【免费下载】常微分方程教程丁同仁李承治第二版第四章 奇解

合集下载

常微分方程 第四章(2)常系数线性方程

常微分方程 第四章(2)常系数线性方程

例6、xx ( x) 0
2
例7、(1+y ) yy (3 y 1)( y)
2 2
2
四、恰当导数方程 若方程:F ( x, y, y,...,y ( n ) ) 0, (1) 的左端恰为某一函数 ( x, y, y,..., y ( n 1) )对x的导数, 即上式可化为 d ( x, y, y,..., y ( n 1) ) 0 dx 则方程(1)称为恰当导数方程。 通过降低一阶求解。
§4.2 常系数线性微分方程的 解法
一、常系数齐线性微分方程的解法 二、常系数非齐线性微分方程的解法
云南师范大学数学学院 黄炯
一、常系数齐线性微分方程的 解法
I: 特征根是单根的Байду номын сангаас形 II: 特征根有重根的情形
I: 特征根是单根的情形
II: 特征根有重根的情形
二、常系数非齐线性微分方程 的解法
1 (4) 例3、x x 0 t 3 例4、xy 2 y x x
(5)
例5、 4y ( y) 4 xy
2
三、 ( x, x, x,..., x ( n ) ) 0, F 方程特点:不显含自变量t 求解步骤: 、设y x,以x为新自变量,y为未知变量, 原方程可降低一阶: dy dy dy 2 2 d 2 y dy d 2 y d n 1 y x y, x y , x y ) y 2 ,..., x ( n ) ( y, , 2 ,..., n 1 ) dt dx dx dx dx dx dx F ( x, y, y,..., y ( n 1) 求出其通解: ( x, y, C1, C2 ,..., Cn k ) 0 还原y x, 有 ( x, x, C1 , C2 ,..., Cn 1 ) 0 再积分一次得原方程的通解

常微分方程教程-丁同仁

常微分方程教程-丁同仁

常微分方程2.11.xy dxdy2=,并求满足初始条件:x=0,y=1的特解. 解:对原式进行变量分离得。

故它的特解为代入得把即两边同时积分得:e e xx y c y x x c y c y xdx dy y22,11,0,ln ,212=====+==并求满足初始条件:x=0,y=1的特解.解:对原式进行变量分离得:3解:原式可化为:,0)1(.22=++dy x dx y 。

故特解是时,代入式子得。

当时显然也是原方程的解当即时,两边同时积分得;当xy c y x y x c y c y x y dy dx x y++=====++=+=+≠=+-1ln 11,11,001ln 1,11ln 0,1112yxy dx dyxy 321++=x x y x x y x yx y y x y c c c c x dx x dy y y x y dx dy 2222222232232)1(1)1)(1(),0(ln 1ln 21ln 1ln 2111,0111=++=++≠++-=++=+≠+∙+=+)故原方程的解为(即两边积分得故分离变量得显然.0;0;ln ,ln ,ln ln 0110000)1()1(4===-==-+=-++=-=+≠===-++x y c y x xy c y x xy c y y x x dy yydx x x xy x y xdy y ydx x 故原方程的解为即两边积分时,变量分离是方程的解,当或解:由:10ln 1ln ln 1ln 1,0ln 0)ln (ln :931:8.cos ln sin ln 07ln sgn arcsin ln sgn arcsin 1sgn 11,)1(,,,6ln )1ln(21111,11,,,0)()(:53322222222222c dx dy dxdy xycy ud uu dx x x y u dx xydy x y ydx dy y x x c dy yy yydx dy c x y tgxdx ctgydy ctgxdy tgydx cx x xycx x u dx xx du xdxdu dxdux u dx dy ux y u x y y dx dy xc x arctgu dxx du u u u dx du x u dxdu xu dx dy ux y u x y x y x y dx dy dx x y dy x y ee e ee e ee x y uu xy x u u xyxy y x xx+===+=+-===-∙-=--+-=-=+-===-=+∙=+∙=∙=--=+===-+=+-=++=++-++=++===+-==-++-+--两边积分解:变量分离:。

常微分方程教程丁同仁第二版答案完整版[参照]

常微分方程教程丁同仁第二版答案完整版[参照]

习题2-1判断下列方程是否为恰当方程,并且对恰当方程求解:1.(3x 2 −1)dx +(2x +1)dy =0 解:P (x , y ) =3x 2 −1,Q (x , y ) =2x +1 ,则∂∂P y =0 ,∂∂Q x =2 ,所以∂∂P y ≠∂∂Q x即,原方程不是恰当方程.2.(x +2y )dx +(2x +y )dy =0 解:P (x , y ) =x +2y , Q (x , y ) =2x −y , 则∂∂P y =2, ∂∂Q x =2, 所以∂∂P y =∂∂Q x,即原方程为恰当方程则xdx +(2ydx +2xdy ) −ydy =0,2 2两边积分得:x +2xy −y =C . 2 23.(ax +by )dx +(bx +cy )dy =0 (a,b 和c 为常数).解:P (x , y ) =ax +by , Q (x , y ) =bx +cy , 则∂∂P y =b , ∂∂Q x =b , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则axdx +bydx +bxdy cydy =0,()+两边积分得:ax 2 +bxy +cy 2=C . 2 24.(ax −by )dx +(bx −cy )dy =0(b ≠0) 解:P (x , y ) =ax −by , Q (x , y ) =bx −cy ,则∂∂P y=−b , ∂∂Q x =b , 因为 b ≠0, 所以∂∂P y ≠∂∂Q x ,即,原方程不为恰当方程5.(t 2 +1)cos udu +2 t sin udt =0 解:P (t ,u ) =(t 2 +1)cos u , Q (t ,u ) =2t sin u 则∂∂P t =2t cos u , ∂∂Q x =2t cos u , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则(t 2 cos udu +2t sin udt ) +cos udu =0,两边积分得:(t 2 +1)sin u =C .6.( ye x +2e x +y 2)dx +(e x +2xy )dy =0 解:P (x , y =ye x +2e x +y 2, Q (x , y ) =e x +2xy ,则∂∂P y =e x +2y , ∂∂Q x =e x +2y , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则2e x dx +[(ye x +y 2)dx +(e x +2xy )dy ] =0,两边积分得:(2 +y )e x +xy 2 =C .7.( y +x 2)dx +(ln x −2y )dy =0 x 解:P (x , y ) =y +x 2 Q (x , y ) =ln x −2y ,x则∂∂P y =1 x , ∂∂Q x =1 x , 所以∂∂P y =∂∂Q x,即原方程为恰当方程则( ydx +ln xdy ) +x 2 dx −2ydy =0 x 3两边积分得:x 3+y ln x −y 2 =C .8.(ax 2+by 2)dx +cxydy =0(a ,b 和c 为常数) 解:P (x , y ) =ax 2 +by 2, Q (x , y ) =cxy ,则∂∂P y =2by , ∂∂Q x =cy , 所以当∂∂P y =∂∂Q x,即2b =c 时,原方程为恰当方程则ax 2 dx +(by 2 dx +cxydy ) =0 3两边积分得:ax +bxy 2 =C .3而当2b ≠c 时原方程不是恰当方程.9.2s −1 ds +s −2 s 2 dt =0 t t解:P (t , s ) =2s −1, Q (t , s ) =s −2 s 2,t t则∂∂P t =1−t 22s , ∂∂Q s =1−t22s , 所以∂∂P y =∂∂Q x ,即原方程为恰当方程,两边积分得:s −s 2=C .t10.xf (x 2 +y 2)dx +yf (x 2 +y 2)dy =0, 其中f (⋅)是连续的可微函数.解:P (x , y ) =xf (x 2 +y 2 ), Q (x , y ) =yf (x 2 +y 2 ), 则∂∂P y =2xyf ′, ∂∂Q x =2xyf ′, 所以∂∂P y =∂∂Q x,即原方程为恰当方程,两边积分得:∫f (x 2 +y 2)dx =C ,即原方程的解为F (x 2 +y 2) =C (其中F 为f 的原积分).习题2-2 1. 求解下列微分方程,并指出这些方程在平面上的有意义的区域::dy x 2(1) dx =y解:原方程即为:ydy =x 2 dx 两边积分得:3y 2 −2x 3 =C , y ≠0 .dy x 2(2) dx =y (1+x )3 2解:原方程即为:ydy =1+x x 3dx 两边积分得:3y 2 −2ln1+x 3=C , y ≠0,x ≠−1 .(3) dy +y 2 sin x =0dx解:当y ≠0时原方程为:dy +sin xdx =0y2 两边积分得:1+(c +cos x ) y =0 .又y=0也是方程的解,包含在通解中,则方程的通解为1+(c +cos x ) y =0 .dy 22(4) dx=1+x +y +xy ;解:原方程即为:1+dy y 2=)(1+x dx 2两边积分得:arctgy =x +x 2+c ,即y =tg (x +x 22+c ) .(5) dy =(cos x cos 2y )2 dx解:①当cos 2y ≠0 时原方程即为:(cos dy 2y )2 =(cos x )2 dx 两边积分得:2tg 2y −2x −2sin 2 x =c .②cos 2y =0,即y =k π+π也是方程的解.( k ∈N )2 4 (6) x dy =1−y 2 dx解:①当y ≠±1时dydx 原方程即为:1−y 2 =x两边积分得:arcsin y −ln x =c .②y =±1也是方程的解. dy x −e −x(7).dx =y +e y解.原方程即为:( y +e y )dy =(x −e −x )dx 2 2两边积分得:y +e y =x +e −x +c ,22原方程的解为:y 2 −x 2 +2(e y −e −x ) =c .2. 解下列微分方程的初值问题.(1) sin 2xdx +cos3ydy =0, y (π) =π;2 3解:两边积分得:−cos 22x +sin 33y =c ,即2sin 3y −3cos 2x =c 因为y (π2) =π3,所以 c =3.所以原方程满足初值问题的解为:2sin 3y −3cos 2x =3.x (2).xdx +ye −dy =0 ,y (0) =1;解:原方程即为:xe x dx +ydy =0 ,两边积分得:(x −1)e xdx +y 22dy =c ,因为y (0) =1,所以c =−12,所以原方程满足初值问题的解为:2(x −1)e x dx +y 2 dy +1 =0 .(3).dr =r ,r (0) =2 ;d θ解:原方程即为:dr =d θ,两边积分得:ln r −θ=c ,r因为r (0) =2 ,所以c =ln 2 ,所以原方程满足初值问题的解为:ln r −θ=ln 2 即r =2e θ.dy ln x (4).dx =1+y2, y (1) =0;解:原方程即为:(1+y 2)dy =ln x dx , 两边积分得:y 3x x ln y ++−x =c ,3因为y (1) =0 ,所以c =1, 3 所以原方程满足初值为:y x x ln y ++−x =1 3 2 dy 3(5).1+x dx=xy ,y (0) =1;dy x 解:原方程即为:y 3 =1+x 2 dx ,2两边积分得:−12y −2 =1+x +c ,因为y (0) =1,所以c =−3 ,2 所以原方程满足初值问题的解为:21+x 2 +y1 =3 .2 3. 解下列微分方程,并作出相应积分曲线的简图.(1).dy =cos x dx解:两边积分得:y =sin x +c .积分曲线的简图如下:(2).dxdy =ay ,(常数a ≠0 );解:①当y ≠0时,原方程即为:aydy =dx 积分得:a 1ln y =x c +,即y =ce ax (c >0) ②y =0也是方程的解.积分曲线的简图如下:y(3).dy =1−y 2 ;dx解:①当y ≠±1时,1+y 原方程即为:(1−dy y 2)=dx 积分得:ln =2x +c ,1−y 即y =ce 2 x −1 .ce 2 x +1②y =±1也是方程的解.积分曲线的简图如下:dy n 1(4).dx=y ,(n =3,1, 2) ;解:①当y ≠0时,1 dy ⅰ) n =3, 2 时,原方程即为yn =dx ,积分得:x +1y 1−n =c .n −1ⅱ) n =1时,原方程即为dy y=dx 积分得:ln y =x +c ,即y =ce x(c >0) .②y =0也是方程的解.积分曲线的简图如下:4. 跟踪:设某A 从xoy 平面上的原点出发,沿x 轴正方向前进;同时某B 从点开始跟踪A ,即B 与A 永远保持等距b .试求B 的光滑运动轨迹.解:设B 的运动轨迹为y =y (x ),由题意及导数的几何意义,则有dy y dx b 2 −y2 ,所以求B 的运动轨迹即是求此微分方程满足y (0) =b 的解.=−解之得:x =12 b ln b b +−b b 22 +−y y 22 −b 2 −y 2 .5. 设微分方程dy =f ( y ) (2.27),其中f(y) 在y =a 的某邻域(例如,区间y −a <ε)dx 内连续,而且f ( y )=0 ⇔y =a ,则在直线y =a 上的每一点,方程(2.27)的解局部唯一,±εdy 当且仅当瑕积分=∞(发散).∫a a f ( y )证明:( ⇒)首先经过域R 1:−∞<x <+∞, a −ε≤y <a 和域R 2:−∞<x <+∞,a <y ≤a +ε内任一点( x 0, y 0)恰有方程(2.13)的一条积分曲线,它由下式确定dy =x −x 0 . (*)∫y y 0 f ( y )这些积分曲线彼此不相交. 其次,域R 1( R 2)内的所有积分曲线∫f dy ( y )=x +c 都可由其中一条,比如∫f dy ( y ) =x +c 0 沿着x 轴的方向平移而得到。

常微分方程课件奇解和包络.ppt

常微分方程课件奇解和包络.ppt

依据材料概括晚清中国交通方式的特点,并分析其成因。
提示:特点:新旧交通工具并存(或:传统的帆船、独轮车, 近代的小火轮、火车同时使用)。 原因:近代西方列强的侵略加剧了中国的贫困,阻碍社会发 展;西方工业文明的冲击与示范;中国民族工业的兴起与发展;
政府及各阶层人士的提倡与推动。
[串点成面· 握全局]
因此, 求得此解的过程正好与从通解中求包络的手续一样. 易验证, 此参数曲线恰为通解的包络 结果: Clairaut方程
dy dy y x f dx dx
此直线族的包络
的通解
y cx f( c )是一直线族,

x f '(p) 0 y xp f (p)
x f '(c) 0 y xc f (c)
是Clairaut方程的奇积分曲线, 所对应的解是奇解.
例4: 解:
求解方程
1 y xy' . y'
其中
这是Clairaut方程,
因而它有通解: 因为
f (c) , 所以 c 1 x 2 0 从 c 1 y cx c
注:
p 判别曲线是否为方程的 奇解 , 尚需进一步 .
例3:
解:
dy 2 求微分方程 y 10 dx p2 y2 1 0, 从 2p 0.
消去p(实际上p=0), 得到p-判别曲线 即
2
的奇解.
y 2 1,
y 1.
y sin( x c ), c 为任常数
现在l 上任取一个固定点M, 则M在某一条曲线 l c 上. 由于
l与 l c
在M点有相同的切线, 而
l 与 lc

§1.1 常微分方程教程

§1.1 常微分方程教程

解: 如图建立坐标系. 设y=y(t)为t时刻物体的位置坐标. 则易得物体下落所满足的方程为 y’’=-g (*) 其中 g 是重力加速度.
容易验证
1 y gt c t c 2 是通解,其中 c1 ,c2 是两个任意常数。 这表明方程(*)有无数个解,原因是未考虑初始 状态。为了确定相应的运动,考虑初始条件:
常微分方程教程
丁同仁、李承治编
主要参考书:
东北师范大学数学系编写的高等学校教材 《常微分方程》 复旦大学数学系金福临等编写的《常微分方 程》(上海科技出版社第二版); 南京大学数学系叶严谦等编写的《常微分方 程讲义》; 中山大学数学希望高雄等编写的《常微分方 程》(高教第二版).

第一章
正规战争游击战争混合战争只考虑双方兵力多少和战斗力强弱第一次世界大战lanchester提出预测战役结局的模型例6正规战与游击战兵力因战斗及非战斗减员而减少因增援而增加战斗力与射击次数及命中率有关?每方战斗减员率取决于双方的兵力和战斗力?每方非战斗减员率与本方兵力成正比?甲乙双方的增援率为utvt甲乙双方的增援率为utvtxt甲方兵力yt乙方兵力假设
线素, 线素场, 方向场,等斜线
任意常数.
c1和 c2 是独立的
3. 函数 y c1e
x
c2 x
y
(n)
y
( n 1)
c3 x cn 是方程 dy 0, ( y ' ) dx
n2
n3
在区间(-∞,+∞)上的解,其中 是任意的常数.
c1, c2 ,cn
从上面的例子中,可以看到一个重要事实,那就是 微分方程的解中可以包含任意常数,其中任意常数 的个数可以多到与方程的阶数相等(也可以不含任 意常数).

常微分方程教程_丁同仁(第二版)_习题解答_4

常微分方程教程_丁同仁(第二版)_习题解答_4

对 应 于 λ1 = 7 所 有 的 特 征 向 量
1 7 x v1 = 1 ,则 v 2 = 1 那么对应的实值解为 y1 = 1 e ;
对应 λ 2 = −2 的特征向量
v1 v1 5 4 v1 = ( 2 ) 0 满足 即 + A E 5 4 = 0 ,取 v1 = 4 ,则 v v v 2 2 2
λ1 = −4 , λ1 = λ 2 = −1 。
,特征向量应满足
3 1 0 v1` 0 3 0 v 2 = 0 1 0 0 v 3
3 1 0 1 0 0 又 0 3 0 → 0 1 0 (只能进行行变换) 1 0 0 0 0 0
cos t s int 因 此 Φ (t ) 中方程组的一个基 又 det = [Φ (t )] = 1 ≠ 0 , − s int cos t
解矩阵。故方程组的通解为
y1 cos t s int = + c2 c1 − s int cos t y2
-1-
常微分方程教程(第二版)-丁同仁等编-高等教育出版社-参考答案
′ = y3 y1 ′ = y2 (3)程组的分量形式为: y 2 y′ = y 1 3
解 ①+③得 解 ①-③得 解之得
① ② ③
d ( y1 + y 3 ) = y1 + y 3 dt d ( y1 − y3 ) =y1 − y3 dt = y1 − y3 k2 e − t
dy dx
(1)任意一个特解,则 y1 ( x) + ϕ ( x), y 2 ( x) + ϕ ( x), , y n ( x) + ϕ ( x) 是(1)的 n+1 个线性无关解.这是因为,若存在常数 k1 , k 2 , k n , k n +1 使得

【免费下载】常微分方程教程丁同仁李承治第二版第四章 奇解

【免费下载】常微分方程教程丁同仁李承治第二版第四章 奇解

第四章 奇解习题4-11.求解下列微分方程:(通解)特解)(特解)解:221222)(2222222222)(2101.(42202..0)1)(2(0)2()2(2222);(,242).1(C Cx y x x C x y C x p b x x x x y x p x p a x p x p x p xx p p p x px y p x px p y x C x dxdpdx dp dx dp dx dp dx dp dx dp p dxdy ++-=⇒++-+=⇒+-=⇒-=⇒=+-=+-=⇒-=⇒=+=++⇒=+++⇒+++=++==++=+-224ln 4ln 2ln 22ln 2ln 2ln 222ln )(ln 0x .)]([ln 2ln 02ln ..0))(2(ln 22)1(ln ln );(,)(ln ).2(222C x C y x x x y p p x b y x x x y p xp x xp x a p x xp x p x xp x p x x p p xp x px y xC xC xC dx dp xx x x x x x xx dx dp dxdp dx dp dxdy +=⇒+=⇒=⇒=+-=+-=⇒-+-=⇒-=⇒-=⇒=+=++⇒++++==+=(特解)解:dydqqyq y y dydq q ydydx pyp p y q y q y q x q y x y p y xp 3222222cos 2)sin (cos 222cos 12cos 123sec tan ,tan ,,tan .cos tan 22).3(-++=+===+=+=-令解:yy y y x q q y b y C x y C q y q y q a y y q y q y q y y q y yy ytyyyyy qyC dydq dy dq q y dy dq dy dqq y dy dq dydq qyqyy dy dq 32323232sin 2cos 2313133223232322sin sin sin tan 0tan .sin cos tan 0tan .0)(tan tan (0)tan ()tan (tan 0tan tan 23212cos sin cos sin cos sin cos 3cos 21cos cos cos sin cos 2=+=+=⇒=⇒=⇒=-+=⇒=⇒-=⇒=+=-+⇒=+-+⇒=-++⇒-(通解)2.用参数法求解下列微分方程:(特解)当当由解:令21cos 0sin )](cos[2)](cos[20sin .sin ,,sin ,cos 2,sin ,cos 4)(52)1(52510210210sin sin 2)cos 2(sin 552552522222552552552±=⇒±=⇒=+-=+-=⇒+-=⇒-==⇒=⇒≠==+∞<<-∞=====+y t t b C x C x y Cdt x dt dx t a tp x t p t y t p t y y ttdt t d tdydxdy dxdy 故解:令dt t sh xht d sht dx sht dy sht dx dy e e sht e e cht shtp cht x dxdy x t t t t 3)(3332,2,3,.1)(3).2(222===⇒=-=+====---Ct t sh Ct e e C t d e e Cdt tsh y t t t t +-=+-+=+-+=+=--⎰⎰)2241(31)4(381)2()2(381322222Cdt t t t Cdt tt t v dtv v t t vt u t vdvdu v u vdu vdv udu pdxdy v u y v p u x x y tt t vdv t t t dv dtt dv dtt dvvdt tdv t vdttdv dv v u vu vv u dudv dxdy vu vu++---=++--==⇒=⇒=+⇒=⇒=-=⇒===-==⇒=-⇒=-=-====-+⎰⎰+---+---+-+--22122212ln ,,2)2(22,,,.0).(3(222212122212212211221222122222222令齐次方程解:令⎰⎰⎰⎰⎰-----=+--+-=+---16172411617241222)(221)(212222212212t tdt t dt dt t t t dt t t dt t t t⎰⎰⎰⎰--+---=--+--------=16172411617241161724116172411617241)(41161741(ln 21)(21)(41)(])[(21t dtt t dt t dt t t d αββαβαβαβαβαβαβαβααβα)()()()()()()()()()(1)()()()()()(,)(,,)41741()41741()(1.||ln )(ln ||ln 1721)11(17241))((41)(41417414174117411717411741174141174141174141174117414141174117414141174141174141174141174141174121172141741417411721417414174141741417414174141741172116172412122124174141741417414174141741417411617241212117212117212v u C v u v u C v u v u C v u v u C v u v u v u C vv u vv u CvuvuC t t C v t C v t t C t t t t ev t t t dt t t dtt t t t dt t dt Ct t t +=++=++=++=+++=++=++=++=+=--=+-=+---=+-----+-=+---+---=-+---=+----=+---=-----+-+-+---+----------------+--⎰⎰⎰⎰故令故(通解),)()(22⎩⎨⎧+=+-=αββαp x C p x p x y (特解)故特解:⎩⎨⎧=====⨯======++=±-=±-=⇒±=⇒±=⇒±=⇒=+---+-+-+--+++++,,..172181722))161(161()171(1617144171417102222122122121721817222212417121281712641788264)179)(171(217917121721817222222222x y x y x x y b ax x x x x x x y a x x x x y u v v u t t t βαβ(通解)故令解:⎪⎩⎪⎨⎧++-==++-=⇒===⇒-=⇒-=⇒==-=-==++++++++++,,),()(,4),4(,).4(4)(.4)().4(3233323332331132)1(8141132)1(81414141432332333C y x Cy d xtd dy x x t xt x t x t x xt p x x x x x x t t t tt t t tt t t t t t dxdy dxdy dx dy dx dy dx dy dx dy 习题4-21.利用p-判别式求下列微分方程的奇解:的奇解。

常微分方程教程丁同仁李承治第二版第四章 奇解

常微分方程教程丁同仁李承治第二版第四章 奇解
, 令q 2
0 q3
2
3
y
2.用参数法求解下列微分方程:
y
y
y)
y
dq dy
3 2
x
ln x 2x
p
1)
0.
2xp
)]2
y
dy dx
2 cos y( sin y) 2q2
cos y sin y q2
cos2 q3
sin
cos2 q3
y
dq
( dy
y)
q tan
2
3
cos3 y sin y
y
x C
22t2 t 2t 1
C
dt
25
5
2
cos t,
2 cos[ 2 (x C)] 5
2t1
C
2
2
dv v
p
2 sin tdt
2 5 sin t
5
2t 1 22t2 t
3
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 奇解习题4-11.求解下列微分方程:(通解)特解)(特解)解:221222)(2222222222)(2101.(42202..0)1)(2(0)2()2(2222);(,242).1(C Cx y x x C x y C x p b x x x x y x p x p a x p x p x p xx p p p x px y p x px p y x C x dxdpdx dp dx dp dx dp dx dp dx dp p dxdy ++-=⇒++-+=⇒+-=⇒-=⇒=+-=+-=⇒-=⇒=+=++⇒=+++⇒+++=++==++=+-224ln 4ln 2ln 22ln 2ln 2ln 222ln )(ln 0x .)]([ln 2ln 02ln ..0))(2(ln 22)1(ln ln );(,)(ln ).2(222C x C y x x x y p p x b y x x x y p xp x xp x a p x xp x p x xp x p x x p p xp x px y xC xC xC dx dp xx x x x x x xx dx dp dxdp dx dp dxdy +=⇒+=⇒=⇒=+-=+-=⇒-+-=⇒-=⇒-=⇒=+=++⇒++++==+=(特解)解:dydqqyq y y dydq q ydydx pyp p y q y q y q x q y x y p y xp 3222222cos 2)sin (cos 222cos 12cos 123sec tan ,tan ,,tan .cos tan 22).3(-++=+===+=+=-令解:yy y y x q q y b y C x y C q y q y q a y y q y q y q y y q y yy ytyyyyy qyC dydq dy dq q y dy dq dy dqq y dy dq dydq qyqyy dy dq 32323232sin 2cos 2313133223232322sin sin sin tan 0tan .sin cos tan 0tan .0)(tan tan (0)tan ()tan (tan 0tan tan 23212cos sin cos sin cos sin cos 3cos 21cos cos cos sin cos 2=+=+=⇒=⇒=⇒=-+=⇒=⇒-=⇒=+=-+⇒=+-+⇒=-++⇒-(通解)2.用参数法求解下列微分方程:(特解)当当由解:令21cos 0sin )](cos[2)](cos[20sin .sin ,,sin ,cos 2,sin ,cos 4)(52)1(52510210210sin sin 2)cos 2(sin 552552522222552552552±=⇒±=⇒=+-=+-=⇒+-=⇒-==⇒=⇒≠==+∞<<-∞=====+y t t b C x C x y Cdt x dt dx t a tp x t p t y t p t y y ttdt t d tdydxdy dxdy 故解:令dt t sh xht d sht dx sht dy sht dx dy e e sht e e cht shtp cht x dxdy x t t t t 3)(3332,2,3,.1)(3).2(222===⇒=-=+====---Ct t sh Ct e e C t d e e Cdt tsh y t t t t +-=+-+=+-+=+=--⎰⎰)2241(31)4(381)2()2(381322222Cdt t t t Cdt tt t v dtv v t t vt u t vdvdu v u vdu vdv udu pdxdy v u y v p u x x y tt t vdv t t t dv dtt dv dtt dvvdt tdv t vdttdv dv v u vu vv u dudv dxdy vu vu++---=++--==⇒=⇒=+⇒=⇒=-=⇒===-==⇒=-⇒=-=-====-+⎰⎰+---+---+-+--22122212ln ,,2)2(22,,,.0).(3(222212122212212211221222122222222令齐次方程解:令⎰⎰⎰⎰⎰-----=+--+-=+---16172411617241222)(221)(212222212212t tdt t dt dt t t t dt t t dt t t t⎰⎰⎰⎰--+---=--+--------=16172411617241161724116172411617241)(41161741(ln 21)(21)(41)(])[(21t dtt t dt t dt t t d αββαβαβαβαβαβαβαβααβα)()()()()()()()()()(1)()()()()()(,)(,,)41741()41741()(1.||ln )(ln ||ln 1721)11(17241))((41)(41417414174117411717411741174141174141174141174117414141174117414141174141174141174141174141174121172141741417411721417414174141741417414174141741172116172412122124174141741417414174141741417411617241212117212117212v u C v u v u C v u v u C v u v u C v u v u v u C vv u vv u CvuvuC t t C v t C v t t C t t t t ev t t t dt t t dtt t t t dt t dt Ct t t +=++=++=++=+++=++=++=++=+=--=+-=+---=+-----+-=+---+---=-+---=+----=+---=-----+-+-+---+----------------+--⎰⎰⎰⎰故令故(通解),)()(22⎩⎨⎧+=+-=αββαp x C p x p x y (特解)故特解:⎩⎨⎧=====⨯======++=±-=±-=⇒±=⇒±=⇒±=⇒=+---+-+-+--+++++,,..172181722))161(161()171(1617144171417102222122122121721817222212417121281712641788264)179)(171(217917121721817222222222x y x y x x y b ax x x x x x x y a x x x x y u v v u t t t βαβ(通解)故令解:⎪⎩⎪⎨⎧++-==++-=⇒===⇒-=⇒-=⇒==-=-==++++++++++,,),()(,4),4(,).4(4)(.4)().4(3233323332331132)1(8141132)1(81414141432332333C y x Cy d xtd dy x x t xt x t x t x xt p x x x x x x t t t tt t t tt t t t t t dxdy dxdy dx dy dx dy dx dy dx dy 习题4-21.利用p-判别式求下列微分方程的奇解:的奇解。

为故的解,而为而解:’)1(4,0,02F 0112)1(44020),,(F ;)().1(24'"pp442222|||222x y x x Fdy dp p dy dp x F x y x y p x y p xp p y x dxdydx dy xy xy p x y x y p -==-=≠=≠-=-+=-=-=⇒⎩⎨⎧=+=-+=+=-=-=-=的解不是解:)2(02202),,(F ;(2).2(222x y p x y p xp p y x dxdydx dy xy -=⇒⎩⎨⎧=+=-+=+=的奇解。

为故的解为(解:)3(0,0,02)1(2.09494)1(2)3(00)1(2094)1(;94)()1).(3(||'20"2'22222==≠=-≠-=--==⇒⎪⎩⎪⎨⎧=-=--=-==y F y F p y F y p y y p y y dx dy y y p y pp p 习题4-31.试求克莱洛方程的通解及其包络:.0)("),(),(≠=+=p dxdyp p xp y ϕϕ解:通解为)(),(C C Cx y ∀+=ϕ).(':),()('),('),(),().0,0()1,(),0,0())('),("()()('),(')),(()(,:))(()()()('.0)(',0)())(()()).(()(),(),()('),('C x p p p y p x C C Cx y dxdyC C C C C C y C x C C C y y C x x x x y x C C x C x C Cx y x x x y x x x y x p p p p y p x ϕϕϕϕϕϕϕϕϕϕωϕωωϕωωϕϕϕωϕωωϕωωϕϕϕ-=∧+-=-=∀+=≠+-≠--+-=-=∧+===∧+=⇒=⇒-=⇒⎩⎨⎧=--=+-+=+==+-=-=特解为故通解为其中;是否为奇解。

(是)判断特解为克莱洛方程的包络。

)()('C C C y ϕϕ+-=2试求一微分方程,使它有奇解为xy sin =.sin 1arccos 1arccos .4)(cos sin ,4)(cos )(,0cos )(2,0sin )().0,0()1,cos )(2(),0,0()cos ,1(,sin ,0)(2,0sin )(,sin ,2222222x y p p p xp y p p p xp y p x x y p x C x x dx dy C x x y C x x dx dyC x C x y C x C y C x C y C x =-+-=-+-=⇒--=⇒--=-⇒⎪⎩⎪⎨⎧=-+--=-+-≠-+-≠=⇒⎩⎨⎧=--=-+-==有奇解为故微分方程解:领。

相关文档
最新文档