人教版数学七年级上册第一单元复习知识点
新人教版七年级上册数学第一单元知识点归纳总结

新人教版七年级上册数学第一单元知识点
归纳总结
1. 自然数与整数:
- 自然数:1, 2, 3, 4, ...
- 整数:... -3, -2, -1, 0, 1, 2, 3, ...
2. 整式与代数式:
- 整式:由数字与字母通过运算符号组成的表达式,如3x + 4y。
- 代数式:由数字与字母组成的表达式,如x + 2。
3. 数轴与坐标:
- 数轴:用来表示有序数的直线。
0点位于数轴的中心,正数
向右延伸,负数向左延伸。
- 坐标:有序数在数轴上的位置。
4. 平行线与垂线:
- 平行线:在同一个平面内,永不相交的两条直线。
- 垂线:与另一条直线交点处呈直角的直线。
5. 解方程:
- 解方程是指找出方程中的未知数的值,使得等式成立。
- 方程的解是使方程成立的值。
6. 解不等式:
- 解不等式是指找出使得不等式成立的值。
- 不等式的解是满足不等式条件的值。
7. 测量与估算:
- 测量是通过使用合适的单位和测量工具来确定物体的长度、面积、体积等。
- 估算是通过近似计算来确定一个大致的数值。
8. 三角形与四边形:
- 三角形:具有三条边的图形。
- 四边形:具有四条边的图形。
以上是新人教版七年级上册数学第一单元的知识点归纳总结。
---
注:本文档内容整理自教材内容,确保准确性。
新人教版七年级上册数学1-5单元知识点总结

新人教版七年级上册数学1-5单元知识点
总结
1.数与代数
- 自然数、整数、有理数和实数的概念
- 数轴及其在数线上的表示
- 有理数的比较和大小关系
- 加法和减法的运算规则
- 正数和负数的加法和减法运算
- 数的整除和倍数的概念
2.图形的认识
- 平面图形和立体图形的分类
- 点、线、面的概念
- 直线、曲线的认识
- 三角形、四边形、圆的基本特征
- 直角、钝角、锐角的辨认
- 图形的对称和变化
3.两线之间的位置关系
- 平行线和垂直线的特征与判定方法
- 同位角、对顶角、内错角的定义和计算- 直线之间的夹角与对应角
- 利用平行线的性质解决问题
4.数的整数运算
- 乘法的运算规则
- 整数的加法、减法和乘法运算
- 整数除法与余数的概念
- 合并同类项和因式分解的方法
5.方程与不等式
- 代数式、方程和等式的关系与区别
- 解方程的基本步骤和原则
- 一元一次方程的解法和应用
- 不等式的定义和性质
- 解一元一次不等式的方法
以上是新人教版七年级上册数学1-5单元的知识点总结。
通过学习这些内容,能够对数与代数、图形、位置关系、整数运算、方程与不等式等方面的数学知识有更全面的了解。
完整版)人教版七年级数学上册知识点归纳

完整版)人教版七年级数学上册知识点归纳第一章有理数1.1 正数和负数正数是大于零的数,负数是小于零的数。
有些数既不是正数也不是负数,它们被称为零。
在同一个问题中,用正数和负数表示的量具有相反的意义。
需要注意的是,-a不一定是负数,+a也不一定是正数。
自然数指的是正整数和零的集合,也就是我们常说的自然数。
我们可以用a>0表示a是正数,a≥0表示a是正数或零,a<0表示a是负数,a≤0表示a是负数或零。
1.2 有理数有理数包括正整数、负整数、正分数和负分数,它们都可以写成分数的形式。
正整数和负整数统称为整数。
有理数可以分为六类:正整数、正分数、零、负分数、负整数和整数。
我们可以用数轴来表示有理数,数轴是一条直线,有原点、正方向和单位长度三个要素。
一般来说,当a是正数时,数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度。
两个点关于原点对称,当a是正数时,在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称。
相反数指的是只有符号不同的两个数,它们互为相反数。
a的相反数是-a,的相反数是0.在数轴上,表示相反数的两个点关于原点对称。
绝对值是数a到原点的距离,用|a|表示。
一个正数的绝对值是其本身,一个负数的绝对值是其相反数。
的绝对值是0.绝对值可以表示为a=|a|或a=-|a|。
如果a>0,则|a|=a,如果a<0,则|a|=-a。
有理数的比较可以在数轴上表示,从左到右的顺序就是从小到大的顺序。
需要注意的是,正数大于零,大于负数,正数大于负数;两个负数,其绝对值大的反而小。
1.3 有理数的加减法有理数的加减法可以用数轴来表示。
当加上一个正数时,表示数的点向右移动,当加上一个负数时,表示数的点向左移动。
同样地,当减去一个正数时,表示数的点向左移动,当减去一个负数时,表示数的点向右移动。
(完整版)人教版初一数学上册知识点归纳总结

第一章有理数1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.2.数轴:数轴是规定了原点、正方向、单位长度(数轴的三要素)的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c 的相反数是-(a-b+c)= -a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.(4)相反数的商为-1.(5)相反数的绝对值相等w w w .x k b 1.c o m4.绝对值:(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或 ⎩⎨⎧≤-≥=)0()0(a a a a a ; (3) 0a 1a a>⇔= ; 0a 1a a<⇔-=;(4) |a|是重要的非负数,即|a|≥0,非负性;5.有理数比大小:(1)正数永远比0大,负数永远比0小;(2)正数大于一切负数;(3)两个负数比较,绝对值大的反而小;(4)数轴上的两个数,右边的数总比左边的数大;(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,绝对值越小,越接近标准。
人教版七年级数学上册第一章至第四章知识总结复习课件

指数分别相等.
解:
mn=+25,=3,解得
m=-2, n=2.
所以 mn=(-2)2=4.
针对训练
3、若5x2 y与x m yn是同类项,则m=2( ) ,n=1( ) 若5x2 y与x m yn的和是单项式,则m=2( ) , n=1( )
只有同类项才 能合并成一项
考点三 去括号
例3 已知A=x3+2y3-xy2,B=-y3+x3+2xy2, 求:(1)A+B;(2)2B-2A. 【解析】 把A,B所指的式子分别代入计算. 解:(1)A+B=(x3+2y3-xy2)+(-y3+x3+2xy2)
5.绝对值 (1)一个数在数轴上对应的点到原点的距离 叫做这个数的绝对值 (2)一个正数的绝对值是它本身.
一个负数的绝对值是它的相反数. 0的绝对值是0.
6.有理数大小的比较 (1)数轴上表示的两个数,右边的总比左边的大. (2)正数大于0,0大于负数,正数大于负数;
两个负数,绝对值大的反而小.
三、有理数的运算 1.有理数的加法
例4 若A是一个三次多项式,B是一个四次多项式,
则A+B一定是( B )
A.三次多项式 B.四次多项式或单项式
C.七次多项式
D.四次七项式
【解析】A+B的最高次项一定是四次项,至于是否含 有其它低次项不得而知,所以A+B只可能是四次多项式或 单项式.故选B.
你能举出对应 的例子吗?
针对训练
5.若A是一个四次多项式,B是一个二次多项式, 则A-B( ) C
第一章 有理数
小结与复习
要点梳理
考点讲练
当堂练习
课堂小结
要点梳理
一、正数和负数 1.小学学过的除0以外的数都是正数. 在正数前面加上符号“-”(负)的数叫做负数. 2.用正、负数表示具有相反意义的量
人教版七年级上册数学知识点总结归纳(最新最全)

人教版七年级上册数学知识点总结归纳(最新最全)七年级数学上册知识点总结第一章有理数1.1 正数和负数1.正数和负数的概念正数是比零大的数,负数是比零小的数,而0既不是正数,也不是负数。
注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0.(例如,带正号的数不一定是正数,带负号的数也不一定是负数,例如+a和-a都有可能是正数或负数)②正数有时可以在前面加“+”,有时“+”省略不写。
省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,例如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴表示“没有”,例如教室里有个人,就是说教室里没有人;⑵是正数和负数的分界线,既不是正数,也不是负数。
⑶表示一个确切的量。
例如,℃以及有些题目中的基准,比如以海平面为基准,则米就表示海平面。
1.2 有理数1.有理数的概念⑴正整数、负整数统称为整数(和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
例如,π是无限不循环小数,不能写成分数形式,不是有理数。
有限小数和无限循环小数都可化成分数,都是有理数。
整数也能化成分数,也是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,例如-2、-4、-6、-8…也是偶数,-1、-3、-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数正有理数负整数正分数有理数有理数(不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数统称为非负整数(也叫自然数)②负整数统称为非正整数③正有理数统称为非负有理数④负有理数统称为非正有理数3.数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
人教版七年级上册数学知识点总复习
七年级数学(上册)第一章《有理数》复习知识点1:正数和负数.有理数1.下列四个数中,与其它三个数性质不同的一个数是( )2;+29.15;-3000;0.000001A.2B.+29.15C.-3000D.0.0000012.如果+3吨表示运入仓库的大米数,那么运出5吨大米表示为( )A.-5吨B.+5吨C.-3吨D.+3吨3.在一次数学测验中,七(2)班平均分为85分,把高于平均分的部分记着正,某小组美美.多多.甜甜.乐乐四位同学的成绩记为:+7,-4,-11,+3,这四位同学成绩最好的是( )A.美美B.多多C.甜甜D.乐乐知识点2:数轴.相反数1.-15的相反数是( )2.下列个组数互为相反数的是( )A.2与-3B.21与-2 C.2021与-2021 D.-0.25与-0.253.一个数的绝对值是3,则这个数是4.若一个数的绝对值的相反数是-7,则这个数是5.数轴上的原点和原点左边的点表示的数是( )A.负数B.正数C.非正数D.非负数6.图中数轴上的点M 表示()A.2.5B.-1.5C.-2.5D.1.5知识点3:绝对值1.若2m+5的绝对值与−3的绝对值相等,则m=2.若|a|=1,|b|=4,且ab<0,则a+b 的值为3.化简|π−4|+|3−π|=4.实数a ,b 在数轴上的位置如图所示,则|a+b|+|a −b|等于 .5.已知数a ,b ,c 在数轴上的位置如图所示,化简|a+b|−|c −b|的结果是 .6.如果有理数a ,b ,c 在数轴上的位置如图则∣a+b ∣+∣a −c ∣−b+c=7.已知|2−b|与|a+b −5|互为相反数,则 的值是8.|m ﹣n+2|+|m ﹣3|=0,则=m+n = .9.若a.b.c 都是有理数,且|a −1|+|b+2|+|c −4|=0,则a+|b|+c =10.已知a 与−b 互为相反数,c 与−d 互为倒数,|m|=3,则 −cd+m= . 11.若a,b 互为相反数,c,d 互为倒数,|x|=1,则 +x+cd 的值为知识点4:有理数的大小比较1.用“>”或“<”填空: (1)-99_____-100;(2)0.2_____-0.3(3)-5_____-4;(4)-π_____-3.14知识点5:有理数的加减乘除.乘方1.计算:(1)−20+(−14)−(−18)−1; (2)321+(−21)−(−21)+232;(3)(−17)÷(−85)÷(−0.25) (4)(−81)÷94×47÷(−9)2.计算:(1)−14−(1−0.5)×31×[2−(−3)2] (2)(−1)2018+16÷(−2)3×|−3|(3)4+(−2)2×2−(−36)÷4 (4)−72+2×(−3)2+(−6)÷(−31)2a b m b a -xb a +知识点6:科学计数法1.截止2021年全国疫情人数约达127000人,这个数用科学记数法表示为( )A.1.27×105B.12.7×105C.1.270×104D.0.127×1062.为了加强农村教育,某年中央下拨农村义务教育经费666亿元,666亿元用科学记数法表示正确的是( )A.6.66×109元B.66.6×1010元C.6.66×1011元D.6.66×1010元3.把199000000用科学记数法写成1.99×10n-3的形式,n 的值是 。
人教版七年级上册数学第一单元知识点总结(一)
人教版七年级上册数学第一单元知识点总结(一)人教版七年级上册数学第一单元知识点总结(一)第一单元:有理数一、自然数和整数1. 自然数:从1开始的正整数,用N表示。
2. 整数:包括自然数和负整数,用Z表示。
3.正整数:大于0的整数。
4. 负整数:小于0的整数。
5. 零:表示为0。
二、有理数的代数运算1. 加法和减法:有理数的加法和减法运算遵循交换律和结合律。
2. 乘法和除法:有理数的乘法和除法运算遵循交换律和结合律,并且零除以任何非零数等于0。
3. 加减混合运算:先进行加法运算再进行减法运算。
三、有理数的大小比较1. 相反数:两个有理数互为相反数当且仅当它们的绝对值相等,符号相反。
2. 绝对值:一个有理数的绝对值等于这个有理数的绝对值。
3. 有理数的大小比较:两个有理数的大小比较要先比较它们的绝对值的大小,再根据符号确定大小关系。
四、有理数的分数表示1. 分数:一个有理数可以表示为两个整数的比值,其中分子为整数,分母为正整数。
2. 真分数:分子小于分母的分数。
3. 假分数:分子大于或等于分母的分数。
4. 整数:分母为1的分数。
五、有理数的约分与化简1. 约分:将分子和分母的公因数约去。
2. 化简:经过约分后,如果分子和分母的最大公因数为1,则分数为最简形式。
六、有理数的小数表示1. 有限小数:小数点后有有限位数的小数。
2. 循环小数:小数点后有无限循环的小数。
3. 无理数:不能表示为有限小数或循环小数的数。
七、有理数的加法与减法1. 同号数相加或相减:保留相同的符号,将绝对值相加或相减。
2. 异号数相加或相减:取绝对值较大的数的符号,将绝对值较大的数的绝对值与绝对值较小的数的绝对值相减。
八、有理数的乘法与除法1. 同号数相乘或相除:结果为正数。
2. 异号数相乘或相除:结果为负数。
3. 一个数除以非零数,等于这个数乘以这个非零数的倒数。
九、应用题综合运用有理数的加、减、乘、除等运算方法解决实际问题。
人教版七年级数学上册各章知识点总结
人教版七年级数学上册各章知识点总结第一章:有理数1. 有理数和整数的关系- 自然数是有理数,因为每个自然数都可以表示为分子为自然数、分母为1的有理数。
- 整数是有理数,因为每个整数都可以表示为分母为1的有理数。
- 分数是有理数,因为每个真分数都可以表示为分母不为0的有理数。
2. 有理数的加减法- 同号两数相加,取相同的符号,并将绝对值相加。
- 异号两数相加,取绝对值较大的符号,并将绝对值较大的数减去较小的数的绝对值。
3. 有理数的乘除法- 同号两数相乘,积为正数。
- 异号两数相乘,积为负数。
- 有理数相除,分子乘以倒数。
第二章:代数初步1. 代数式的基本概念- 代数式由变量、常数和运算符号组成。
- 代数式可以通过代入变量的具体数值来求得结果。
2. 代数式的计算- 同类项相加或相减,保持字母不变,系数相加或相减。
- 不同类项之间无法进行运算。
3. 代数式的应用- 通过列式子,可以将一个具体问题转化为代数式,从而解决问题。
第三章:小数1. 小数的定义和读法- 小数是有理数的一种表示形式,可以用分数的形式表示。
- 小数读法遵循读整数部分,读小数点,读小数部分的规则。
2. 小数的加减法- 小数相加减时,要保持小数点的位置对齐,然后按照整数加减法的规则进行运算。
3. 小数与分数的相互转化- 将小数转为分数,小数点后的位数作为分母,去掉小数点后的位数作为分子。
- 将分数转为小数,分子除以分母。
第四章:倍数和约数1. 倍数的概念- 如果一个数能被另一个数整除,则这个数是另一个数的倍数。
2. 倍数和公倍数- 两个数的公倍数是能同时整除这两个数的数。
- 两个数的最小公倍数是能整除这两个数的最小正整数。
3. 约数的概念- 如果一个数能整除另一个数,则这个数是另一个数的约数。
4. 因数和公因数- 两个数的公因数是能够同时整除这两个数的数。
- 两个数的最大公因数是能够整除这两个数的最大正整数。
第五章:比例1. 比例的基本概念- 比例是两个数之间的比较关系,可以用两个等比例的分数表示。
七年级人教版上册数学第一单元有理数知识点整理
第一单元知识点总结(有理数)知识点一:有理数的分类1、正数和负数:大于0的数叫做正数,小于0的数叫做负数,0既不是正数也不是负数。
例如 正数:54、+89、1.57、43 负数:-54、43-、-1.2(带负号) 注:正数和负数集合都不能选0;因为0既不是正数也不是负数。
2、整数:像-2 ,-1, 0, 1, 2这个的数称整数,分为正整数,0,负整数。
例如 整数:0,56,-23(要记得选0和负整数)3、分数: 例如:43,23-,0.25,-0.52, 注:有限小数、循环小数可以化为分数,所以也属于分数4、非负整数:即正整数和05、非负数:即正数和06、有理数的分类:⎩⎨⎧分数整数按定义分 ⎝⎛负有理数正有理数按符号分0 (有关分类的文字题常常要考虑“0”是否满足)知识点二:正数和负数1、正数和负数表示具有相反意义的量,例如规定向东为正,向东走m 5,记为m 5+,如果向西走m 5,记为m 5-。
2、 向东前进30m 表示的意义:向东前进30m 向东行进-30m 表示的意义:向西前进30m 知识点三:数轴 数轴需要三要素,即原点,正方向和单位长度知识点四:相反数1、相反数:只有符号不同的两个数叫作互为相反数注:正数的相反数是负数,负数的相反数是正数,0的相反数是02、相反数的性质:如果b a 和互为相反数,则0=+b a ;1-=ba 3、字母的相反数:a 的相反数是a -;b a -的相反数是b a +-; a bc +-的相反数是a b c -+-;知识点五:绝对值 1、在数轴上表示数a 的点与原点的距离叫做a 的绝对值,记作a ,例如:2的绝对值记作:22= ; -3的绝对值记作:33=-注:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数;0的绝对值是0因为负数的绝对值是正数,所以一个数的绝对值为0和正数,绝对值表示的是到原点的距离,所以不会为负数。
(3)去绝对值符号情况如下:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a ⎪⎩⎪⎨⎧<-+-=->--=-)0()0(0)0(b a b a b a b a b a b a 若若若知识点六:有理数的加减法1、先去括号;去括号法则()()⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧-=-+-=+-⎩⎨⎧=--=++22222222异号得负:)()(同号得正: 2、同号叠加;取相同的符号;异号抵消,取数字较大的符号:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧=+--=+-⎩⎨⎧-=--=++231213321321异号抵消:同号叠加:知识点七:有理数的乘除法1、两数相乘,同号得正,异号得负,并把绝对值相乘(即数相乘)2、任何数和0相乘,都得03、乘积是1的两个数互为倒数;如果如果b a 和互为倒数,那么:1=ab乘法交换律:ba ab =,乘法结合律:)(bc a abc = ,分配律:ac ab c b a +=+)(知识点八:有理数的乘方1、一般地,a n 个相同的因数相乘,即na a a a a a ⨯⨯⨯⨯⨯⨯...,记作n a ,读作a 的n 次方. 2、对于n a ,其中a 是底数,n 是指数,n a 是幂,例如:()41-,底数是-1,指数是4,幂是4)1(-即1,读作-1的4次方或者-1的4次幂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学七年级上册第一
单元复习知识点
本页仅作为文档页封面,使用时可以删除
This document is for reference only-rar21year.March
第一章有理数
正数与负数
①正数:大于0的数叫正数。
(根据需要,有时在正数前面也加上“+”)
②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。
与正数具有相反意义。
③0既不是正数也不是负数。
0是正数和负数的分界,是唯一的中性数。
注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等有理数
1.有理数(1)整数:正整数、0、负整数统称整数(integer),
(2)分数;正分数和负分数统称分数(fraction)。
(3)有理数;整数和分数统称有理数(rational number). 以用m/n(其中m,n是整数,n≠0)表示有理数。
2.数轴
(1)定义:通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
(2)数轴三要素:原点、正方向、单位长度。
(3)原点:在直线上任取一个点表示数0,这个点叫做原点(origin)。
(4)数轴上的点和有理数的关系:
所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
只有符号不同的两个数叫做互为相反数(opposite number)。
(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
从几何意义上讲,数的绝对值是两点间的距离。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个负数,绝对值大的反而小。
有理数的加减法
①有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
加法的交换律和结合律
②有理数减法法则:减去一个数,等于加这个数的相反数。
有理数的乘除法
①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
乘法交换律/结合律/分配律
②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
有理数的乘方
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。
在a的n 次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。
有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。
比如:精确到就是而不是.
第二章整式的加减
整式
单项式:由数字和字母乘积组成的式子。
系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.
单项式的系数:是指单项式中的数字因数;
单项数的次数:是指单项式中所有字母的指数的和.
多项式:几个单项式的和。
判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。
多项式的次数是指多项式里次数最高项的次数,这里是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包
包括它前面的性质符号.
它们都是用字母表示数或列式表示数量关系。
注意单项式和多项式的每一项都包括它前面的符号。
单项式和多项式统称为整式。
整式的加减
同类项:所含字母相同,并且相同字母的指数也相同的项。
与字母前面的系数(≠0)无关。
同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关
合并同类项:把多项式中的同类项合并成一项。
可以运用交换律,结合律和分配律。
合并同类项法则:
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
字母的升降幂排列:按某个字母的指数从小(大)到大(小)的顺序排列。
如果括号外的因数是正(负)数,去括号后原括号内各项的符号与原来的符号相同(反)。
整式加减的一般步骤:
1、如果遇到括号按去括号法则先去括号.
2、结合同类项.
3、合并同类项
整式的乘法法则 :
单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式 ;
单项式和多项式相乘,就是用单项式去乘多项式的每项,再把所得的积相加。
多项式和多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
整式的除法法则
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。