弹性力学(徐芝纶)课后习题及答案
弹性力学简明教程第三版徐芝纶课后答案与讲解最全版免费

课后答性力学简明教程第三版徐芝纶课后答案详尽版弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第三版徐芝纶弹性力学简明教程第
徐芝纶编《弹性力学简明教程》第四版--全部章节课后标准答案详解

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
徐芝纶编《弹性力学简明教程》第四版,全部章节课后答案详解

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
徐芝纶弹性力学第三版习题解答

⎞ ⎟ ⎠P
dxdy
+
式中
⎛ ⎜⎝
∂f ∂x
⎞ ⎟⎠P
,
⎛ ⎜ ⎝
∂f ∂y
⎞ ⎟ ⎠P
等表示在点
(
xP
,
yP
)
处的一阶偏导数。
若设 f (x + dx, y) = σ y (x, y) 并令 dy = 0 ,得
5
σyA
=σy
+
∂σ y ∂x
dx
+
1 2
∂2σ y ∂x2
dx2
+
1 6
∂3σ y ∂x3
=
1 E
⎣⎡σ x
−
μ
σy +σz
⎦⎤
=
1− μ E
2
⎛⎜σ ⎝
x
−
μ 1− μ
σ
y
⎞⎪
⎟ ⎠
⎪⎪
⎬
(c)
εy
=
1 E
⎣⎡σ y
−
μ (σ z
+ σ x )⎤⎦
=
1− μ2 E
⎛ ⎜ ⎝
σ
y
−μ 1− μ
σx
⎞⎪ ⎟⎠⎪⎪
γ xy
=
1 G
τ
xy
,
γ
zx
=
1 G
τ
zx
=
0, γ
yz
=
1 G
τ
yz
=
0
⎪ ⎪⎭
解:设薄层的厚度为 δ ,由于 z 方向不受力,即 σ z = τ zx = τ zy = 0
若薄层足够小,则可认为在其厚度 δ 范围内上述三应力保持与表
面一致,考虑上述近似,则有
徐芝纶编《弹性力学简明教程》第四版__全部章节课后答案详解

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
徐芝纶编弹性力学简明教程第四版,全部章节课后答案详解(供参考)

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
徐芝纶编《弹性力学简明教程》第四版,全部章节课后答案解析详细讲解

弹性力学简明教程(第四版)课后习题解答徐芝纶第一章绪论【1-1】试举例说明什么是均匀的各向异性体,什么是非均匀的各向同性体?【分析】均匀的各项异形体就是满足均匀性假定,但不满足各向同性假定;非均匀的各向异性体,就是不满足均匀性假定,但满足各向同性假定。
【解答】均匀的各项异形体如:竹材,木材。
非均匀的各向同性体如:混凝土。
【1-2】一般的混凝土构件和钢筋混凝土构件能否作为理想弹性体?一般的岩质地基和土质地基能否作为理想弹性体?【分析】能否作为理想弹性体,要判定能否满足四个假定:连续性,完全弹性,均匀性,各向同性假定。
【解答】一般的混凝土构件和土质地基可以作为理想弹性体;一般的钢筋混凝土构件和岩质地基不可以作为理想弹性体。
【1-3】五个基本假定在建立弹性力学基本方程时有什么作用?【解答】(1)连续性假定:假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。
引用这一假定后,物体的应力、形变和位移等物理量就可以看成是连续的。
因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全恢复原型而无任何形变。
这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的,因而物体的弹性常数不随位置坐标而变化。
各向同性假定:假定物体是各向同性的,即物体的弹性在所有各个方向都相同,引用此假定后,物体的弹性常数不随方向而变。
小变形假定:假定位移和变形是微小的。
亦即,假定物体受力以后整个物体所有各点的位移都远远小于物体原来的尺寸,而且应变和转角都远小于1。
徐芝纶弹性力学简明教程(第四版)所有课后习题解答

【分析】作用在两个相互垂直面上并垂直于该两面交线的切应力的合力不相等,但对某 点的合力矩相等,才导出切应力互等性。
3
第二章 平面问题的基本理论
【2-1】试分析说明,在不受任何面力作用的空间体表面附近的薄层中(图 2-14)其应力状态接近 于平面应力的情况。
【解答】在不受任何面力作用的空间表面附近的薄层中,可以认为在该
2
【1-7】试画出图 1-4 中矩形薄板的正的体力、面力和应力的方向。 【解答】
正的体力、面力
正的体力、应力
【1-8】试画出图 1-5 中三角形薄板的正的面力和体力的方向。
【解答】
x
fx
fy fy
fx
fx
fy
fy fx
y
Oz
【1-9】在图 1-3 的六面体上,y 面上切应力 yz 的合力与 z 面上切应力 zy 的合力是否相
应变的情况。
y
【2-3】在图 2-3 的微分体中,若将对形心的力矩平很条
件 MC 0 改为对角点的力矩平衡条件,试问将导出什么形
式的方程?
【解答】将对形心的力矩平衡条件 MC 0 ,改为分别
对四个角点 A、B、D、E 的平衡条件,为计算方便,在 z 方 向的尺寸取为单位 1。
完全弹性假定:假定物体是完全弹性的,即物体在对应形变的外力被去除后,能够完全 恢复原型而无任何形变。这一假定,还包含形变与引起形变的应力成正比的涵义,亦即两者 之间是成线性关系的,即引用这一假定后,应力与形变服从胡克定律,从而使物理方程成为 线性的方程,其弹性常数不随应力或形变的大小而变。
均匀性假定:假定物体是均匀的,即整个物体是由同一材料组成的,引用这一假定后整 个物体的所有各部分才具有相同的弹性,所研究物体的内部各质点的物理性质都是相同的, 因而物体的弹性常数不随位置坐标而变化。