数学分析试卷及答案6套

数学分析试卷及答案6套
数学分析试卷及答案6套

一. (8分)用数列极限的N ε-定义证明1n =.

二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a

g x b →=;

(2) 0()x U a ?∈,有0

()()g x U b ∈ (3) lim ()u b

f u A →=

用εδ-定义证明, lim [()]x a

f g x A →=.

三. (10分)证明数列{}n x :

cos1cos 2

cos 1223

(1)

n n

x n n =

+++

???+收敛.

四. (12分)证明函数1

()f x x

=

在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点.

七. (12分)确定,a b 使lim )0x ax b →+∞

-=.

八. (14分)求函数32()2912f x x x x =-+在15

[,]42

-的最大值与最小值.

九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使

2

4

()()()()

f f b f a b a ζ''≥

--.

一. (10分)设数列{}n a 满足

: 1a =

, 1()n a n N +=∈, 其中a 是一给定的

正常数, 证明{}n a 收敛,并求其极限.

二. (10分)设0

lim ()0x x f x b →=≠, 用εδ-定义证明0

11

lim

()x x f x b

→=. 三. (10分)设0n a >,且1

lim

1n

n n a l a →∞+=>, 证明lim 0n n a →∞

=.

四. (10分)证明函数()f x 在开区间(,)a b 一致连续?()f x 在(,)a b 连续,且

lim ()x a f x +

→,lim ()x b

f x -

→存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.

六. (12分)证明:若函数在连续,且()0f a ≠,而函数2

[()]f x 在a 可导,则函数()f x 在

a 可导.

七. (12分)求函数()1f x x x α

αα=-+-在的最大值,其中01α<<.

八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有

12()()f x f x ''≤.

九. (12分)设()

,0()0,0

g x x f x x x ? ≠?

=?? =? 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.

一.(各5分,共20分)求下列不定积分与定积分: 1. arctan x x dx ?

2. x e dx -?

3.

ln 0

?

4.

20

sin 1cos x x

dx x

π

+?

二.(10分)设()f x 是上的非负连续函数, ()0b

a

f x dx =?

.证明()0f x = ([,])x a b ∈.

三. (10分)证明20

sin 0x

dx x

π>?

. 四. (15分)证明函数级数0

(1)n n x x ∞

=-∑在不一致收敛, 在[0,]δ(其中)一致收敛.

五. (10分)将函数,0

(),0x x f x x x ππππ

+ ≤≤?=?- <≤?展成傅立叶级数.

六. (10分)

设22

22

0(,)0,0

xy x y f x y x y ? +≠?=?? +=?

证明: (1) (0,0)x f ', (0,0)y f '存在; (2) (,)x f x y ',(,)y f x y '在(0,0)不连续;

(3) (,)f x y 在(0,0)可微.

七. (10分)用钢板制造容积为V 的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板?

八. (15分)设01σ<<, 证明1

11

(1)n n n σ

σ∞

=<+∑

.

一. (各5分,共20分)求下列不定积分与定积分:

1.(0)a >

2.

1172

815714

x x dx x x

++?

3.

1

arcsin x dx ?

4. 1000

π

?

二. (各5分,共10分)求下列数列与函数极限:

1. 221

lim n

n k n

n k →∞=+∑

2. 2

0lim

1x

t x

x x

e dt e →-?

三.(10分)设函数在[,]a b 连续,对任意[,]a b 上的连续函数()g x , ()()0g a g b ==,有

()()0b

a

f x

g x dx =?

.证明()0f x = ([,])x a b ∈.

四. (15分)定义[0,1]上的函数列

2

212,211()22211n n x x n f x n n x x n n x n ? , 0≤≤??

?

=- , <≤??

?

0 , <≤??

证明{()}n f x 在[0,1]不一致收敛.

五. (10分)求幂级数0(1)n n n x ∞

=+∑的和函数.

六. (10分)用εδ-定义证明

2(,)(2,1)

lim (43)19x y x y →+=.

七. (12分)求函数22(2)(2)(0)u ax x by y ab =-- ≠的极值.

八. (13分)设正项级数1n n a ∞

=∑收敛,且1()n n a a n N ++≥ ∈.证明lim 0n n na →∞

=.

一 (10分) 证明方程11(, )0F x zy y zx --++=所确定的隐函数(, )z z x y =满足方程

.z z x

y z xy x y

??+=-?? 二 (10分) 设n 个正数12, , , n x x x 之和是a

,求函数u

=.

三 (14分) 设无穷积分() a

f x dx +∞?

收敛,函数()f x 在[, )a +∞单调,证明

1

()() ().f x o x x

=→+∞

四 (10分) 求函数1

220() ln() F y x y dx =+?的导数(0).y >

五 (14分) 计算

0sin sin (0, ).px

bx ax

I e dx p b a x

+∞

--=>>?

六 (10分) 求半径为a 的球面的面积S . 七 (10分) 求六个平面

111111122222223

333333 ,

, = 0 , , a x b y c z h a b c a x b y c z h a b c a x b y c z h a b c ++=±??

++=±?≠??++=±? 所围的平行六面体V 的体积I ,其中, , , i i i i a b c h 都是常数,且0 (1, 2, 3).i h i >= 八 (12分) 求22

C

xdy ydx

x y

-+?

,其中C 是光滑的不通过原点的正向闭曲线. 九 (10分) 求dS z

??

,其中∑是球面2222x y z a ++=被平面 (0)z h h a =<<所截的顶部.

数学分析-3样题(二)

一 (10分) 求曲面2233, , x u v y u v z u v =+=+=+在点(0, 2)对应曲面上的点的切平面与法线方程.

二 (10分) 求在两个曲面2221x xy y z -+-=与221x y +=交线上到原点最近的点. 三 (14分) 设函数()f x 在[1, )+∞单调减少,且lim ()0x f x →+∞

=,证明无穷积分

1

() f x dx +∞

?

与级数100

1

()n f n =∑同时收敛或同时发散.

四 (12分) 证明

ln (0).ax bx e e b

dx a b x a

--+∞

-=<

五 (12分) 设函数()f x 在[, ]a A 连续,证明 [, ]x a A ?∈,有

01lim [()()] ()().x

a h f t h f t dt f x f a h

→+-=-?

六 (10分) 求椭圆区域221112221221: ()() 1 (0)R a x b y c a x b y c a b a b +++++≤-≠的面积A .

七 (10分) 设222()() V

F t f x y z dx dy dz =++???,其中2222: (0)V x y z t t ++≤≥,

f 是连续函数,求'()F t .

八 (10分) 应用曲线积分求(2sin )(cos )x y dx x y dy ++的原函数.

九 (12分) 计算 S

xyz dx dy ??,其中S 是球面2221x y z ++=在0, 0x y ≥≥部分并取

球面外侧.

《数学分析III》期中考试试题及参考答案

数学分析下册期末试题(模拟) 一、填空题(每小题3分,共24分) 1 、重极限 22(,)lim x y →=___________________ 2、设(,,)x yz u x y z e +=,则全微分du =_______________________ 3、设(sin ,)x z f x y y e =+,则 z x ?=?___________________ 4、设L 是以原点为中心,a 为半径的上半圆周,则 2 2()L x y ds +=?________. 5、曲面222 239x y z ++=和2 2 2 3z x y =+所截出的曲线在点(1,1,2)-处的 法平面方程是___________________________. 6 、已知12??Γ= ???32?? Γ-= ??? _____________. 7、改变累次积分的顺序,2 1 20 (,)x dx f x y dy =?? ______________________. 8、第二型曲面积分 S xdydz ydzdx zdxdy ++=??______________,其中S 为 球面2 2 2 1x y z ++=,取外侧. 二、单项选择题(每小题2分,共16分) 1、下列平面点集,不是区域的是( ) (A )2 2 {(,)14}D x y x y =<+≤ (B ){(,)01,22}D x y x y =<≤-≤≤ (C ){(,)01,1}D x y x y x =≤≤≤+ (D ){(,)0}D x y xy => 2、下列论断,正确的是( ) (A )函数(,)f x y 在点00(,)x y 处的两个累次极限都不存在,则该函数在 00(,)x y 处重极限必定不存在.

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = +=, 因此二重极限为0.……(4分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存 在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。?解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4 分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 222 2w w w μμν??+=???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =+在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x ==+ ,因此二重极限为0.……(4 分) 因为011x y x →+ 与011 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(), (,,)0 z xf x y F x y z =+??=?所确定的隐函数,其中f 和F 分别具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-====。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

运城学院数学分析期末试题2-14

运城学院应用数学系 2011—2012学年第二学期期末考试 数学分析2试题(A ) 适用范围:数学与应用数学专业1101\1102班 命题人:常敏慧、王文娟 审核人: 一、判断题(每题2分,共20分) 1、实轴上的任一有界点集至少有一个聚点. ( ) 2、开区间集合1,11,2,1n n ????=?? ?+???? 构成了开区间()0,1的一个无限开覆盖. ( ) 3、初等函数的原函数仍是初等函数. ( ) 4、积分和与达布和都与分割有关. ( ) 5、黎曼函数在[]0,1上可积. ( ) 6、若f 在[],a b 上可积,则f 在[],a b 上可积. ( ) 7、瑕积分 ()b a f x dx ?收敛,则()2b a f x dx ?也收敛. ( ) 8、设n u ∑为收敛的正项级数,则lim 0n n u →∞=. ( ) 9、若函数项级数()n u x ∑在[],a b 上内闭一致收敛,且每一项()n u x 都连续,则()()b b n n a a u x dx u x dx =∑∑?? . ( ) 10、幂级数101n n n a x n ∞+=+∑与幂级数11 n n n na x ∞-=∑有相同的收敛半径. ( ) 二、填空题(每题2分,共20分) 1、设闭区间列[]{},n n a b 满足(i) ,(ii)()lim 0n n n b a →∞-=, 则称[]{} ,n n a b 为闭区间套.

2、()()21f x dx f x '=??+??? . 3、()20ln 1x d t dt dx +=? . 4、光滑曲线:C ()()[],,,x x t y y t t αβ==∈的弧长为 . 5、直线上任一点的曲率为 . 6、无穷积分 1sin p x dx x +∞?当 时条件收敛. 7、级数11p n n ∞=∑当 收敛. 8、幂级数()()1321n n n n x n ∞=+-+∑的收敛半径R = . 9、设函数项级数()n u x ∑定义在数集D 上,n M ∑为收敛的正项级数,若对一切x D ∈,有 ,则称函数项级数()n u x ∑在D 上一致收敛. 10、设幂级数n n x a ∑在0=x 某邻域上的和函数为()x f ,则n a 与()()0n f 之间的关系 是 . 三、求解下列各题(每题5分,共30分) 1、243dx x x ++? . 2、4tan xdx ?. 3 、1 2dx x . 4、112lim p p p p n n n +→∞++ (p 为正整数). 5、讨论无穷积分111x dx x α-+∞ +?的收敛性.

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

数学分析试卷及答案6套(新)

数学分析-1样题(一) 一. (8分)用数列极限的N ε- 定义证明1n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) 用ε三 (n x n n = ++ ?+四()f x x = 在五六七八九. )b ,使 (f ''数学分析-1样题(二) 一. (10分)设数列{}n a 满足: 1a =, 1()n a n N +=∈, 其中a 是一给定的正常 数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=.

三. (10分)设0n a >,且1 lim 1n n n a l a →∞+=>, 证明lim 0n n a →∞ =. 四. (10分)证明函数()f x 在开区间(,)a b 一致连续?()f x 在(,)a b 连续,且 lim ()x a f x + →,lim ()x b f x - →存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理. 六. (12分)证明:若函数在连续,且()0f a ≠,而函数2 [()]f x 在a 可导,则函数()f x 在a 可导. 七. 八. ,都有 f 九. 一.(各1. x ?3. ln 0 ? 二.(10三. (10四. (15分)证明函数级数 (1)n x x =-在不一致收敛, 在[0,](其中)一致收敛. 五. (10分)将函数,0 (),0x x f x x x ππππ + ≤≤?=? - <≤?展成傅立叶级数. 六. (10分)设22 22 0(,)0,0 xy x y f x y x y ? +≠?=?? +=?

北京理工大学2012-2013学年第一学期工科数学分析期末试题(A卷)试题2012-2(A)

1 北京理工大学2012-2013学年第一学期 工科数学分析期末试题(A 卷) 一. 填空题(每小题2分, 共10分) 1. 设?????<≥++=01arctan 01)(x x x x a x f 是连续函数,则=a ___________. 2. 曲线θρe 2=上0=θ的点处的切线方程为_______________________________. 3. 已知),(cos 4422x o bx ax e x x ++=- 则_,__________=a .______________=b 4. 微分方程1cos 2=+y dx dy x 的通解为=y __________________________________. 5. 质量为m 的质点从液面由静止开始在液体中下降, 假定液体的阻力与速度v 成正比, 则质点下降的速度)(t v v =所满足的微分方程为_______________________________. 二. (9分) 求极限 21 0)sin (cos lim x x x x x +→. 三. (9分) 求不定积分?+dx e x x x x )1arctan (12. 四. (9分) 求322)2()(x x x f -=在区间]3,1[-上的最大值和最小值. 五. (8分) 判断2 12arcsin arctan )(x x x x f ++= )1(≥x 是否恒为常数. 六. (9分) 设)ln(21arctan 22y x x y +=确定函数)(x y y =, 求22,dx y d dx dy . 七. (10分) 求下列反常积分. (1);)1(1 22?--∞+x x dx (2) .1)2(1 0?--x x dx 八. (8分) 一垂直立于水中的等腰梯形闸门, 其上底为3m, 下底为2m, 高为2m, 梯形的上底与水面齐平, 求此闸门所受 到的水压力. (要求画出带有坐标系的图形) 九. (10分) 求微分方程x e x y y y 3)1(96+=+'-''的通解. 十. (10分) 设)(x f 可导, 且满足方程a dt t f x x x f x a +=+?)())((2 ()0(>a , 求)(x f 的表达式. 又若曲线 )(x f y =与直线0,1,0===y x x 所围成的图形绕x 轴旋转一周所得旋转体的体积为,6 7π 求a 的值. 十一. (8分) 设)(x f 在]2,0[上可导, 且,0)2()0(==f f ,1sin )(1 21 =?xdx x f 证明在)2,0(内存在ξ 使 .1)(='ξf

数学分析3期末测试卷

2012 –2013学年第一学期期末考试题 11数学教育《数学分析》(三) 一、单项选择(将正确答案的序号填在括号内,每题2分,共20分) 1. 下列数项级数中收敛的是 ( ) A. 211 n n ∞ =∑; B. 2 1n n n ∞ =+∑; C. 1 1 n n ∞ =∑; D. 0 1 23n n n ∞ =++∑. 2. 下列数项级数中绝对收敛的是 ( ) A. 1(1)n n n ∞ =-∑ B. 1n n n ∞=1n n n n ∞= D. 1 sin n n n ∞ =∑ 3.函数项级数1n n x n ∞ =∑的收敛域是 ( ) A. (1,1)- B. (1,1]- C. [1,1)- D. [1,1]- 4.幂级数0 21n n n x n ∞ =+∑的收敛半径是 ( ) . A B C D 1 .2 .1 .02 5. 下列各区域中,是开区域的是 ( ) 2. {(,)|}A x y x y > . {(,)|||1}B x y xy ≤ 22.{(,)|14}C x y x y <+≤ .{(,)|1}D x y x y +≥ 6.点集11{,|}E n N n n ?? =∈ ??? 的聚点是 ( ) A. ){0,0} B.()0,0 C. 0,0 D.{}{}0,0 7.点函数()f P 在0P 连续,是()f P 在0P 存在偏导数 ( ) A.必要条件 B.充分条件 C.充要条件 D.既不充分也不必要 条件 8. 函数(,)f x y 在()00,x y 可微,则(,)f x y 在()00,x y 不一定 ( ) A.偏导数连续 B.连续 C. 偏导数存在 D. 存在方向导数 9. 设函数)()(y v x u z =,则 z x ??等于 ( ) A. ()()u x v y x y ???? B. ()()du x v y dx y ?? C. () ()du x v y dx D. ()()u x v y x y ??+?? 10. 函数(,)f x y 在()00,x y 可微的充分必要条件是 ( ) A. 偏导数连续; B. 偏导数存在; C.存在切平面; D. 存在方向导数. 二、填空题(将正确答案填在横线上,每题2分,共20分) 11. 若数项级数1 1n p n n ∞ =-∑() 绝对收敛,则p 的取值范围是 ; 12. 幂级数0(1)n n n x ∞ =+∑的和函数是 ; 13.幂级数2 01 (1)n n x n ∞ =-∑ 的收敛域是 . ; 14.平面点集22{(,)|14}E x y x y =<+≤的内点是_________ ___ __ _______; 15.函数33(,)3f x y x y xy =+-的极值点是 ______________________. 16.曲面221z x y =+-在点(2,1,4)的切平面是 ______________________ 17.函数y z x =,则 z y ?=? ______________________; 18.函数u xyz =在(1,1,1)沿方向(cos ,cos ,cos )l αβγ= 的方向导数是 ___________; 19.设cos sin x r y r ? ?=??=?,则 x x r y y r ?? ????=???? ; 20.若22arctan y x y x +=,则dy dx =______________________。 三、判断题(请在你认为正确的题后的括号内打“√”,错误的打“×”,每题 1分,共10 题号 一 二 三 四 五 总分 复核人 分值 20 20 10 32 18 100 得分 评卷人 得分 得分 得分

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

数学分析三试卷及答案

《数学分析》(三)――参考答案及评分标准 .计算题(共8题,每题9分,共72分)。 因为 lim 3 xsin — 3 ysin —与 lim 3 xsin — 3 ysin -均不存在, x 0 y x y 0 y x 故二次极限均不存在。 4.要做一个容积为1m 3的有盖圆桶,什么样的尺寸才能使用料最省? 解:设圆桶底面半径为r ,高为h,则原问题即为:求目标函数在约束条件下的 最小值,其中 目标函数:S 表2 rh 2 r 2, 1. 解: 1 1 求函数f (x, y) V^sin — 济sin-在点(0,0)处的二次极限与二重极限. y x f (x, y) Vxs in 丄 羽 si n 丄 y x |3X |3y|,因此二重极限为0.……(4分) (9分) 2. 解: 设y y(x),是由方程组z xf(x z z(x) F(x, y,z) 具有连续的导数和偏导数,求空. dx 对两方程分别关于x 求偏导: y 0'所确定的隐函数’其中f 和F 分别 dz 丁 f (x dx F F 矽 x y dx y) xf (x y)(dX 1 ), 解此方程组并整理得竺 dx F z dz 0 dx F y f(x y) xf (x y)(F y F x ) (4分) 3. 取,为新自变量及 2 z x y x y 2 解: 2 z 2 x x y J 2 z 看成是 w z y F y xf (x y)F z w( ,v)为新函数,变换方程 ze y (假设出现的导数皆连续) x, y 的复合函数如下: / 、 x y w w(,), , 2 代人原方程,并将x, y, z 变换为,,w 2 2 w W c 2 2w 。 x y 。 2 整理得: (9分) (4分) (9分)

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析三试卷及答案

数学分析三试卷及答案-CAL-FENGHAI.-(YICAI)-Company One1

《数学分析》(三)――参考答案及评分标准 一. 计算题(共8题,每题9分,共72分)。 1. 求函数11 (,)f x y y x =在点(0,0)处的二次极限与二重极限. 解: 11 (,)f x y y x = =,因此二重极限为0.……(4分) 因为11x y x →+ 与11 y y x →+均不存在, 故二次极限均不存在。 ……(9分) 2. 设(),()y y x z z x =??=? 是由方程组(),(,,)0z xf x y F x y z =+??=? 所确定的隐函数,其中f 和F 分别 具有连续的导数和偏导数,求dz dx . 解: 对两方程分别关于x 求偏导: , ……(4分) 。 解此方程组并整理得 ()()() ()y y x y z F f x y xf x y F F dz dx F xf x y F '?+++-= '++. ……(9分) 3. 取,μν为新自变量及(,)w w v μ=为新函数,变换方程 222z z z z x x y x ???++=????。 设,,22 y x y x y w ze μν+-=== (假设出现的导数皆连续). 解:z 看成是,x y 的复合函数如下: ,(,),,22 y w x y x y z w w e μνμν+-==== 。 ……(4分) 代人原方程,并将,,x y z 变换为,,w μν。整理得: 2222w w w μμν ??+ =???。 ……(9分) 4. 要做一个容积为31m 的有盖圆桶,什么样的尺寸才能使用料最省? 5. 解: 设圆桶底面半径为r ,高为h ,则原问题即为:求目标函数在约束条件下的最小值,其中 ()()(1)0x y z dz dy f x y xf x y dx dx dy dz F F F dx dx ?'=++++????++=??

第三学期 数学分析(3)试卷

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ?=),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 122≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2_______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

2、 设),(2x y y x f u =具有连续的二阶偏导数,求二阶偏导数xx u 和xy u 。 3、 求22333),(y x x y x f --=在}16|),{(22≤+=y x y x D 上的最大值和最小值。

(汇总)数学分析3试卷及答案.doc

数学分析(3)期末试卷 2005年1月13日 班级_______ 学号_________ 姓名__________ 考试注意事项: 1.考试时间:120分钟。 2.试卷含三大题,共100分。 3.试卷空白页为草稿纸,请勿撕下!散卷作废! 4.遵守考试纪律。

一、填空题(每空3分,共24分) 1、 设z x u y tan =,则全微分=u d __________________________。 2、 设32z xy u =,其中),(y x f z =是由xyz z y x 3333=++所确定的隐函数,则 =x u _________________________。 3、 椭球面14222=-+z y x 在点)1,1,2(M 处的法线方程是__________________。 4、 设,d ),()(sin 2y y x f x F x x ? =),(y x f 有连续偏导数,则=')(x F __________________。 5、 设L 是从点(0,0)到点(1,1)的直线段,则第一型曲线积分?=L s x yd _____________。 6、 在xy 面上,若圆{} 12 2≤+=y x y x D |),(的密度函数为1),(=y x ρ,则该圆关 于原点的转动惯量的二重积分表达式为_______________,其值为_____________。 7、 设S 是球面1222=++z y x 的外侧,则第二型曲面积分=??dxdy z S 2 _______。 二、计算题(每题8分,共56分) 1、 讨论y x y x y x f 1 sin 1sin )(),(-=在原点的累次极限、重极限及在R 2上的连续性。

数学分析试题及答案

(二十一)数学分析期终考试题 一 叙述题:(每小题5分,共15分) 1 开集和闭集 2 函数项级数的逐项求导定理 3 Riemann 可积的充分必要条件 二 计算题:(每小题7分,共35分) 1、 ? -9 1 31dx x x 2、求)0()(2 2 2 b a b b y x ≤<=-+绕x 轴旋转而成的几何体的体积 3、求幂级数 n n n x n ∑∞ =+1 2)11(的收敛半径和收敛域 4、1 1lim 2 2220 0-+++→→y x y x y x 5、2 2 ),,(yz xy x z y x f ++=,l 为从点P 0(2,-1,2)到点(-1,1,2)的方向, 求f l (P 0) 三 讨论与验证题:(每小题10分,共30分) 1、已知?? ???==≠+++=0 ,0001sin )(),(222 2 2 2y x y x y x y x y x f ,验证函数的偏导数在原点不连续, 但它在该点可微 2、讨论级数∑∞ =-+1 2211 ln n n n 的敛散性。 3、讨论函数项级数]1,1[)1( 1 1 -∈+-∑∞ =+x n x n x n n n 的一致收敛性。 四 证明题:(每小题10分,共20分) 1 若 ? +∞ a dx x f )(收敛,且f (x )在[a ,+∞)上一致连续函数,则有0)(lim =+∞ →x f x 2 设二元函数),(y x f 在开集2R D ? 内对于变量x 是连续的,对于变量y 满足Lipschitz 条件: ''''''),(),(y y L y x f y x f -≤-其中L D y x y x ,),(),,('''∈为常数证明),(y x f 在D 内连续。 参考答案 一、1、若集合S 中的每个点都是它的内点,则称集合S 为开集;若集合S 中包含了它的所有的聚点,则称集合S 为闭集。

数学分析期末考试题1、2(第二份有答案)

一、 判断题(每小题2分,共20分) 1.开域是非空连通开集,闭域是非空连通闭集. ( ) 2.当二元函数的重极限与两个累次极限都存在时,三者必相等. ( ) 3.连续函数的全增量等于偏增量之和. ( ) 4. xy y x f =),(在原点不可微. ( ) 5.若),(),(y x f y x f yx xy 与都存在,则),(),(y x f y x f yx xy =. ( ) 6. dy y x xy y ) 1(sin 2 1 +? +∞ 在)1,0(内不一致收敛. ( ) 7.平面图形都是可求面积的. ( ) 8.学过的各种积分都可以以一种统一的形式来定义. ( ) 9.第二型曲面积分也有与之相对应的“积分中值定理”. ( ) 10.二重积分定义中分割T 的细度 T 不能用}{max 1i n i σ?≤≤来代替. ( ) 二、 填空题(每小题3分,共15分) 1.设)sin(y x e z xy +=,则其全微分=dz . 2.设 3 2),,(yz xy z y x f +=,则f 在点)1,1,2(0-P 处的梯度= )(0P grad . 3.设L 为沿抛物线 22x y =,从)0,0(O 到)2,1(B 的一段,则?=+L ydx xdy . 4.边长为a 密度为b 的立方体关于其任一棱的转动惯量等于 . 5.曲面2732 22=-+z y x 在点(3,1,1)处的法线方程为 . 三、计算题(每小题5分,共20分) 1.求极限 xy y x y x )(lim 22) 0,0(),(+→. 2. 设),(y x z z =是由方程z e z y x =++所确定的隐函数,求xy z . 3.设 ]1,0[]1,0[?=A ,求??++=A y x ydxdy I 2 322)1( . 4.计算抛物线) 0()(2 >=+a ax y x 与x 轴所围的面积.

数学分析试卷及答案6套

一. (8分)用数列极限的N ε-定义证明1n =. 二. (8分)设有复合函数[()]f g x , 满足: (1) lim ()x a g x b →=; (2) 0()x U a ?∈,有0 ()()g x U b ∈ (3) lim ()u b f u A →= 用εδ-定义证明, lim [()]x a f g x A →=. 三. (10分)证明数列{}n x : cos1cos 2 cos 1223 (1) n n x n n = +++ ???+收敛. 四. (12分)证明函数1 ()f x x = 在[,1]a (01)a <<一致连续,在(0,1]不一致连续. 五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界. 六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定,a b 使lim )0x ax b →+∞ -=. 八. (14分)求函数32()2912f x x x x =-+在15 [,]42 -的最大值与最小值. 九. (14分)设函数()f x 在[,]a b 二阶可导, ()()0f a f b ''==.证明存在(,)a b ξ∈,使 2 4 ()()()() f f b f a b a ζ''≥ --.

一. (10分)设数列{}n a 满足 : 1a = , 1()n a n N +=∈, 其中a 是一给定的 正常数, 证明{}n a 收敛,并求其极限. 二. (10分)设0 lim ()0x x f x b →=≠, 用εδ-定义证明0 11 lim ()x x f x b →=. 三. (10分)设0n a >,且1 lim 1n n n a l a →∞+=>, 证明lim 0n n a →∞ =. 四. (10分)证明函数()f x 在开区间(,)a b 一致连续?()f x 在(,)a b 连续,且 lim ()x a f x + →,lim ()x b f x - →存在有限. 五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理. 六. (12分)证明:若函数在连续,且()0f a ≠,而函数2 [()]f x 在a 可导,则函数()f x 在 a 可导. 七. (12分)求函数()1f x x x α αα=-+-在的最大值,其中01α<<. 八. (12分)设f 在上是凸函数,且在(,)a b 可微,则对任意1x ,2x (,)a b ∈, 12x x <,都有 12()()f x f x ''≤. 九. (12分)设() ,0()0,0 g x x f x x x ? ≠? =?? =? 且(0)(0)0g g '==, (0)3g ''=, 求(0)f '.

最新2003年浙江大学数学分析试题答案汇总

2003年浙江大学数学分析试题答案

精品资料 仅供学习与交流,如有侵权请联系网站删除 谢谢2 2003年浙江大学数学分析试题答案 一、,,0N ?>?ε当N n >时,ε<->>?m n a a N n N m ,, 证明:该数列一定是有界数列,有界数列必有收敛子列}{k n a , a a k n k =∞ →lim , 所以, ε2<-+-≤-a a a a a a k k n n n n 二 、,,0N ?>?ε当N x >时,ε<-)()(x g x f ,,0,01>?>?δε当1'''δ<-x x 时, ε<-)''()'(x f x f 对上述,0>ε当N x x >'','时,且1'''δ<-x x ε3)''()'()''()''()'()'()''()'(<-+-+-≤-x f x f x f x g x g x f x g x g 当N x x <'','时,由闭区间上的连续函数一定一致收敛,所以 ,0,02>?>?δε2'''δ<-x x 时ε<-)''()'(x g x g ,当'''x N x <<时,由闭区间上的连 续函数一定一致收敛,在 ],['','22δδ+-∈N N x x 时,ε<-)''()'(x g x g ,取 },m in{21δδδ=即可。 三、由,0)('',0)('<>x f a f 得,0)('a f ,所 以)(x f 必有零点,又)(x f 递减,所以有且仅有一个零点。 四、? ?==1 0,)(1)()(x dt t f x dt xt f x ?2 )()()('x dt t f x x f x x ? -= ?, 2 2)(lim )(lim ) (lim )0('0 2 A x x f x dt t f x x x x x x ====→→→???, 2 )(lim ) (lim )() (lim )('lim 2 002 00A x dt t f x x f x dt t f x x f x x x x x x x = -=-=? ? →→→→?,)('x ?在0=x 连续。 五、当k m ≠时,不妨设k m <,

数学分析(2)期末试题集(单项选择题)

一、黎曼积分 1. 设函数()?? ? ??+≤+=?-x dt t f x F x x x x x f 12.0,4cos ,0,1π,则( D ). (A) ()x F 为()x f 的一个原函数. (B) ()x F 在()+∞∞-,上可微,但不是()x f 的原函数. (C)()x F 在()+∞∞-,上不连续 (D) ()x F 在()+∞∞-,上连续,但不是()x f 的原函数. (注: 因为0=x 是()x f 的第一类跳跃间断点,因而()x f 不可能在包括0=x 点在内的区间上有原函数,因此(A)不正确.当()x f 有第一类间断点()b a x ,0∈,但()x f 在[]0,x a 与 ()b x ,0内连续时,函数()()()b a x dt t f x F x ,, 1∈=?-在区间()b a ,内连续,因此(C)也不正确, 而导函数不可能有第一类间断点,故(B)不正确,因而正确选项为(D)). 3. 设函数()?????=≠+=,0,0,0,1sin 21cos 222x x x x x x x f ()?????=≠=.0, 0, 0,1cos 22 x x x x x F 则在()+∞∞-,内( A ). (A) ()x f 不连续且不可微, ()x F 可微,且()x F 为()x f 的一个原函数. (B) ()x f 不连续,不存在原函数,因而()x F 不是()x f 的原函数. (C) ()x f 与()x F 均为可微函数,且()x F 为()x f 的一个原函数. (D) ()x f 连续且()()x f x F ='.

相关文档
最新文档