种聚合物的含氯量用相同方法各作了10次测定,其测定值的方差2s 依次为0.5419和0.6065,设2A σ与2B σ分别为A 、B 所测量数据的总体的方差(正态总体),求方差比2A σ/2B σ的置信度为95%的置信区间 .解 由题意,这是两正太总体方差比的区间估计:置信区间为22AA22BB1212(,)1(1,1)(1,1)22S S S S F n n Fn n -----计算得22A B 120.5419,0.6065,10,0.05S S n n α=====22AA22B B0.9750.0250.2217, 3.6008(9,9)(9,9)S S S S a b F F ====所以置信为 [0.2217,3.6008].。
应用数理统计复习题及答案()

应用数理统计复习题(2010)一 填空题 1设621,,,X X X 是总体)1,0(~N X 的一个样本,26542321)()(X X X X X X Y +++++=。
当常数C = 1/3 时,CY 服从2χ分布。
2 设统计量)(~n t X ,则~2X F(1,n) ,~12XF(n,1) 。
3 设n X X X ,,,21 是总体),(~2σu N X 的一个样本,当常数C = 1/2(n-1) 时,∑-=+-=11212)(n i i i X X C S 为2σ的无偏估计。
4 设)),0(~(2σεεβαN x y ++=,),,2,1)(,(n i y x i i =为观测数据。
对于固定的0x ,则0x βα+~ ()20201,x x N x n Lxx αβσ⎛⎫⎡⎤- ⎪⎢⎥++ ⎪⎢⎥ ⎪⎢⎥⎣⎦⎝⎭。
5.设总体X 服从参数为λ的泊松分布,1.9,2,2,2.1, 2.5为样本,则λ的矩估计值为ˆλ= 2.1 。
6.设总体212~(,),,,...,n X N X X X μσ为样本,μ、σ2 未知,则σ2的置信度为1-α的置信区间为 ()()()()222212211,11n Sn S n n ααχχ-⎡⎤--⎢⎥⎢⎥--⎢⎥⎣⎦。
7.设X 服从二维正态),(2∑μN 分布,其中⎪⎪⎭⎫⎝⎛=∑⎪⎪⎭⎫⎝⎛=8221,10μ令Y =X Y Y ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛202121,则Y 的分布为 ()12,02TN A A A A μ⎛⎫= ⎪⎝⎭∑ 。
8.某试验的极差分析结果如下表(设指标越大越好):表1 因素水平表表2 极差分析数据表则(1)较好工艺条件应为22121A B C D E 。
(2)方差分析中总离差平方和的自由度为 7 。
(3)上表中的第三列表示 A B ⨯交互作用 。
9.为了估计山上积雪溶化后对河流下游灌溉的影响,在山上建立观测站,测得连续10年的观测数据如下表(见表3)。
北航数理统计答案

北航数理统计答案【篇一:北航数理统计考试题】术部2011年12月2007-2008学年第一学期期末试卷一、(6分,a班不做)设x1,x2,…,xn是来自正态总体n(?,?2)的样本,令t?x?x),试证明t服从t-分布t(2)二、(6分,b班不做)统计量f-f(n,m)分布,证明1f的?(0?1)的分位点x?是1f1??(n,m)。
三、(8分)设总体x的密度函数为?(1??)x?,0?x?1p(x;?)??0,其他?其中???1,是位置参数。
x1,x2,…,xn是来自总体试求参数?的矩估计和极大似然估计。
四、(12分)设总体x的密度函数为?1?x???exp???,x???p(x;?)??????,??0,其它其中???????,?已知,??0,?是未知参数。
x1,x2,…,xn是来自总?体x的简单样本。
(1)试求参数?的一致最小方差无偏估计?;(2)?是否为?的有效估计?证明你的结论。
五、(6分,a班不做)设x1,x2,…,xn是来自正态总体n(?简单样本,y1,y2,…,yn是来自正态总体n(?两样本相互独立,其中?设h0:?1??2,h1:?1??2,1221?,?1)2的,?2)的简单样本,且21,?1,?2,?222是未知参数,???22。
为检验假可令zi?xi?yi, i?1,2,...,n ,???1??2 ,则上述假设检验问题等价于h0:?1?0,h1:?1?0,这样双样本检验问题就变为单检验问题。
基于变换后样本z1,z2,…,zn,在显著性水平?下,试构造检验上述问题的t-检验统计量及相应的拒绝域。
六、(6分,b班不做)设x1,x2,…,xn是来自正态总体n(?简单样本,?0已知,?2未知,试求假设检验问题h0:?2,?)02的??0,h1:?22??02的水平为?的umpt。
七、(6分)根据大作业情况,试简述你在应用线性回归分析解决实际问题时应该注意哪些方面?八、(6分)设方差分析模型为?xij????i??j??ij?2??ij服从正态总体分布n(0,?)且?ij相互独立??i?1,2,...,p;j?1,...,q?pq??和?满足??i?0,??j?0.j?ii?1j?1?总离差平方和pst?sa?sb?se中sa?q?(xi??x),x?i?1x??pqi?1j?11pqij,xi??1qijx?qj?1,且e(se)=(p-1)(q-1)?.?...??p?0的拒绝2试求e(sa),并根据直观分析给出检验假设h0:?1??2域形式。
应用数理统计课后习题参考答案

习题五1 某钢厂检查一月上旬内的五天中生产的钢锭重量,结果如下:(单位:k g)日期重旦量1 5500 5800 5740 57102 5440 5680 5240 56004 5400 5410 5430 54009 5640 5700 5660 570010 5610 5700 5610 5400试检验不同日期生产的钢锭的平均重量有无显著差异? ( =0.05)解根据问题,因素A表示日期,试验指标为钢锭重量,水平为 5.2假设样本观测值y j(j 123,4)来源于正态总体Y~N(i, ),i 1,2,...,5检验的问题:H。
:i 2 L 5, H i : i不全相等.计算结果:注释当=0.001表示非常显著,标记为*** '类似地,=0.01,0.05,分别标记为查表F0.95(4,15) 3.06,因为F 3.9496 F0.95(4,15),或p = 0.02199<0.05 ,所以拒绝H。
,认为不同日期生产的钢锭的平均重量有显著差异2 考察四种不同催化剂对某一化工产品的得率的影响,在四种不同催化剂下分别做试验解根据问题,设因素A表示催化剂,试验指标为化工产品的得率,水平为 4 .2假设样本观测值y j(j 1,2,..., nJ来源于正态总体Y~N(i, ), i 1,2,...,5 .其中样本容量不等,n分别取值为6,5,3,4 .日产量操作工查表 F O .95(3,14) 3.34,因为 F 2.4264 F °.95(3,14),或 p = 0.1089 > 0.05, 所以接受H 。
,认为在四种不同催化剂下平均得率无显著差异3试验某种钢的冲击值(kg Xm/cm2 ),影响该指标的因素有两个,一是含铜量 A ,另一个是温度试检验含铜量和试验温度是否会对钢的冲击值产生显著差异? ( =0.05 )解 根据问题,这是一个双因素无重复试验的问题,不考虑交互作用设因素A,B 分别表示为含铜量和温度,试验指标为钢的冲击力,水平为 12.2假设样本观测值y j (i 1,2,3, j 1,2,3,4)来源于正态总体 Y j ~N (j ,),i 1,2,3,j 1,2,3,4 .记i 为对应于A 的主效应;记 j 为对应于B j 的主效应;检验的问题:(1) H i 。
应用数理统计课后答案

(n
2)
1
1 n
(x0
x)2 lxx
)
所以 当 0.05 时,有:
(
x0
)
ˆ
t 12
(n
2)
1
1 n
(
x0
lxx
x
)
2
0.466 2.2281
1
1 12
(225 205)2 14300
1.09455
即得 所求预测区间为: ( 77.5855, 79.7746) 。
5852 15
832
S A
3 i1
1 5
Ti2
T2 n
23430.6
5852 15
615.6
Se ST S A 832 615 .6 216 .4
所以
F
SA Se
(r 1) (n r)
615.6 (3 1) 216.4 (15 3)
4-47. 甲、乙两个车间生产同一种产品,要比较这种产品的某项指标波动的情况,从这两个
车间连续 15 天取得反映波动大小的数据如下表:
甲 1.13 1.26 1.16 1.41 0.86 1.39 1.21 1.22 1.20 0.62 1.18 1.34 1.57
乙 1.21 1.31 0.99 1.59 1.41 1.48 1.31 1.12 1.60 1.38 1.60 1.84 1.95
(n1k) (k)
a(k )
a(k)[x(n1k) x(k)]
1
10.18 10.82
2
《应用数理统计》第三章假设检验课后作业参考答案

第三章 假设检验课后作业参考答案3.1 某电器元件平均电阻值一直保持2.64Ω,今测得采用新工艺生产36个元件的平均电阻值为2.61Ω。
假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。
已知改变工艺前的标准差为0.06Ω,问新工艺对产品的电阻值是否有显著影响?(01.0=α)解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36/06.064.261.2/u 00-=-=-=nX σμ(3)否定域⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧>⋃⎭⎬⎫⎩⎨⎧<=--21212αααu u uu u u V (4)给定显著性水平01.0=α时,临界值575.2575.2212=-=-ααuu ,(5) 2αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。
3.2 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测得其寿命平均值为950(小时)。
已知这种元件寿命服从标准差100σ=(小时)的正态分布,试在显著水平0.05下确定这批元件是否合格。
解:{}01001:1000, H :1000X 950 100 n=25 10002.5V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得:拒绝域:本题中:0.950.950u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。
3.3某厂生产的某种钢索的断裂强度服从正态分布()2,σμN ,其中()2/40cm kg =σ。
现从一批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比,X 较μ大20(2/cm kg )。
设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提高? 解:(1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13/4020/u 00==-=nX σμ (3)否定域{}α->=1u u V(4)给定显著性水平01.0=α时,临界值33.21=-αu(5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。
应用数理统计习题答案2222

2214243.(1)[||]0.140(2)[||]0.144(,4),(,),(0,)[||]20.1800255(3){||0.1}2(10.9521.9615372tnE a D nnE aN a N a t a Nn nE t t dtnP tPnξξξξξξπ-+∞-==≤⇒=-≤=-==≤==≤=≤=Φ-≥=⇒≥⎰《应用数理统计》参考答案习题一0.51.(,0.5)(,){||0.1}0.9972.97442N a N anP a Pnξξξξ⇒-<=<==⇒=2242.(,4)(,)100||(1)(||)()0.90,0.330.20.2(2):P(||)N a N aa UP a U P Uaξξξξσξεε⇒--<=<==-≥≤挈比学夫不等式(5)(5)125515(3){15}1{15}1{15,15,,15}1215121[{}]221[1(1.5)]0.292P P P P ξξξξξξ>=-≤=-≤≤≤--=->=--Φ=1121212111()(1){}{,,,}{1,1,,1}()()(1)(1)k n n nn m nm n m n m ni i P k pq P M m P m m m P m m m pqpq q q ξξξξξξξ----======≤≤≤-≤-≤-≤-=-=---∑∑4.5. 6.13.0)25(1}8.012138.012{}13{)54,12(~)1()4,12(~=Φ-=->-=>ξξξξP P N N (1)(1)1255511515(2){10}1{10}1{10,10,,10}1[{10}]1[1{10}]1210121[1{}]221[11(1)]0.579P P P P P P ξξξξξξξξ<=-≥=->>>=->=--≤--=--≤=--+Φ=6(1)0.001567.2800~(0.0015)(1){800}[{800}][0.0015]x E P P e dx e ξξξ∞-->=>==⎰6(6)30000.00156 4.56(2){3000}[{3000}][0.0015](1)x P P e dx e ξξ--<=<==-⎰12121(1)11(2){}{,,,}{1,1,,1}()()n n nn k nk n k n k ni i P K k P k k k P k k k pqpq q q ξξξξξξ--====≥≥≥-≥+≥+≥+=-=-∑∑7.8.9.由中心极限定理:10.11.22222(1)(1)(1)()222~()()()[()](,)it itit n e n n e n e it i t t t nit it n n nn p t e t t ee n e e e N n λξλλξξλλλλλξλϕϕϕλξλ---+--∴=∴======∴12121233~(20,3),~(20,),~(20,)10151~(0,)2{||0.3}1220.67N N N N P P ξξξξξξξξξ-∴->=->=-Φ=2(),(),E a D ξξσ==121(0,1)(0,1)~(,)n n i i i ni i na a n N N N a n nξξσξσξ==--∴∴=∑∑∑22222222,(),()()(),(),(),(,)k k k k k k k k k k k k k kk k E a E a D E E a a a a E A a D A n a a A N a nξξξξξ===-=--∴==-∴221212122221212122212(),()(),()0,()()()2,()()()2,(1)()2(1)i i E E a D D E D D D E E D EQ n E n ξξξξσξξξξξξσξξξξξξσξξσ====∴-=-=+=∴-=-+-=∴=--=-13.14.15. N16.17.2212221221,(),(),()()0,()()()(1),11[()](1)1niii ii i iniiniiE a E a D DnE D D DnDn D nDES n Dn nE ES Dn n nσξξξσξξξξξξξσξξξξξξξ=======∴-=-=+--===--==--∑∑∑222222222424222(1),11()(1)()2(1)21 ()2(1)() nsnns nE n Es On nns nD n Ds On n n χσσσσσσσ--=-⇒==+-=-⇒==+112323''' '2(121)(1)()()()()5231()(121)23023021AD E E E EA E E A AVar Aξξξξξξηξηηηηηξξξξξ⎛⎫⎪-+=-==⎪⎪⎝⎭=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11222211()2822121(2)||2241128116xx xxe dx dxπ⎛⎫⎛⎫- ⎪⎪∞∞⎝⎭⎝⎭-∞-∞-=∑-⎛⎫⎛⎫∑==⎪ ⎪-⎝⎭⎝⎭⎰⎰()11223'122111110(,),211151,11012N A A AAξηξηξηηθθ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑⎛⎫⎛⎫⎛⎫⎪==⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭‘=,由引理1.2.3,则-的联合分布为-18.21.22.23.11223''12111111~(,),1011111432111111121301111210.2N A A AA Aξηξξηξηθρρρρρρρρρηη⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭∴∑⎛⎫⎛⎫+--⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪---⎝⎭⎝⎭⎪⎪-⎝⎭⎝⎭∴--=⇒=-==A,--时与独立2''44''22'''''' 44224(0,)(,)()()2()()()()()cov(,)(,)()() ()()2()()()2()nN IE A B tr A tr B tr ABE A E B tr A tr BA B E A B E A E Btr A tr B tr AB tr A tr B tr AB ζσζζζζσσζζζζσσζζζζζζζζζζζζσσσσσ=+=∴=-=+-=()11112222121122,1,1,0822177,122477yay y Qyba babθθθθθθθ--⎛⎫⎛⎫--=⎪⎪-⎝⎭⎝⎭⇒===-=⎛⎫⎪⎛⎫⎛⎫∴=∑== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭2212221~(,),~(0,),~(1),(0,1)/(1)nnN a Nn nnsn NT t nσξξξσξχσξ++---=-24.又 则令 则与 独立,则 与独立,且26.则27.'11111(,,),(,,)111(,,),()11n n n ij n n n n i i i ia a B D nn n ξξθξσσσσδσσ⨯======-∑∑'2,0,D D D BD ===221(,)(,)1()n ni i n nB N a N I ηξθσσ===∑,i i i aξγσ-=2'11,()()()ni i i a D n ηγζγγξθξθσ=-==-=--∑∑B nηξ=ξηζ)1(~2-n χζ11(,)22U ξθθ-+(1)()121111221111()2201()121()()[1()]1[]21()()[()][]2(,)(1)()()[()()](1)[]n x n n n n n n n x f x other F x dx x f x nf x F x n x f x nf x F x n x f x y n n f x f yF y F x n ny x ξξθξξθθθθθ-------⎧-<<+⎪=⎨⎪⎩==-+∴=-=⋅⋅-+==⋅+-=--=⋅-⋅-⎰2222122222212222(0,),1()||2()()()()22(1)i y n i n i i Y a N E d Y dy n a D d E d E d E n n n nσξσσξσσσπσσσππ-∞-∞===-==-=-=-=⋅-=-∑⎰∑33.34.2222122122210.3(0,0.3),(0,)1010()(9)0.310()100.18{}0.30.3{(2}0.01iniiniiniN NPPξξξξχξξξ===--⨯<-=<=∑∑∑222(2)(0,1),(1)0.3(9){0.9}0.9932nsN ntP Psnξχσξξξ--<=<=12121222221221212(3)(0,0.18),(0,0.18)(0,1),(0,1)0.18(1),()(1)0.18{()40}0.9N NN NPξξξξχχξξξξ+-+<=-2241322442213(4)~(1),~(0,0.12),10.73 {10.73}{}0.950.12()0.12NP Pξχξξξξξξξξ-<=<= -22112222122(1)(0,),(0,)(1),()(1)11,n n mi ii i nn ni iin n mN n N mn mma bn mξσξσξξχχσσσ+==+=+--==∑∑∑∑《应用数理统计》参考答案习题二1. 由矩估计法222211112(2)(),(0,)(0,1),/(),n mni ii n i nniii i i m N n N t m c m n ξχξσσξξσσ+=+===∴=∑∑∑∑∑2222221121221(3)(),()()/(1,1),/nn mi i i i n ni i n mi i n n m n m F n m d nm ξξχχσσξσξσ+==+=+=+--∴=∑∑∑∑818226212266174.00281610(74.002)88610 6.85710ii ii a X x S x nS S σ=-=--⎧===⎪⎪⎨⎪==⨯=-⎪⎩∴==⨯⨯=⨯∑∑2. (1) 由矩估计法(2)(3)(4)(5)(6)3. 11'1202()33A x EX x dx θαξθθαξθθξ==-====∴=⎰111'101(1)2211A EX x x dx θαξθαθξθξθξ==+==+==+-∴=-⎰1211211122222221212222222121112()2x x n ii e xdx e x dx A X n A S S S θθθθθθαθθξθαθθξθξθξθθξθξθ--+∞--+∞==⋅=+==⋅===+∴=+==-+⎧=-⎪∴⎨=⎪⎩⎰∑⎰111(1)122Ni NN A x N NN ξξ=+===⋅⇒=∑11102()1A dx ξξθξ===⇒=-⎰22122(1)(1)2k k A k k ξθθθθξ∞-===--=⇒=∑2()02{0},(){0}0{}()0.7,11x a A X A P A P dxaaP a p ξξξ--=<=<=--=<=Φ-=≈⎰设表示出现的次数,4.(1)11111(1)()ln ()[ln ln (1)ln ]ln ()1[ln ln ]ln ln 0ln ln ni i ni i n ni i i i ni i L c x L c x L c x n c x n nx n cθθθθθθθθθθθθθ-+=======+-+∂=+-=+-=∂=-∏∑∑∑∑1111221(2)()ln ()[ln 1)ln ]ln ()]0(ln )ni ni i n i i ni i L L x L x n x θθθθθ======+∂=+=∂=∑∑∑11()()()()11(3)()ln ()ln ln ()011,,,,()0,0,11,()()n n i n n n nn nn n n L L n L n L other other L L θθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏11()()()()11(3)()ln ()ln ln ()011,,,,()0,0,11,()()nn i n n n n n n n n n L L n L n L other other L L θθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏1111(4)()(1)ln ()[ln ln ()ln(1)]()ln ()01i iii nx x N x N i nx N i i i n niii i L C L C x N x x N x L x Nθθθθθθθθθθθ-=====-=++---∂=-=∂-=∏∑∑∑5.221()212212241(5)()()ln()[ln]22()2()ln()[022in xiniini iiLxLx xLθθθθθθθθθθθθθξθ--====-=-----∂==∂=∑∑(1)11(1)11(1)(1)(6)()ln()[ln ln(1)ln]ln()(),,,()()nc ciiniinc ci niL c xL c c c xL ncL c xL Lθθθθθθθθθθθξξθξθξ-+==-+===--+∂=-=∂=≤≤⇒=∏∑∏不能解出,所以由22111(7)()1)(1)ln()[2ln(2)ln(1)ln(1)]2ln()22]01inxiini iiniiL xL x xx nL nθθθθθθθθθθθξ-====--=+--+--∂=-=⇒=∂-∏∑∑(11max(1)~(,0)11(1)(),,,0(),()()nnniULL Lξθθθξξθθθξθθ==-=<<-=≤∏11()1min~(,2)11(2)(),,,2,()(),,,222nnnin nULL Lξθθθθξξθθθξξξθθθθ===<<=≤<∏6.7.所以不唯一。
《应用数理统计》习题解答

2214243.(1)[||]0.140(2)[||]0.144(,4),(,),(0,)[||]20.1800255(3){||0.1}2(10.9521.9615372tnE a D nnE aN a N a t a NnnE t t dtnP t Pnξξξξξξπ-+∞-==≤⇒=-≤=-==≤==≤=≤=Φ-≥=⇒≥⎰《应用数理统计》参考答案习题一0.51.(,0.5)(,){||0.1}0.9972.97442N a N anP a Pnξξξξ⇒-<=<==⇒=2242.(,4)(,)100||(1)(||)()0.90,0.330.20.2(2):P(||)N a N aa UP a U P Uaξξξξσξεε⇒--<=<==-≥≤挈比学夫不等式(5)(5)125515(3){15}1{15}1{15,15,,15}1215121[{}]221[1(1.5)]0.292P P P P ξξξξξξ>=-≤=-≤≤≤--=->=--Φ=1121212111()(1){}{,,,}{1,1,,1}()()(1)(1)k n n nn m nm n m n m ni i P k pq P M m P m m m P m m m pqpq q q ξξξξξξξ----======≤≤≤-≤-≤-≤-=-=---∑∑4.5. 6. 13.0)25(1}8.012138.012{}13{)54,12(~)1()4,12(~=Φ-=->-=>ξξξξP P N N (1)(1)1255511515(2){10}1{10}1{10,10,,10}1[{10}]1[1{10}]1210121[1{}]221[11(1)]0.579P P P P P P ξξξξξξξξ<=-≥=->>>=->=--≤--=--≤=--+Φ=6(1)0.001567.2800~(0.0015)(1){800}[{800}][0.0015]x E P P e dx e ξξξ∞-->=>==⎰6(6)30000.00156 4.56(2){3000}[{3000}][0.0015](1)x P P e dx e ξξ--<=<==-⎰1212(2){}{,,,}{1,1,,1}n n nn P K k P k k k P k k k ξξξξξξ==≥≥≥-≥+≥+≥+7.8.均值的和(差)等于和的均值,方差的和差都等于方差的和9.由中心极限定理:10.11.22222(1)(1)(1)()222~()()()[()](,)it itit n e n n e n e it i t t tn it it n n nn p t e t t ee n e e e N n λξλλξξλλλλλξλϕϕϕλξλ---+--∴=∴======∴12121233~(20,3),~(20,),~(20,)10151~(0,)2{||0.3}1220.67N N N N P P ξξξξξξξξξ-∴->=->=-Φ=2(),(),E a D ξξσ==121(0,1)(0,1)~(,)n n i i i ni i na a n N N N a n nξξσξσξ==--∴∴=∑∑∑22222222,(),()()(),(),(),(,)k k k k k k k k k k k k k kk k E a E a D E E a a a a E A a D A n a a A N a nξξξξξ===-=--∴==-∴22121212222(),()(),()0,()()()2,()()()2,i i E E a D D E D D D E E D ξξξξσξξξξξξσξξξξξξσ====∴-=-=+=∴-=-+-=13.14.15.16.2212221221,(),(),()()0,()()()(1),11[()](1)1niii ii i iniiniiE a E a D DnE D D DnDn D nDES n Dn nE ES Dn n nσξξξσξξξξξξξσξξξξξξξ=======∴-=-=+--===--==--∑∑∑222222222424222(1),11()(1)()2(1)21 ()2(1)() nsnns nE n Es On nns nD n Ds On n n χσσσσσσσ--=-⇒==+-=-⇒==+112323''' '2(121)(1)()()()()5231()(121)23023021AD E E E EA E E A AVar Aξξξξξξηξηηηηηξξξξξ⎛⎫⎪-+=-==⎪⎪⎝⎭=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11223''''110(2)(,)111()()()()5231()(121)23023021BE E E EB E E B BVar Bξηηηξξξηηηηξξξξξ⎛⎫⎛⎫ ⎪===⎪ ⎪⎝⎭ ⎪⎝⎭∑=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11222211()2822121(2)||2241128116xx xxe dx dxπ⎛⎫⎛⎫- ⎪⎪∞∞⎝⎭⎝⎭-∞-∞-=∑-⎛⎫⎛⎫∑==⎪ ⎪-⎝⎭⎝⎭⎰⎰17.18.21.22.()11223'122'111110(,),211151,1101221111111100130111100310110N A A AAA Aξηξηξηηθθ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑⎛⎫⎛⎫⎛⎫⎪==⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭‘=,由引理1.2.3,则-的联合分布为--11223''12111111~(,),1011111432111111121301111210.2N A A AA Aξηξξηξηθρρρρρρρρρηη⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭∴∑⎛⎫⎛⎫+--⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪---⎝⎭⎝⎭⎪⎪-⎝⎭⎝⎭∴--=⇒=-==A,--时与独立2''44''22'''''' 44224(0,)(,)()()2()()()()()cov(,)(,)()() ()()2()()()2()nN IE A B tr A tr B tr ABE A E B tr A tr BA B E A B E A E Btr A tr B tr AB tr A tr B tr AB ζσζζζζσσζζζζσσζζζζζζζζζζζζσσσσσ=+=∴=-=+-=()11112222121122,1,1,0822177,122477yay y Qyba babθθθθθθθ--⎛⎫⎛⎫--=⎪⎪-⎝⎭⎝⎭⇒===-=⎛⎫⎪⎛⎫⎛⎫∴=∑== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭23.24.又 则令 则与 独立,则 与独立,且26.则2212221~(,),~(0,),~(1),(0,1)/(1)n n N a N n n ns n N T t n σξξξσξξχσξξ++----=-'11111(,,),(,,)111(,,),()11n n n ij n n n n i i i ia a B D nn n ξξθξσσσσδσσ⨯======-∑∑'2,0,D D D BD ===221(,)(,)1()n ni i nnB N a N I ηξθσσ===∑,i i i aξγσ-=2'11,()()()ni i i a D n ηγζγγξθξθσ=-==-=--∑∑B nηξ=ξηζ)1(~2-n χζ11(,)22U ξθθ-+(1)()121111221111()2201()121()()[1()]1[]21()()[()][]2(,)(1)()()[()()](1)[]n x n n n n n n n x f x other F x dx x f x nf x F x n x f x nf x F x n x f x y n n f x f y F y F x n n y x ξξθξξθθθθθ-------⎧-<<+⎪=⎨⎪⎩==-+∴=-=⋅⋅-+==⋅+-=--=⋅-⋅-⎰27.33.2222122222212222(0,),1()||2 ()()()()22(1)iyniniiY a NE d Y dynaD dE d E d Ennn nσξσσξσσσπσσσππ-∞-∞===-==-=-=-=⋅-=-∑⎰∑2222122122210.3(0,0.3),(0,)1010()(9)0.310()100.18{}0.30.3{(2}0.01iniiniiniN NPPξξξξχξξξ===--⨯<=<=∑∑∑222(2)(0,1),(1)0.3(9){0.9}0.9932nsN ntP Psnξχσξξξ--<=<=12121222221221212(3)(0,0.18),(0,0.18)(0,1),(0,1)0.18(1),()(1)0.18{()40}0.9N NN NPξξξξχχξξξξ+-+-+<=-224132244(4)~(1),~(0,0.12),10.73 {10.73}{}0.95NP Pξχξξξξ-<=<=34.《应用数理统计》参考答案2211222212222211(1)(0,),(0,)(1),()(1)11,()()(2)nn miii i n nniii nn mi i i i n N n N m n m m a b n m a b n m ξσξσξξχχσσσξξχ+==+=+==+--==++-∑∑∑∑∑∑222211112(2)(),(0,)(0,1),/(),n mni ii n i nniii i i m N n N t m c m n ξχξσσξξσσ+=+===∴=∑∑∑∑∑2222221121221(3)(),()()/(1,1),/nn mi i i i n ni i n mi i n n m n mF n m d nm ξξχχσσξσξσ+==+=+=+--∴=∑∑∑∑1. 由矩估计法2. (1) 由矩估计法(2)(3)(4)(5)818226212266174.00281610(74.002)88610 6.85710181ii i i a X x S x n S S n σ=-=--⎧===⎪⎪⎨⎪==⨯=-⎪⎩∴==⨯⨯=⨯--∑∑11'1202()33A x EX x dx θαξθθαξθθξ==-====∴=⎰111'101(1)2211A EX x x dx θαξθαθξθξθξ==+==+==+-∴=-⎰1211211122222221212222222121112()2x x n i i e xdx e x dx A X n A S S S θθθθθθαθθξθαθθξθξθξθθξθξθ--+∞--+∞==⋅=+==⋅===+∴=+==-+⎧=-⎪∴⎨=⎪⎩⎰∑⎰111(1)122Ni N NA x N NN ξξ=+===⋅⇒=∑11102()1A dx ξξθξ===⇒=-⎰2∞3.4.2()2{0},(){0}{}()0.7,110.7,0.525x aA X AP A P dxa aP a pp aξξξ--=<=<=--=<=Φ-=≈∴≈=-⎰设表示出现的次数,(1)11111(1)()ln()[ln ln(1)ln]ln()1[ln ln]ln ln0 ln lnniiniin ni ii iniiL c xL c xLc x n c xnnx n cθθθθθθθθθθθθθ-+=======+-+∂=+-=+-=∂=-∏∑∑∑∑1111221(2)()ln()[ln1)ln]ln()]0(ln)niniiniiniiLL xLxnxθθθθθ======+∂=+=∂=∑∑∑11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏5.221()212212241(5)()()ln()[ln]22()2()ln()[022in xiniini iiLxLx xLθθθθθθθθθθθθθξθ--====-=-----∂==∂=∑∑(1)11(1)11(1)(1)(6)()ln()[ln ln(1)ln]ln()(),,,()()nc ciiniinc ci niL c xL c c c xL ncL c xL Lθθθθθθθθθθθξξθξθξ-+==-+===--+∂=-=∂=≤≤⇒=∏∑∏不能解出,所以由22111(7)()1)(1)ln()[2ln(2)ln(1)ln(1)]2ln()22]01inxiini iiniiL xL x xx nL nθθθθθθθθθθθξ-====--=+--+--∂=-=⇒=∂-∏∑∑(~(,0)11nUξθ∏6.7.所以不唯一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 3 页 /第 23 页
北京航空航天大学
研究生应用数理统计
书后部分习题解答整理版
解:⑴ 由 x
1 n xi , n i 1
1 n 1 xi ) 2 n i 1 n
则 Var ( x ) Var (
Var ( x ) n
i 1 i
n
1
2
1 n (1 ) (1 ) 。 n
书后部分习题解答整理版
解:
t x t Px t P ) (
又因为参数 , 2 的极大似然估计是
X , 2
1 n (X i X )2 n i 1
t x 所以 Px t的极大似然估计是
x n 1 x S
n 的抽样分布。 n 1
解:由正态分布的特性可得
x ~ N ( ,
则有
2
n
) , xn1 ~ N ( , 2 ) ,
n 1 2 ), n
(n 1)
2
S 2 ~ 2 (n 1).
xn 1 x ~ N (0,
从而
x n 1 x n 1 n
n
xi 121n 2n
e
2
(1 x )
, 1 xi ( i )
由 2 0 ,则似然函数为 1 的单调递增函数,且 - 1 xi ( i ) ,由极大似
ˆ min{x } 。 然估计定义可知, 1 的极大似然估计为 1 i
i
对 2 , ln L(1, 2 ) -n ln 2
1 2 1 2 5 2 2 ˆ D 2 0.347 2 , 3 4 12
L( ; x1 , x2 ,, xn ) e
n
( xi x0 )
i 1
n
, xi x 0 0 ( i 1 , 2,, n )
则有
ln L( ) n ln ( xi x0 )
i 1 n n ln L( ) n xi nx0 0 ,得 nx nx0 0 i 1
- 2 , x1 ,x 2 ,…,x n 为来自总体的简单样本,求参数 1 及 2 的极大似然估计。
解:由 f ( x;1 , 2 ) 为概率密度函数可知, 2 0 。 似然函数为 L(1 , 2 ; x1 , x2 ,, xn )
1
2n
e
i 1
11. ( P81.9)设 X 为电子元件的失效时间(单位:小时) ,其密度函数为
e ( x x0 ) , x x0 0 f ( x, ) x x0 0,
抽取 n 个该电子元件,独立进行测试,失效时间分别为 x1 , x 2 ,…, x n 。 ⑴ 当 x 0 已知时,求 的极大似然估计; ⑵ 当 已知时,求 x 0 的极大似然估计。 解:⑴ 似然函数为
ˆ , ˆ 都是总体均值 E ( X ) 的无偏估计。 ˆ , 故统计量 3 1 2
第 7 页 /第 23 页
北京航空航天大学
研究生应用数理统计
书后部分习题解答整理版
而
1 2 3 2 1 2 2 ˆ D 1 0.38 2 , 5 10 2
研究生应用数理统计
书后部分习题解答整理版
做矩估计, x
1 2 , 4 1 。 2
ˆ 2x 可得 的矩估计,
9. ( P80.7)
解: (1)由分布函数得出概率密度函数
f ( x; )
d ( F ( x; ) x 1 x 1 dx 0x 1
⑵ 因为总体 X 服从两点分布 B(1, ) ,则参数 的频率估计为
x
i 1
n
i
n
x,
ˆ 于是 q( ) 的频率估计 q
1 x (1 x ) 。 n
7. ( P80.2)设总体 X 服从正态分布 N ( ,1) , x1 , x 2 ,…, x n 为简单随机样本,在这 n 个样本观测值中仅知道事件 { X 0} 发生 m 次,求 的频率替换估计。 解:由题意 X ~ N (0,1) , 则 P{X 0} P{X } P{X } 1 P{X } 1 ( ) , 而由频率 P{ X 0} 则有, ( ) 1 -
解:
E( X )
1 1 1 xdx xdx 0 2 2(1 ) 1 1 2 1 1 (1 2 ) 2 2 2(1 ) 2 1 1 1 2 (1 ) 4 4 4
第 4 页 /第 23 页
北京航空航天大学
又
~ N (0,1).
x n 1 x
n 1 n
与
(n 1)
2
2 Sn 相互独立,从而
x n 1 x
(n 1)
n 1 n S 2 (n 1)
n ( x n 1 x ) ~ t (n 1). n 1 S
2
第 2 页 /第 23 页
北京航空航天大学
研究生应用数理统计
A B/n
,其中 A ~ N (0,1) , B ~
2 (n) 。
则X2
A2 A2 / 1 ,其中 A 2 ~ 2 (1) , B ~ 2 (n) , B/n B/n
故 X 2 ~ F (1, n) 。 4. ( P34.27) 设总体 X ~ N ( , 2 ) , x1 , x 2 ,…, x n 为其样本, x 及 S 2 分别为样本均 值及方差,又设 xn1 ~ N ( , 2 ) ,且与 x1 , x 2 ,…, x n 相互独立,试求统计量
m , n
m n
。
ˆz 于是有,
1
m n
1 2 ,0 x 1 8. ( P80.5) 设总体 X 服从的概率密度函数为 f ( x, ) , x 1 ,其中 , 2 ( 1 ) 0, 其他
0 1,是未知参数,x1 ,x 2 ,…,x n 为来自总体的简单样本。试求参数 的矩估计 ˆ 。
2 1m
2
2 (n 1) S 2 n
2
( x 1 ) ( y 2 )
2 (m 1) S12m (n 1) S 2 n mn2
2
m
2
n
~ t (m n 2) 。
6. ( P80.1)设总体 X 服从两点分布 B(1, ) , 0 1 , x1 , x 2 ,…, x n 为简单随机样 本,⑴ 求 q( ) Var ( x ) ;⑵ 求 q( ) 的频率估计。
n
令
ˆ 于是, 的极大似然估计
⑵ 似然函数
1 。 x x0
L( x0 ; x1 , x 2 , , x n ) n e
( xi x0 )
i 1
n
n e n ( x0 x ) , xi x0 0 ( i 1 , 2,, n )
当 已知时,为 x 0 的单调递增函数,于是由极大似然估计定义可知,
m
) , y ~ N ( 2 ,
2
n
),
(m 1) S12m
2
~ (m 1) ,
2
2 (n 1) S 2 n
2
~ 2 (n 1) ,
于是有, ( x 1 ) ~ N (0,
2
m
2 ) , ( y 2 ) ~ N (0,
2
n
2),
则
( x 1 ) ( y 2 ) ~ N (0, (
1 3 1 x1 x2 x3 有 5 10 2
1 3 1 1 3 1 ˆ E E X 1 X 2 X 3 E ( X ) E ( X ). 1 10 2 5 5 10 2
同理可得
ˆ E ˆ E ( X ). E 2 3
(m 1) S12m
2 (n 1) S 2 n
2
m
2
n
) 2 ) ,
2
2
~ 2 (m n 2) ,
( x 1 ) ( y 2 )
(
于是有,
2
m
2
n
) 2 ~ t (m n 2) , ) /( m n 2)
(
即
(m 1) S
E( X )
xf ( x; )dx
,得
x
1
x
1
dx
x dx 1
1
令X
1
x x 1
(2) 的似然函数是
1 n ) 1 min x1 x n ( L( ) x1 x n 0其它
对数似然函数是
ln L( ) n ln ( 1) ln xi
i 1 n ln L( ) n ln xi 0 i 1 n
解得
n
ln x
i 1
n
i
10. ( P81.8)
第 5 页 /第 23 页
北京航空航天大学