专题10 解三角形

合集下载

专题10三角形--浙江省2019-2021年3年中考真题数学分项汇编(解析版)

专题10三角形--浙江省2019-2021年3年中考真题数学分项汇编(解析版)

三年(2019-2021)中考真题数学分项汇编(浙江专用)专题10三角形一.选择题(共14小题)1.(2021•宁波)如图,在△ABC 中,∠B =45°,∠C =60°,AD ⊥BC 于点D ,BD =√3.若E ,F 分别为AB ,BC 的中点,则EF 的长为( )A .√33B .√32C .1D .√62【分析】由直角三角形的性质求出AD =BD =√3,由锐角三角函数的定义求出DC =1,由三角形的中位线定理可求出答案.【详解】解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,∵∠B =45°,BD =√3,∴AD =BD =√3,∵∠C =60°,∴DC =AD tan60°=√3√3=1,∴AC =DC =2,∵E ,F 分别为AB ,BC 的中点,∴EF =12AC =1.故选:C .2.(2021•嘉兴)如图,在△ABC 中,∠BAC =90°,AB =AC =5,点D 在AC 上,且AD =2,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC 和DE 的中点,连结AG ,FG ,当AG =FG 时,线段DE 长为( )A .√13B .5√22C .√412D .4【分析】分别过点G ,F 作AB 的垂线,垂足为M ,N ,过点G 作GP ⊥FN 于点P ,由中位线定理及勾股定理可分别表示出线段AG 和FG 的长,建立等式可求出结论.【详解】解:如图,分别过点G ,F 作AB 的垂线,垂足为M ,N ,过点G 作GP ⊥FN 于点P ,∴四边形GMNP 是矩形,∴GM =PN ,GP =MN ,∵∠BAC =90°,AB =AC =5,∴CA ⊥AB ,又∵点G 和点F 分别是线段DE 和BC 的中点,∴GM 和FN 分别是△ADE 和△ABC 的中位线,∴GM =12AD =1,AM =12AE ,FN =12AC =52,AN =12AB =52,∴MN =AN ﹣AM =52−12AE , ∴PN =1,FP =32,设AE =m ,∴AM =12m ,GP =MN =52−12m ,在Rt △AGM 中,AG 2=(12m )2+12,在Rt △GPF 中,GF 2=(52−12m )2+(32)2, ∵AG =GF ,∴(12m )2+12=(52−12m )2+(32)2, 解得m =3,即DE =3,在Rt △ADE 中,DE =√AD 2+AE 2=√13.故选:A .3.(2020•金华)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD 与正方形EFGH .连接EG ,BD 相交于点O ,BD 与HC 相交于点P .若GO =GP ,则S 正方形ABCDS 正方形EFGH 的值是( )A .1+√2B .2+√2C .5−√2D .154【分析】证明△BPG ≌△BCG (ASA ),得出PG =CG .设OG =PG =CG =x ,则EG =2x ,FG =√2x ,由勾股定理得出BC 2=(4+2√2)x 2,则可得出答案.【详解】解:∵四边形EFGH 为正方形,∴∠EGH =45°,∠FGH =90°,∵OG =GP ,∴∠GOP =∠OPG =67.5°,∴∠PBG =22.5°,又∵∠DBC =45°,∴∠GBC =22.5°,∴∠PBG =∠GBC ,∵∠BGP =∠BGC =90°,BG =BG ,∴△BPG ≌△BCG (ASA ),∴PG =CG .设OG =PG =CG =x ,∵O 为EG ,BD 的交点,∴EG =2x ,FG =√2x ,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF =CG =x ,∴BG =x +√2x ,∴BC 2=BG 2+CG 2=x 2(√2+1)2+x 2=(4+2√2)x 2,∴S 正方形ABCDS 正方形EFGH =(4+2√2)x 22x 2=2+√2.故选:B .4.(2020•绍兴)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )A .4B .5C .6D .7【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【详解】解:①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;④长度分别为6、3、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B .5.(2019•宁波)已知直线m ∥n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若∠1=25°,则∠2的度数为( )A .60°B .65°C .70°D .75°【分析】先求出∠AED =∠1+∠B =25°+45°=70°,再根据平行线的性质可知∠2=∠AED =70°.【详解】解:设AB 与直线n 交于点E ,则∠AED =∠1+∠B =25°+45°=70°.又直线m ∥n ,∴∠2=∠AED =70°.故选:C.6.(2020•宁波)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连接DE,F为DE中点,连接BF.若AC=8,BC=6,则BF的长为()A.2B.2.5C.3D.4【分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=12CD.【详解】解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,∴AB=√AC2+BC2=√82+62=10.又∵CD为中线,∴CD=12AB=5.∵F为DE中点,BE=BC即点B是EC的中点,∴BF是△CDE的中位线,则BF=12CD=2.5.故选:B.7.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若求五边形DECHF的周长,则只需知道()A.△ABC的周长B.△AFH的周长C.四边形FBGH的周长D.四边形ADEC的周长【分析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.【详解】解:∵△GFH为等边三角形,∴FH=GH,∠FHG=60°,∴∠AHF+∠GHC=120°,∵△ABC为等边三角形,∴AB=BC=AC,∠ACB=∠A=60°,∴∠GHC+∠HGC=120°,∴∠AHF=∠HGC,∴△AFH≌△CHG(AAS),∴AF=CH.∵△BDE和△FGH是两个全等的等边三角形,∴BE=FH,∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC.∴只需知道△ABC的周长即可.故选:A.8.(2019•衢州)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C 点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE =∠O+∠ODC=2∠ODC,进一步根据三角形的外角性质可知∠BDE=3∠ODC=75°,即可求出∠ODC 的度数,进而求出∠CDE的度数.【详解】解:∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC,∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°,∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选:D.9.(2019•杭州)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可.【详解】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.10.(2019•台州)下列长度的三条线段,能组成三角形的是()A.3,4,8B.5,6,10C.5,5,11D.5,6,11【分析】根据三角形的三边关系即可求【详解】解:A选项,3+4=7<8,两边之和小于第三边,故不能组成三角形B选项,5+6=11>10,10﹣5<6,两边之各大于第三边,两边之差小于第三边,故能组成三角形C选项,5+5=10<11,两边之和小于第三边,故不能组成三角形D选项,5+6=11,两边之和不大于第三边,故不能组成三角形故选:B.11.(2019•金华)若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.8【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【详解】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有3,故选:C.12.(2019•宁波)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可.【详解】解:设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2﹣b 2﹣a (c ﹣b )=a 2﹣ac +ab =a (a +b ﹣c ),较小两个正方形重叠部分的宽=a ﹣(c ﹣b ),长=a ,则较小两个正方形重叠部分底面积=a (a +b ﹣c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C .13.(2019•绍兴)如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )A .245B .325C .12√3417D .20√3417【分析】设DE =x ,则AD =8﹣x ,由长方体容器内水的体积得出方程,解方程求出DE ,再由勾股定理求出CD ,过点C 作CF ⊥BG 于F ,由△CDE ∽△CBF 的比例线段求得结果即可.【详解】解:过点C 作CF ⊥BG 于F ,如图所示:设DE =x ,则AD =8﹣x ,根据题意得:12(8﹣x +8)×3×3=3×3×6, 解得:x =4,∴DE =4,∵∠E =90°,由勾股定理得:CD =√DE 2+CE 2=√42+32=5,∵∠BCE =∠DCF =90°,∴∠DCE =∠BCF ,∵∠DEC =∠BFC =90°,∴△CDE ∽△CBF ,∴CE CF =CD CB , 即3CF =58,∴CF =245.故选:A .14.(2019•湖州)如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,CD =4,则四边形ABCD 的面积是( )A .24B .30C .36D .42【分析】过D 作DH ⊥AB 交BA 的延长线于H ,根据角平分线的性质得到DH =CD =4,根据三角形的面积公式即可得到结论.【详解】解:过D 作DH ⊥AB 交BA 的延长线于H ,∵BD 平分∠ABC ,∠BCD =90°,∴DH =CD =4,∴四边形ABCD 的面积=S △ABD +S △BCD =12AB •DH +12BC •CD =12×6×4+12×9×4=30, 故选:B .二.填空题(共5小题)15.(2021•绍兴)如图,在△ABC 中,AB =AC ,∠B =70°,以点C 为圆心,CA 长为半径作弧,交直线BC 于点P ,连结AP ,则∠BAP 的度数是 15°或75° .【分析】根据等腰三角形的性质可以得到△ABC各内角的关系,然后根据题意,画出图形,利用分类讨论的方法求出∠BAP的度数即可.【详解】解:如右图所示,当点P在点B的左侧时,∵AB=AC,∠ABC=70°,∴∠ACB=ABC=70°,∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣70°﹣70°=40°,∵CA=CP1,∴∠CAP1=∠CP1A=180°−∠ACP12=180°−70°2=55°,∴∠BAP1=∠CAP1﹣∠CAB=55°﹣40°=15°;当点P在点C的右侧时,∵AB=AC,∠ABC=70°,∴∠ACB=ABC=70°,∴∠BAC=180°﹣∠ACB﹣∠ABC=180°﹣70°﹣70°=40°,∵CA=CP2,∴∠CAP2=∠CP1A=∠ACB2=70°2=35°,∴∠BAP2=∠CAP2﹣∠CAB=35°+40°=75°;由上可得,∠BAP的度数是15°或75°,故答案为:15°或75°.16.(2021•绍兴)已知△ABC与△ABD在同一平面内,点C,D不重合,∠ABC=∠ABD=30°,AB=4,AC=AD=2√2,则CD长为2√3±2或4或2√6.【分析】分C,D在AB的同侧或异侧两种情形,分别求解,注意共有四种情形.【详解】解:如图,当C,D同侧时,过点A作AE⊥CD于E.在Rt△AEB中,∠AEB=90°,AB=4,∠ABE=30°,∴AE=12AB=2,∵AD=AC=2√2,∴DE=√(2√2)2−22=2,EC=√(2√2)2−22=2,∴DE=EC=AE,∴△ADC是等腰直角三角形,∴CD=4,当C,D异侧时,过C′作C′H⊥CD于H,∵△BCC′是等边三角形,BC=BE﹣EC=2√3−2,∴CH=BH=√3−1,C′H=√3CH=6﹣2√3,在Rt△DC′H中,DC′=√DH2+C′H2=√(3+√3)2+(6−2√3)2=2√6,∵△DBD′是等边三角形,∴DD′=2√3+2,∴CD的长为2√3±2或4或2√6.故答案为:2√3±2或4或2√6.17.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F 沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是6.【分析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.【详解】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵△ABC是等边三角形,∴∠B=∠C=60°,又∵DE∥AB,DF∥AC,∴∠DEF=∠B=60°,∠DFE=∠C=60°,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.18.(2020•绍兴)如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连接BD.若BD的长为2√3,则m的值为2或2√7.【分析】由作图知,点D在AC的垂直平分线上,得到点B在AC的垂直平分线上,求得BD垂直平分AC,设垂足为E,得到BE=√3,当点D、B在AC的两侧时,如图,当点D、B在AC的同侧时,如图,解直角三角形即可得到结论.【详解】解:由作图知,点D在AC的垂直平分线上,∵△ABC是等边三角形,∴点B在AC的垂直平分线上,∴BD垂直平分AC,设垂足为E,∵AC=AB=2,∴BE=√3,当点D、B在AC的两侧时,如图,∵BD=2√3,∴BE=DE,∴AD=AB=2,∴m=2;当点D、B在AC的同侧时,如图,∵BD′=2√3,∴D′E=3√3,∴AD′=√(3√3)2+12=2√7,∴m=2√7,综上所述,m的值为2或2√7,故答案为:2或2√7.19.(2020•衢州)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆P A=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).(1)点P到MN的距离为160cm.(2)当点P,O,A在同一直线上时,点Q到MN的距离为6409cm.【分析】(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.解直角三角形求出PT即可.(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.解直角三角形求出HT即可.【详解】解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.由题意:OP =OQ =50cm ,PQ =P A ﹣AQ =140﹣60=80(cm ),PM =P A +BC =140+60=200(cm ),PT ⊥MN ,∵OH ⊥PQ ,∴PH =HQ =40(cm ),∵cos ∠P =PH OP =PT PM ,∴4050=PT 200,∴PT =160(cm ),∴点P 到MN 的距离为160cm ,故答案为160.(2)如图4中,当O ,P ,A 共线时,过Q 作QH ⊥PT 于H .设HA =xcm .由题意AT =PT ﹣P A =160﹣140=20(cm ),OA =P A ﹣OP =140﹣50=90(cm ),OQ =50cm ,AQ =60cm , ∵QH ⊥OA ,∴QH 2=AQ 2﹣AH 2=OQ 2﹣OH 2,∴602﹣x 2=502﹣(90﹣x )2,解得x =4609,∴HT =AH +AT =6409(cm ), ∴点Q 到MN 的距离为6409cm . 故答案为6409.三.解答题(共8小题)20.(2021•杭州)如图,在△ABC 中,∠ABC 的平分线BD 交AC 边于点D ,AE ⊥BC 于点E .已知∠ABC =60°,∠C =45°.(1)求证:AB =BD ;(2)若AE =3,求△ABC 的面积.【分析】(1)计算出∠ADB 和∠BAC ,利用等角对等边即可证明;(2)利用锐角三角函数求出BC 即可计算△ABC 的面积.【详解】(1)证明:∵BD 平分∠ABC ,∠ABC =60°,∴∠DBC =12∠ABC =30°,∵∠ADB =∠DBC +∠C =75°,∠BAC =180°﹣∠ABC ﹣∠C =75°,∴∠BAC =∠ADB ,∴AB =BD ;(2)解:由题意得,BE =AE tan∠ABC =√3,EC =AE tanC =3,∴BC =3+√3,∴S △ABC =12BC ×AE =9+3√32. 21.(2021•台州)如图,在四边形ABCD 中,AB =AD =20,BC =DC =10√2.(1)求证:△ABC ≌△ADC ;(2)当∠BCA =45°时,求∠BAD 的度数.【分析】(1)根据已知条件利于SSS 即可求证△ABC ≌△ADC ;(2)过点B 作BE ⊥AC 于点E ,根据已知条件利于锐角三角函数求出BE 的长,再根据Rt △ABE 边的关系即可推出∠BAC 的度数,从而求出∠BAD 的度数.【详解】解:(1)证明:在△ABC 和△ADC 中,{AB =AD BC =DC AC =AC,∴△ABC ≌△ADC (SSS );(2)过点B 作BE ⊥AC 于点E ,如图所示,∵∠BCA =45°,BC =10√2,∴sin ∠BCA =sin45°=BE BC =10√2=√22, ∴BE =10,又∵在Rt △ABE 中,AB =20,BE =10,∴∠BAE =30°,又∵△ABC ≌△ADC ,∴∠BAD =∠BAE +∠DAC =2∠BAE =2×30°=60°.22.(2021•杭州)在①AD =AE ,②∠ABE =∠ACD ,③FB =FC 这三个条件中选择其中一个,补充在下面的问题中,并完成问题的解答.问题:如图,在△ABC 中,∠ABC =∠ACB ,点D 在AB 边上(不与点A ,点B 重合),点E 在AC 边上(不与点A ,点C 重合),连接BE ,CD ,BE 与CD 相交于点F .若 ①AD =AE (②∠ABE =∠ACD 或③FB =FC ) ,求证:BE =CD .注:如果选择多个条件分别作答,按第一个解答计分.【分析】若选择条件①,利用∠ABC =∠ACB 得到AB =AC ,则可根据“SAS ”可判断△ABE ≌△ACD ,从而得到BE =CD ;选择条件②,利用∠ABC =∠ACB 得到AB =AC ,则可根据“ASA ”可判断△ABE ≌△ACD ,从而得到BE =CD ;选择条件③,利用∠ABC =∠ACB 得到AB =AC ,再证明∠ABE =∠ACD ,则可根据“ASA ”可判断△ABE ≌△ACD ,从而得到BE =CD .【详解】证明:选择条件①的证明为:∵∠ABC =∠ACB ,∴AB =AC ,在△ABE 和△ACD 中,{AB =AC ∠A =∠A AE =AD,∴△ABE ≌△ACD (SAS ),∴BE =CD ;选择条件②的证明为:∵∠ABC =∠ACB ,∴AB =AC ,在△ABE 和△ACD 中,{∠ABE =∠ACD AB =AC ∠A =∠A ,∴△ABE ≌△ACD (ASA ),∴BE =CD ;选择条件③的证明为:∵∠ABC =∠ACB ,∴AB =AC ,∵FB =FC ,∴∠FBC =∠FCB ,∴∠ABC ﹣∠FBC =∠ACB ﹣∠FCB ,即∠ABE =∠ACD ,在△ABE 和△ACD 中,{∠ABE =∠ACD AB =AC ∠A =∠A ,∴△ABE ≌△ACD (ASA ),∴BE =CD .故答案为①AD =AE (②∠ABE =∠ACD 或③FB =FC )23.(2021•温州)如图,BE 是△ABC 的角平分线,在AB 上取点D ,使DB =DE .(1)求证:DE ∥BC ;(2)若∠A =65°,∠AED =45°,求∠EBC 的度数.【分析】(1)根据角平分线的定义可得∠DBE =∠EBC ,从而求出∠DEB =∠EBC ,再利用内错角相等,两直线平行证明即可;(2)由(1)中DE ∥BC 可得到∠C =∠AED =45°,再根据三角形的内角和等于180°求出∠ABC ,最后用角平分线求出∠DBE =∠EBC ,即可得解.【详解】解:(1)∵BE 是△ABC 的角平分线,∴∠DBE =∠EBC ,∵DB =DE ,∵∠DEB =∠DBE ,∴∠DEB =∠EBC ,∴DE ∥BC ;(2)∵DE ∥BC ,∴∠C=∠AED=45°,在△ABC中,∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣65°﹣45°=70°.∵BE是△ABC的角平分线,∴∠DBE=∠EBC=12∠ABC=35°.24.(2021•绍兴)如图,在△ABC中,∠A=40°,点D,E分别在边AB,AC上,BD=BC=CE,连结CD,BE.(1)若∠ABC=80°,求∠BDC,∠ABE的度数;(2)写出∠BEC与∠BDC之间的关系,并说明理由.【分析】(1)根据等腰三角形的性质得到∠BDC=∠BCD=12(180°﹣80°)=50°,根据三角形的内角定理得到∠ACB=180°﹣40°﹣50°=60°,推出△BCE是等边三角形,得到∠EBC=60°,于是得到结论;(2)设∠BEC=α,∠BDC=β,由于α=∠A+∠ABE=40°+∠ABE,根据等腰三角形的性质得到∠CBE=∠BEC=α,求得∠ABC=∠ABE+∠CBE=∠A+2∠ABE=40°+∠ABE,推出∠CBE=∠BEC=α,于是得到结论。

全国通用2020-2022年三年高考数学真题分项汇编专题10解三角形

全国通用2020-2022年三年高考数学真题分项汇编专题10解三角形

10 解三角形1.【2022年全国甲卷】沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB是以O为圆心,OA为半径的圆弧,C是的AB中点,D在AB 上,CD⊥AB.“会圆术”给出AB的弧长的近似值s的计算公式:s=AB+CD2OA.当OA=2,∠AOB=60°时,s=()A.11−3√32B.11−4√32C.9−3√32D.9−4√32【答案】B【解析】【分析】连接OC,分别求出AB,OC,CD,再根据题中公式即可得出答案. 【详解】解:如图,连接OC,因为C是AB的中点,所以OC⊥AB,又CD⊥AB,所以O,C,D三点共线,即OD=OA=OB=2,又∠AOB=60°,所以AB=OA=OB=2,则OC=√3,故CD=2−√3,所以s=AB+CD2OA =2+(2−√3)22=11−4√32.故选:B.2.【2021年甲卷文科】在ABC 中,已知120B =︒,AC 2AB =,则BC =( )A .1 BC D .3【答案】D 【解析】 【分析】利用余弦定理得到关于BC 长度的方程,解方程即可求得边长. 【详解】设,,AB c AC b BC a ===,结合余弦定理:2222cos b a c ac B =+-可得:21942cos120a a c =+-⨯⨯⨯, 即:22150a a +-=,解得:3a =(5a =-舍去), 故3BC =. 故选:D. 【点睛】利用余弦定理及其推论解三角形的类型: (1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角; (3)已知三角形的两边与其中一边的对角,解三角形.3.【2021年乙卷理科】魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E ,H ,G 在水平线AC 上,DE 和FG 是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG 称为“表距”,GC 和EH 都称为“表目距”,GC 与EH 的差称为“表目距的差”则海岛的高AB =( )A .⨯+表高表距表目距的差表高B .⨯-表高表距表目距的差表高C .⨯+表高表距表目距的差表距D .⨯表高表距-表目距的差表距【答案】A 【解析】 【分析】利用平面相似的有关知识以及合分比性质即可解出. 【详解】 如图所示:由平面相似可知,,DE EH FG CGAB AH AB AC==,而 DE FG =,所以 DE EH CG CG EH CG EHAB AH AC AC AH CH--====-,而 CH CE EH CG EH EG =-=-+, 即CG EH EG EG DE AB DE DE CG EH CG EH-+⨯=⨯=+--=+⨯表高表距表高表目距的差. 故选:A. 【点睛】本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.4.【2020年新课标3卷理科】在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A .19B .13C .12D .23【答案】A 【解析】 【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC +-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅ 2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB = 由22299161cos22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A. 【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.5.【2022年全国甲卷】已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当AC AB取得最小值时,BD =________.【答案】√3−1−1+√3 【解析】 【分析】设CD =2BD =2m >0,利用余弦定理表示出AC 2AB 2后,结合基本不等式即可得解.【详解】设CD =2BD =2m >0,则在△ABD 中,AB 2=BD 2+AD 2−2BD ⋅ADcos ∠ADB =m 2+4+2m , 在△ACD 中,AC 2=CD 2+AD 2−2CD ⋅ADcos ∠ADC =4m 2+4−4m , 所以AC 2AB 2=4m 2+4−4m m 2+4+2m =4(m 2+4+2m)−12(1+m)m 2+4+2m=4−12(m+1)+3m+1≥42√(m+1)⋅3m+1=4−2√3,当且仅当m +1=3m+1即m =√3−1时,等号成立, 所以当ACAB 取最小值时,m =√3−1. 故答案为:√3−1.6.【2021年乙卷文科】记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,60B =︒,223a c ac +=,则b =________.【答案】【解析】 【分析】由三角形面积公式可得4ac =,再结合余弦定理即可得解. 【详解】由题意,1sin 2ABCSac B === 所以224,12ac a c =+=,所以22212cos 122482b ac ac B =+-=-⨯⨯=,解得b =(负值舍去).故答案为:7.【2020年新课标1卷理科】如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD ==AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =______________.【答案】14-【解析】 【分析】在ACE 中,利用余弦定理可求得CE ,可得出CF ,利用勾股定理计算出BC 、BD ,可得出BF ,然后在BCF △中利用余弦定理可求得cos FCB ∠的值. 【详解】AB AC ⊥,AB =1AC =,由勾股定理得2BC =,同理得BD BF BD ∴==在ACE 中,1AC =,AE AD ==30CAE ∠=,由余弦定理得2222cos3013211CE AC AE AC AE =+-⋅=+-⨯=, 1CF CE ∴==,在BCF △中,2BC =,BF =1CF =,由余弦定理得2221461cos 22124CF BC BF FCB CF BC +-+-∠===-⋅⨯⨯.故答案为:14-.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.8.【2022年全国乙卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知sinCsin (A −B )=sinBsin (C −A ). (1)若A =2B ,求C ; (2)证明:2a 2=b 2+c 2 【答案】(1)5π8;(2)证明见解析. 【解析】 【分析】(1)根据题意可得,sinC =sin (C −A ),再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得sinC (sinAcosB −cosAsinB )=sinB (sinCcosA −cosCsinA ),再根据正弦定理,余弦定理化简即可证出. (1)由A =2B ,sinCsin (A −B )=sinBsin (C −A )可得,sinCsinB =sinBsin (C −A ),而0<B <π2,所以sinB ∈(0,1),即有sinC =sin (C −A )>0,而0<C <π,0<C −A <π,显然C ≠C −A ,所以,C +C −A =π,而A =2B ,A +B +C =π,所以C =5π8.(2)由sinCsin (A −B )=sinBsin (C −A )可得,sinC (sinAcosB −cosAsinB )=sinB (sinCcosA −cosCsinA ),再由正弦定理可得, accosB −bccosA =bccosA −abcosC ,然后根据余弦定理可知,12(a 2+c 2−b 2)−12(b 2+c 2−a 2)=12(b 2+c 2−a 2)−12(a 2+b 2−c 2),化简得:2a 2=b 2+c 2,故原等式成立.9.【2022年全国乙卷】记△ABC 的内角A,B,C 的对边分别为a,b,c ,已知sinCsin(A −B)=sinBsin(C −A).(1)证明:2a2=b2+c2;(2)若a=5,cosA=2531,求△ABC的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc,从而可求得b+c,即可得解.(1)证明:因为sinCsin(A−B)=sinBsin(C−A),所以sinCsinAcosB−sinCsinBcosA=sinBsinCcosA−sinBsinAcosC,所以ac⋅a2+c2−b22ac −2bc⋅b2+c2−a22bc=−ab⋅a2+b2−c22ab,即a2+c2−b22−(b2+c2−a2)=−a2+b2−c22,所以2a2=b2+c2;(2)解:因为a=5,cosA=2531,由(1)得b2+c2=50,由余弦定理可得a2=b2+c2−2bccosA,则50−5031bc=25,所以bc=312,故(b+c)2=b2+c2+2bc=50+31=81,所以b+c=9,所以△ABC的周长为a+b+c=14.10.【2022年新高考1卷】记△ABC的内角A,B,C的对边分别为a,b,c,已知cosA1+sinA =sin2B1+cos2B.(1)若C=2π3,求B;(2)求a2+b2c2的最小值.【答案】(1)π6;(2)4√2−5.【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cosA1+sinA =sin2B1+cos2B化成cos(A+B)=sinB,再结合0<B <π2,即可求出;(2)由(1)知,C =π2+B ,A =π2−2B ,再利用正弦定理以及二倍角公式将a 2+b 2c 2化成4cos 2B +2cos 2B−5,然后利用基本不等式即可解出.(1)因为cosA1+sinA =sin2B1+cos2B =2sinBcosB 2cos 2B=sinBcosB ,即sinB =cosAcosB −sinAsinB =cos (A +B )=−cosC =12,而0<B <π2,所以B =π6;(2)由(1)知,sinB =−cosC >0,所以π2<C <π,0<B <π2,而sinB =−cosC =sin (C −π2),所以C =π2+B ,即有A =π2−2B .所以a 2+b 2c 2=sin 2A+sin 2Bsin 2C=cos 22B+1−cos 2Bcos 2B=(2cos 2B−1)2+1−cos 2Bcos 2B=4cos 2B +2cos 2B−5≥2√8−5=4√2−5.当且仅当cos 2B =√22时取等号,所以a 2+b 2c 2的最小值为4√2−5.11.【2022年新高考2卷】记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3,已知S 1−S 2+S 3=√32,sinB =13.(1)求△ABC 的面积; (2)若sinAsinC =√23,求b .【答案】(1)√28(2)12 【解析】 【分析】(1)先表示出S 1,S 2,S 3,再由S 1−S 2+S 3=√32求得a 2+c 2−b 2=2,结合余弦定理及平方关系求得ac ,再由面积公式求解即可; (2)由正弦定理得b 2sin 2B=acsinAsinC ,即可求解. (1)由题意得S 1=12⋅a 2⋅√32=√34a 2,S 2=√34b 2,S 3=√34c 2,则S 1−S 2+S 3=√34a 2−√34b 2+√34c 2=√32,即a 2+c 2−b 2=2,由余弦定理得cosB =a 2+c 2−b 22ac,整理得accosB =1,则cosB >0,又sinB =13,则cosB =√1−(13)2=2√23,ac =1cosB =3√24,则S △ABC =12acsinB =√28; (2)由正弦定理得:b sinB =a sinA =csinC ,则b 2sin 2B =a sinA ⋅c sinC =acsinAsinC =3√24√23=94,则b sinB =32,b =32sinB =12. 12.【2021年新高考1卷】记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠. 【答案】(1)证明见解析;(2)7cos 12ABC ∠=. 【解析】 【分析】(1)根据正弦定理的边角关系有acBD b=,结合已知即可证结论. (2)方法一:两次应用余弦定理,求得边a 与c 的关系,然后利用余弦定理即可求得cos ABC ∠的值.【详解】(1)设ABC 的外接圆半径为R ,由正弦定理, 得sin sin ,22b c R ABC C R==∠, 因为sin sin BD ABC a C ∠=,所以22b cBD a R R⋅=⋅,即BD b ac ⋅=. 又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab+-=,①在BCD △中,222()3cos 23ba b b a C +-=⋅.② 由①②得2222223()3b a b c a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3c a =或32ca =, 当22,33c c ab ac ===时,222()733cos =622c c c ABC c c ∠⋅+-=⋅(舍去).当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠. 所以7cos 12ABC ∠=. [方法二]:等面积法和三角形相似 如图,已知2AD DC =,则23ABD ABC S S =△△, 即21221sin sin 2332b ac AD A B BC ⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠, 故有ADB ABC ∠=∠,从而ABD C ∠=∠. 由2b ac =,即b ca b =,即CA BA CB BD=,即ACB ABD ∽, 故AD ABAB AC=,即23bc c b =,又2b ac =,所以23c a =, 则2227cos 212c a b ABC ac +-==∠. [方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b ==.在ADB △中,由正弦定理得sin sin AD BDABD A=∠.又ABD C ∠=∠,所以s 3sin n 2i C b A b=,化简得2sin sin 3C A =. 在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a =. 在ABC 中,由余弦定理,得222222242793cos 221223a a a a c b ABC ac a +--⨯∠+===. 故7cos 12ABC ∠=. [方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a aDE EC BE ===.在BED 中,2222()()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c +-=∠.因为cos cos ABC BED ∠=-∠, 所以2222222()()3322233a c ba cb ac ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=, 即3c a =或32a c =.下同解法1.[方法五]:平面向量基本定理 因为2AD DC =,所以2AD DC =. 以向量,BA BC 为基底,有2133BD BC BA =+. 所以222441999BD BC BA BC BA =+⋅+, 即222441cos 999b ac c ABC a ∠=++, 又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③ 由余弦定理得2222cos b a c ac ABC =+-∠, 所以222cos ac a c ac ABC =+-∠④ 联立③④,得2261130a ac c -+=.所以32a c =或13a c =.下同解法1. [方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动. 设()(),33B x y x -<<,则229x y +=.⑤ 由2b ac =知,2BA BC AC ⋅=,9=.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =,代入⑥式得||||3a BC c BA b =====,由余弦定理得2227cos 212a c b ABC ac +-∠==.【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.13.【2021年新高考2卷】在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【答案】(1(2)存在,且2a =. 【解析】 【分析】(1)由正弦定理可得出23c a =,结合已知条件求出a 的值,进一步可求得b 、c 的值,利用余弦定理以及同角三角函数的基本关系求出sin B ,再利用三角形的面积公式可求得结果; (2)分析可知,角C 为钝角,由cos 0C <结合三角形三边关系可求得整数a 的值. 【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c Cab,所以,C 为锐角,则sin C ==因此,11sin 4522ABC S ab C ==⨯⨯△ (2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===<++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈,故2a =.14.【2020年新课标1卷文科】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC 的面积;(2)若sin AC C . 【答案】(1(2)15︒. 【解析】 【分析】(1)已知角B 和b 边,结合,a c 关系,由余弦定理建立c 的方程,求解得出,a c ,利用面积公式,即可得出结论;(2)方法一 :将30A C =︒-代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【详解】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B =(2)[方法一]:多角换一角 30A C +=︒,sin sin(30)A C C C ∴=︒-1cos sin(30)2C C C =+=+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒, 3045,15C C ∴+︒=︒∴=︒.[方法二]:正弦角化边 由正弦定理及150B =︒得22sin sin sin ====a c b R b A C B .故sin ,sin 22==a cA C b b.由sin A C +=a .又由余弦定理得22222cos =+-⋅=+b a c ac B a 2+c ,所以()222()2=++a a c ,解得a c =. 所以15=︒C . 【整体点评】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.其中第二问法一主要考查三角恒等变换解三角形,法二则是通过余弦定理找到三边的关系,进而求角.15.【2020年新课标2卷理科】ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【解析】 【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法)设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b cA B C===以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤0α=,即6B C π==时,等号成立.此时ABC 周长的最大值为3+[方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c.令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭6C π=时,max ()b c +=所以ABC周长的最大值为3+ 【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题. 16.【2020年新课标2卷文科】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ; (2)若b c -=,证明:△ABC 是直角三角形. 【答案】(1)3A π=;(2)证明见解析【解析】 【分析】(1)根据诱导公式和同角三角函数平方关系,25cos cos 24A A π⎛⎫++= ⎪⎝⎭可化为251cos cos 4A A -+=,即可解出; (2)根据余弦定理可得222b c a bc +-=,将b c -=代入可找到,,a b c 关系, 再根据勾股定理或正弦定理即可证出. 【详解】(1)因为25cos cos 24A A π⎛⎫++= ⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<, 所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==, 即222b c a bc +-=①,又b c -=②, 将②代入①得,()2223b c b c bc +--=, 即222250b c bc +-=,而b c >,解得2b c =,所以a =, 故222b a c =+, 即ABC 是直角三角形. 【点睛】本题主要考查诱导公式和平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题.17.【2020年新高考1卷(山东卷)】在①ac sin 3c A =,③=c 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC ,它的内角,,A B C 的对边分别为,,a b c ,且sin 3sin A B ,6C π=,________?注:如果选择多个条件分别解答,按第一个解答计分. 【答案】详见解析 【解析】 【分析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a ,b 的比例关系,根据比例关系,设出长度长度,由余弦定理得到c 的长度,根据选择的条件进行分析判断和求解. 【详解】[方法一]【最优解】:余弦定理由sin 3sin AB 可得:ab=(),0a b m m =>,则:2222222cos 32c a b ab C m m m m =+-=+-⨯=,即c m =. 若选择条件①:据此可得:2ac m =⨯==1m ∴=,此时1c m ==.若选择条件②:据此可得:222222231cos 222b c a m m m A bc m +-+-===-,则:sin A ==sin 3c A m ==,则:c m ==若选择条件③: 可得1c mb m==,c b =,与条件=c 矛盾,则问题中的三角形不存在. [方法二]:正弦定理 由,6C A B C ππ=++=,得56A B π=-. 由sin 3sin A B,得5sin 6B B π⎛⎫-= ⎪⎝⎭,即1cos 2B B B =,得tan B =.由于0B π<<,得6B π=.所以2,3b c A π==.若选择条件①:由sin sin a c A C=,得2sin sin 36a cππ=,得a =.解得1,c b a ===.所以,选条件①时问题中的三角形存在,此时1c =. 若选择条件②: 由sin 3c A =,得2sin33c π=,解得c =,则b c == 由sin sin a c A C=,得2sin sin 36a cππ=,得6a ==.所以,选条件②时问题中的三角形存在,此时c =. 若选择条件③:由于=c 与b c =矛盾,所以,问题中的三角形不存在. 【整体点评】方法一:根据正弦定理以及余弦定理可得,,a b c 的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;方法二:利用内角和定理以及两角差的正弦公式,消去角A ,可求出角B ,从而可得2,,36b c A B C ππ====,再根据选择条件即可解出.。

专题10 多个等腰三角形求角度(解析版)

专题10 多个等腰三角形求角度(解析版)

专题10 多个等腰三角形求角度1.如图,在第一个△ABA 1中,∠B =20°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 4为顶点的等腰三角形的底角的度数为( )A .5°B .10°C .175°D .170°【答案】A【解析】【分析】 根据第一个△ABA 1中,∠B =20°,AB =A 1B ,可得∠BA 1A =80°,依次得∠CA 2A 1=40°…即可得到规律,从而求得以点A 4为顶点的等腰三角形的底角的度数.【详解】解:1ABA △中,20B ∠=︒,1AB A B =,1180802B BA A ︒-∠∴∠==︒, 121A A AC =,1BA A ∠是△12A A C 的外角, 121402BA A CA A ∠∴∠==︒ 同理可得:3220DA A ∠=︒,4310EA A ∠=︒,1802n n A -︒∴∠=, ∴以点4A 为顶点的等腰三角形的底角的度数为:548052A ︒∠==︒. 故选:A .【点睛】本题考查了等腰三角形的性质、规律型:图形的变化类,解决本题的关键是根据等腰三角形的性质求出底角的度数然后发现规律.2.如图,8∠=︒BOC ,点A 在OB 上,且1OA =.按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点1A ,得第1条线段1AA ;再以1A 为圆心,1为半径向右画弧交OB 于点2A ,得第2条线段12A A ;再以2A 为圆心,1为半径向右画弧交OC 于点3A ,得第3条线段23A A ;……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n 的值是( )A .9B .10C .11D .12【答案】C【解析】【分析】根据等腰三角形的性质和三角形的外角的性质依次可得∠A 1AA 2的度数,∠A 3A 1A 2的度数,∠A 3A 2A 4的度数,∠A 4A 3C 的度数,…依次得到规律,再根据三角形外角小于90°,即弧线与角的另一边无交点,即可求解.【详解】由题意可知:AO =A 1A ,A 1A =A 2A 1,…则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A ,…∵∠BOC =8°,∴∠A 1AA 2=16°,∠A 3A 1A 2=24°,∠A 3A 2A 4=32°,∠A 4A 3C =40°,…∴8°n <90°,解得n <1114, ∵n 为整数,故n =11.故选C.【点睛】此题主要考查等腰三角形的性质,解题的关键是根据题意找到规律进行求解.3.如图,△ABC 中,AB =AC ,AD =DE ,∠BAD =19°,∠EDC =11°,则∠DAE 的度数为( )A .59°B .57°C .61°D .60° 【答案】C【解析】【分析】设DAE x ∠=,则由等腰三角形的性质可得,180192x C ︒-︒-∠=,AED x ∠=,利用三角形的外角性质可得AED C EDC ∠=∠+∠,由此解方程求出x ,即DAE ∠的度数.【详解】解:设DAE x ∠=,AB AC =,∴1801801922BAC x C ︒-∠︒-︒-∠==, AD DE =,∴AED DAE x ∠=∠=,AED C EDC ∠=∠+∠,∴18019112x x ︒-︒-=+︒, 解得61x =︒,∴61DAE ∠=︒.故选:C .【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,三角形外角的性质,熟练掌握相关性质定理是解题的关键.4.如图,已知∠MON =30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4,…均为等边三角形,若OA 1=1,则△A 8B 8A 9的边长( )A .16B .64C .128D .256【答案】C【解析】【分析】据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,…∴△AnBnAn+1的边长为2n-1,∴△A8B8A9的边长为28-1=27=128.故选C.【点睛】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.5.“三等分角”大约是在公元前五世纪由古希腊人提出来的借助如图①所示的“三等分角仪”能三等分任意一角.如图②,这个“三等分角仪”由两根有槽的棒OA ,OB 组成,两根棒在O点相连并可绕O 转动,点C 固定,点D ,E 可在槽中滑动,OC CD DE ==.若81BDE ∠=︒,则AOB ∠的度数是( )A .24°B .27°C .30°D .33°【答案】B【解析】【分析】 设∠O =x ,根据等腰三角形的性质和三角形外角的性质可得∠BDE =∠O +∠OED =3x =81°,再根据三角形内角和定理即可解决问题.【详解】解:设∠O =x ,∵OC =CD ,∴∠O =∠CDO =x ,∴∠DCE =2x ,∵DC =DE ,∴∠DCE =∠DEC =2x ,∴∠BDE =∠O +∠OED =3x =81°,∴x =27°,∴∠AOB =27°.故选:B【点睛】本题主要考查了等腰三角形的性质,三角形外角的性质,三角形内角和定理等知识,熟练掌握三角形外角的性质是解题的关键.6.某兴趣小组开展了一次探究活动,过程如下:设()090BAC θθ∠=︒<<︒,现把长度相等....的小棒依次摆放在射线AB 、AC 之间,并使小棒两端分别落在两射线上,从点A 1开始,依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1.若只能摆放5根小棒,则θ的范围是( ).A .15°<θ<18°B .15°<θ≤18°C .15°≤θ<18°D .15°≤θ≤18°【答案】C【解析】【分析】根据三角形外角的性质以及等腰三角形的性质,用θ表示出其它角度,再题目条件,列出不等式,即可求出最后的范围.【详解】解:∵A 1A 2=AA 1,∴12AA A 为等腰三角形,再根据三角形外交的性质,得212A A C A ∠=∠,又∵小棒长度都相等,∴123A A A △为等腰三角形,∴231212A A A A AC A ∠=∠=∠, ∴232313BA A A A A A A ∠=∠+∠=∠,同理可得到434534A A C A A A A ∠=∠=∠,64546555A A A A A A A θ∠=∠=∠=,654656A A C A A A A θ∠=∠+∠=,又∵只能摆放五根小棒,∴690590θθ≥︒⎧⎨<︒⎩, 解得1518θ︒≤<︒,故选:C .【点睛】本题只要考察了一元一次不等式,等腰三角形的性质以及三角形外角的性质,解题的关键是找到等量关系,列出相应的不等式,求出最后答案.7.如图,点B ,C 在射线AN 上,点D ,E 在射线AM 上,且AB BE CE CD AD ====,则A ∠的度数是( )A .28︒B .30C .34︒D .36︒【答案】D【解析】【分析】设A x ∠=,根据等边对等角可得ACD AEB x ∠=∠=,由外角的性质2CBE CDE x ∠=∠=,根据三角形内角和定理5180A BCE CED x ∠+∠+∠==︒即可.【详解】解:设A x ∠=, AB BE CE CD AD ====∴ACD AEB x ∠=∠=,由三角形的外角的性质得;2CBE CDE x ∠=∠=,根据等边对等角得,2BCE CED x ∠=∠=,根据三角形内角和定理,5180A BCE CED x ∴∠+∠+∠==︒,36x ∴=︒,36A ∴∠=︒,故选:D .【点睛】本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质、三角形内角和,解题的关键是找到角与角之间的关系,通过三角形内角和定理建立等式求解.8.如图,在第1个1ABA △中,30B ∠=︒,1AB A B =,在1A B 上取一点C ,延长1AA 到2A ,使得121A A AC =;在2A C 上取一点D ,延长12A A 到3A ,使得232A A A D =;…按此作法进行下去,第n 个三角形的以n A 为顶点的内角的度数为( )A .1302n +︒B .1752nC .1752n +︒D .1302n -︒ 【答案】B【解析】【分析】先根据等腰三角形的性质求出∠BA 1A 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律即可得出第n 个三角形的以An 为顶点的内角的度数.【详解】解:∵在△ABA 1中,∠B =30°,AB =A 1B ,∴∠BA 1A =180°−∠B 2=75°,∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角,∴∠CA 2A 1=∠BA 1A 2=75°÷2=37.5°;同理可得∠DA 3A 2=18.75°,∠EA 4A 3=9.375°,∴第n 个三角形的以An 为顶点的内角的度数为1752n , 故选:B .【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2及∠EA 4A 3的度数,找出规律是解答此题的关键.9.如图,ABC 中,∠A =30°,AB =AC ,D 、E 分别是AC 、AB 上两点,且BD =BE =BC ,连接DE ,则∠BDE =_________【答案】67.5°【解析】【分析】先根据等腰三角形的性质和三角形内角和定理求出∠C =∠ABC =75°,再由BD =BC ,得到75BDC C ∠=∠=︒,则45EBD ABC DBC ∠=∠-∠=︒,由BD =BE ,则18067.52EBD BDE BED ︒-∠∠=∠==︒. 【详解】解:∵∠A =30°,AB =AC , ∴180===752A C ABC ︒-︒∠∠∠, ∵BD =BC ,∴75BDC C ∠=∠=︒,∴18030DBC C BDC ∠=︒-∠-∠=︒,∴45EBD ABC DBC ∠=∠-∠=︒,∵BD =BE , ∴18067.52EBD BDE BED ︒-∠∠=∠==︒, 故答案为:67.5°.【点睛】本题主要考查了三角形内角和定理,等腰三角形的性质,熟知三角形内角和定理和等腰三角形的性质是解题的关键.10.某数学兴趣小组开展了一次数学活动,其过程如下:如图,设∠BAC =α(0°<α<90°).现把小棒依次摆放在两射线AB 、AC 之间,并使小棒两端分别落在两条射线上,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2=AA 1,若只能摆放5根相同的小棒,则α的取值范围是__________.【答案】15°≤α<18°【解析】【分析】本题需先根据已知条件,列出不等式,解出α的取值范围,即可得出正确答案.【详解】解:∵A 1A 2=AA 1,∴∠A =∠A 1A 2A =α,∵A 1A 2=A 2A 3,∴∠A 2A 1A 3=∠A 2A 3A 1=2α,∵A 3A 2=A 3A 4,∴∠A 3A 4A 2=∠A 3A 2A 4=α+2α=3α,∵A 4A 3=A 4A 5,∴∠A 4A 3A 5=∠A 4A 5A 3=α+3α=4α,∵根据三角形内角和定理和等腰三角形的性质,∴6α≥90°,5α<90°,∴15°≤α<18°.故答案为:15°≤α<18°.【点睛】本题考查了等腰三角形的性质,在解题时要注意根据题意找出规律并与等腰三角形的性质相结合是本题的关键.11.如图,D ,E 为ABC 的边BC 上两点,80AEC ∠=︒,BD AD =,DE AE CE ==,则BAC ∠的度数为______.【答案】110°##110度 【解析】【分析】由等腰三角形的性质及三角形的内角和定理可求解∠CAD =90°,利用三角形外角的性质及等腰三角形的性质可求解∠BAD 的度数,进而可求解.【详解】解:∵DE =AE =CE ,∴∠ADE =∠DAE ,∠C =∠CAE ,∵∠ADE +∠DAE +∠C +∠CAE =180°,∴∠DAE +∠CAE =∠CAD =90,∵∠AEC =80°,∴∠ADE +∠DAE =∠AEC =80°,∴∠ADE =∠EAD =40°,∵BD =AD ,∴∠B =∠BAD ,∵∠ADE =∠B +∠BAD =2∠BAD ,∴∠BAD =20°,∴∠BAC =∠BAD +∠CAD =20°+90°=110°.故答案为:110°.【点睛】本题主要考查等腰三角形的性质,三角形的内角和定理,三角形外角的性质,求解∠CAD 的度数是解题的关键.12.如图,在ABC 中,已知AB AC BD ==,215∠=︒,那么1∠的度数为________.【答案】65︒【解析】【分析】根据AB AC BD ==,可得C B ∠=∠,13∠=∠,根据三角形的内角和定理,以及三角形的外角性质列出方程组解方程组即可求解.【详解】解:如图,∵AB AC BD ==∴C B ∠=∠,13∠=∠,23180B C ∠+∠+∠+∠=︒1318022C ∴∠=∠=︒-∠-∠又12C ∠=∠+∠218022C C ∴∠+∠=︒-∠-∠318022C ∴∠=︒-∠18030503C ︒-︒∴∠==︒ 12155065C ∴∠=∠+∠=︒+︒=︒故答案为:65︒【点睛】本题考查了三角形内角和定理以及三角形的外角性质,等边对等角求角度,二元一次方程组的应用,掌握以上知识是解题的关键.13.小丽从一张等腰三角形纸片ABC (AB =AC )中恰好剪出五个如图所示的小等腰三角形,其中BC =BD ,EC =EF =FG =DG =DA ,则∠B =_________°.【答案】67.5【解析】【分析】根据等腰三角形的性质等边对等角求解即可.【详解】解:设∠ECF =x ,∵EC =EF ,∴∠EFC =∠ECF =x ,∴∠GEF =2x ,∵EF =GF ,∴∠FGE =∠GEF =2x ,∴∠DFG =∠FGE +∠ECF =3x ,∵DG=GF,∴∠GDF=∠DFG=3x,∴∠AGD=∠GDF+∠ECF=4x,∵DG=DA,∴∠A=4x,∴∠BDC=∠A+∠ECF=5x,∵BC=BD,∴∠BDC=∠BCD=5x,∴∠ACB=∠BCD+∠ECF=6x,∵AB=AC,∴∠B=∠ACD=6x,∵∠A+∠B+∠ACB=180°,∴4x+6x+6x=180°,解得:x=454︒,∴∠B=4564︒⨯=67.5°.故答案为:67.5.【点睛】本题主要考查了等腰三角形,熟练掌握等腰三角形的性质:等边对等角是解答本题的关键.14.如图,在△ABC中,AB=AC,点D是边AC上一点,AD=BD,BC=DC,则∠A的大小是_________.【答案】180 7︒【解析】【分析】由AD=BD,BC=DC可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠CDB =∠CBD=2x,又由AB=AC可知,△ABC为等腰三角形,则∠ABC=∠C=3x,在△ABC 中,用内角和定理列方程求解.【详解】解:∵AD =BD ,BC =DC ,∴△ABD ,△BCD 为等腰三角形,设∠A =∠ABD =x ,则∠CDB =∠CBD =2x ,又∵AB =AC ,∴△ABC 为等腰三角形,∴∠ABC =∠C =3x ,在△ABC 中,∠A +∠ABC +∠C =180°,即x +3x +3x =180°,解得x =1807︒, 即∠A =1807︒. 故答案为:1807︒. 【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.15.如图,在钢架AB 、AC 中,从左至右顺次焊上7根相等长度的钢条12PP 、23P P 、34P P …来加固钢架,且112AP PP =,则BAC ∠的最大值为______°.(结果保留整数)【答案】12【解析】【分析】设∠BAC =x ,根据等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和求出∠AP 6P 7,∠AP 7P 6,再根据三角形的内角和定理列式进行计算即可得解.【详解】解:设∠BAC =x ,∵AP 1=P 1P 2=P 2P 3=…=P 6P 7,∴∠A =∠AP 2P 1=x ,∴∠P 2P 1P 3=2x ,∴∠P 3P 2P 4=3x ,…,∠P 7P 8P 6=7x ,∴7x <90°且8x >90°,则11.25°<∠BAC <(907)°, 故∠BAC 的最大值约为12°.故答案为:12.【点睛】考查了等腰三角形等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,规律探寻题,难度较大.16.如图,在ABC 中,,,AB AC BD BC AD DE EB ====,则A ∠=________.【答案】45︒【解析】【分析】设∠A =x °根据等腰三角形的性质及等边对等角性质进行分析得出∠ABC =∠C =∠BDC902x DBC A x ︒︒︒=-∠=∠=,,2x EBD ︒∠=,再利用三角形的内角和定理即可求得∠A 的度数.【详解】解:设∠A =x °∵AB =AC ,BD =BC∴∠ABC =∠C =∠BDC 902x DBC A x ︒︒︒=-∠=∠=, ∵AD =DE =BE∴∠A =∠AED =2∠EBD =2∠EDB ∴2x EBD ︒∠= ∵∠ABC =∠C ∴9022x x x ︒︒︒︒-=+ ∴x =45即∠A 等于45°.故答案为:45︒【点睛】本题考查等腰三角形的性质,等边对等角,以及三角形的内角和定理的运用.17.如图,在ABC 中,AB AC CD ==,点D 在BC 上,且AD BD =,求BAC ∠的度数.【答案】∠BAC =108°.【解析】【分析】利用AB =AC ,可得∠B 和∠C 的关系,利用AD =BD ,可求得∠CAD =∠CDA 及其与∠B 的关系,在△ABC 中利用内角和定理可求得∠B ,进一步求得∠ABC ,得到结果.【详解】解:∵AB =AC ,∴∠B =∠C ,∵BD =AD ,∴∠B =∠DAB ,∵AC =DC ,∴∠DAC =∠ADC =2∠B ,∴∠BAC =∠BAD +∠DAC =∠B +2∠B =3∠B ,又∠B +∠C +∠BAC =180°,∴5∠B =180°,∴∠B =36°,∠C =36°,∠BAC =108°.【点睛】本题主要考查等腰三角形的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.18.已知:如图,A 1,A 2,A 3是∠MON 的ON 边上顺次三个不同的点,B 1,B 2,B 3是∠MON 的OM 边上顺次三个不同的点,且有OA 1=A 1B 1=B 1A 2=A 2B 2=B 2A 3(1)当∠MB 1A 2=45°时,∠MON =_______;(2)若OM 边上不存在B 3点,使得A 3B 3=B 2A 3 ,则∠MON 的最小值是_______.【答案】(1)15°(2)18°【解析】【分析】(1)利用等腰三角形的性质以及三角形外角的性质求解即可; (2)由OM 边上不存在B 3点,使得A 3B 3=B 2A 3 ,则OM 边上不存在B 3点,使得323332A B B A B B =∠∠,则32390180A B B ︒≤∠<︒,再由323325A B B MON OA B MON ∠=∠+∠=∠求解即可.(1)解:∵OA 1=A 1B 1=B 1A 2=A 2B 2=B 2A 3∴1111AOB A B O =∠∠,112121B A A B A A =∠∠,∵1121111112B A A AOB A B O AOB ∠=∠+∠=∠,1212MB A MON B A O =+∠∠∠, ∴1212=3=45MB A MON B A O MON =+︒∠∠∠∠,∴∠MON =15°;故答案为:15°;(2)解:∵OM 边上不存在B 3点,使得A 3B 3=B 2A 3 ,∴OM 边上不存在B 3点,使得323332A B B A B B =∠∠,∴32390180A B B ︒≤∠<︒ ,同理可求出223224B A A MON OB A MON =+=∠∠∠∠ ,∴323325A B B MON OA B MON ∠=∠+∠=∠,∴905180MON ︒≤<︒∠,∴1836MON ︒≤<︒∠,故答案为:18°.。

专题10 三角形问题(原卷版)

专题10 三角形问题(原卷版)

决胜2021中考数学压轴题全揭秘精品【典例分析】【考点1】三角形基础知识【例1】(2019·浙江中考真题)若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1 B .2 C .3 D .8【变式1-1】(2019·北京中考真题)如图,已知△ABC ,通过测量、计算得△ABC 的面积约为____cm 2.(结果保留一位小数)【变式1-2】(2019·山东中考真题)把一块含有45︒角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上).若123∠=︒,则2∠=_______︒.【考点2】全等三角形的判定与性质的应用【例2】(2019·山东中考真题)在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN =︒∠,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:2AB AN AM +=.【变式2-1】(2019·贵州中考真题)(1)如图①,在四边形ABCD 中,AB CD ∥,点E 是BC 的中点,若AE 是BAD ∠的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证AEB FEC ∆∆≌得到AB FC =,从而把AB ,AD ,DC 转化在一个三角形中即可判断.AB ,AD ,DC 之间的等量关系________;(2)问题探究:如图②,在四边形ABCD 中,AB CD ∥,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是BAF ∠的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.【变式2-2】(2019·广西中考真题)如图,,AB AD BC DC ==,点E 在AC 上.(1)求证:AC 平分BAD ∠;(2)求证:BE DE =.【考点3】等腰三角形与等边三角形的判定与性质的应用【例3】(2019·浙江中考真题)如图,在ABC △中,AC AB BC .⑴已知线段AB 的垂直平分线与BC 边交于点P ,连结AP ,求证:2APC B ;⑵以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连结AQ ,若3AQC B ,求B 的度数.【变式3-1】(2019·辽宁中考真题)如图,ABC ∆是等边三角形,延长BC 到点D ,使CD AC =,连接AD .若2AB =,则AD 的长为_____.【变式3-2】(2019·辽宁中考真题)如图,把三角形纸片折叠,使点A 、点C 都与点B 重合,折痕分别为EF ,DG ,得到60BDE ︒∠=,90BED ︒∠=,若2DE =,则FG 的长为_____.【考点4】直角三角形的性质【例4】(2019·宁夏中考真题)如图,在Rt ABC ∆中,090C ∠=,以顶点B 为圆心,适当长度为半径画弧,分别交,AB BC 于点,M N ,再分别以点,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A ∠=,则BCD ABDS S ∆∆=_____.【变式4-1】(2019·黑龙江中考真题)一张直角三角形纸片ABC ,90ACB ∠=,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当BDE ∆是直角三角形时,则CD 的长为_____.【变式4-2】(2019·河北中考真题)勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:km ).笔直铁路经过A ,B 两地.(1)A ,B 间的距离为______km ;(2)计划修一条从C 到铁路AB 的最短公路l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为______km .【考点5】相似三角形的判定与性质的应用【例5】(2019·四川中考真题)如图,90ABD BCD ︒∠=∠=,DB 平分∠ADC ,过点B 作BM CD ‖交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD =⋅;(2)若68CD AD ==,,求MN 的长.【变式5-1】(2019·全国初三课时练习)如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B,(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.【变式5-2】(2019·陕西中考模拟)大唐芙蓉园是中国第一个全方位展示盛唐风貌的大型皇家园林式文化主题公园,全园标志性建筑一紫云楼为代表,展示了“形神升腾紫云景,天下臣服帝王心”的唐代帝王风范(如图①).小风和小花等同学想用一些测量工具和所学的几何知识测量“紫云楼”的高度,来检验自己掌握知识和运用知识的能力,他们经过研究需要两次测量:首先,在阳光下,小风在紫云楼影子的末端C点处竖立一根标杆CD,此时,小花测得标杆CD的影长CE=2米,CD=2米;然后,小风从C点沿BC方向走了5.4米,到达G处,在G处竖立标杆FG,接着沿BG后退到点M处时,恰好看见紫云楼顶端A,标杆顶端F在一条直线上,此时,小花测得GM=0.6米,小风的眼睛到地面的距离HM=1.5米,FG=2米.如图②,已知AB⊥BM,CD⊥BM,FG⊥BM,HM⊥BM,请你根据题中提供的相关信息,求出紫云楼的高AB.【考点6】锐角三角函数及其应用【例6】(2019·贵州中考真题)三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C在FD 的延长线上,点B在ED上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD的长度是_____.【变式6-1】(2019·山东中考真题)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方AB便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡200米,坡度为1:3;将斜坡AB 的高度AE 降低20AC =米后,斜坡AB 改造为斜坡CD ,其坡度为1:4.求斜坡CD 的长.(结果保留根号)【变式6-2】(2019·海南中考真题)如图是某区域的平面示意图,码头A 在观测站B 的正东方向,码头A 的北偏西60︒方向上有一小岛C ,小岛C 在观测站B 的北偏西15︒方向上,码头A 到小岛C 的距离AC 为10海里.(1)填空:BAC ∠= 度,C ∠= 度;(2)求观测站B 到AC 的距离BP (结果保留根号).【达标训练】1.(2019·河北中考真题)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .2.(2019·江苏中考真题)已知n 正整数,若一个三角形的三边长分别是n+2、n+8、3n ,则满足条件的n 的值有( )A .4个B .5个C .6个D .7个3.(2019·浙江中考真题)如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A .24B .30C .36D .424.(2019·湖北中考真题)通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .5.(2019·广东中考真题)如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC ,AD 于点E ,F ,若BE=3,AF=5,则AC 的长为( )A .45B .43C .10D .86.(2019·湖南中考真题)已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形7.(2019·黑龙江中考真题)如图,在△ABC 中,BE 是∠ABC 的平分线,CE 是外角∠ACM 的平分线,BE 与CE 相交于点E ,若∠A =60°,则∠BEC 是( )A .15°B .30°C .45°D .60°8.(2019·海南中考真题)如图,在Rt ABC ∆中,90︒∠=C ,5AB =,4BC =.点P 是边AC 上一动点,过点P 作PQ AB ∥交BC 于点Q ,D 为线段PQ 的中点,当BD 平分ABC ∠时,AP 的长度为( )A .813B .1513C .2513D .32139.(2019·辽宁中考真题)如图,在CEF △中,80E ∠=︒,50F ∠=︒,ABCF ,AD CE ,连接BC ,CD ,则A ∠的度数是( )A .45°B .50°C .55°D .80°10.(2019·四川中考真题)如图,四边形ABCD 是边长为1的正方形,BPC ∆是等边三角形,连接DP 并延长交CB 的延长线于点H ,连接BD 交PC 于点Q ,下列结论:①135BPD ︒∠=;②BDP HDB ∆∆∽;③:1:2DQ BQ =;④31BDP S ∆-=. 其中正确的有( )A .①②③B .②③④C .①③④D .①②④11.(2019·辽宁中考真题)如图,AD 是△ABC 的外角∠EAC 的平分线,AD ∥BC ,∠B =32°,则∠C 的度数是( )A .64°B .32°C .30°D .40°12.(2019·青海中考真题)如图,////AD BE CF ,直线12l l 、与这三条平行线分别交于点、、A B C 和点D E F 、、.已知AB =1,BC =3,DE =1.2,则DF 的长为( )A .3.6B .4.8C .5D .5.213.(2019·辽宁中考真题)如图,在△ABC 中,∠C =90°,DE 是AB 的垂直平分线,AD 恰好平分∠BAC .若DE =1,则BC 的长是_____.14.(2019·广西中考真题)如图,在ABC ∆中,1sin 3B =,2tan 2C =,3AB =,则AC 的长为_____.15.(2019·山东中考真题)如图,一架长为6米的梯子AB 斜靠在一竖直的墙AO 上,这时测得70ABO ∠=︒,如果梯子的底端B 外移到D ,则梯子顶端A 下移到C ,这时又测得50CDO ∠=︒,那么AC 的长度约为______米.(sin700.94︒≈,sin500.77︒≈,cos700.34︒≈,cos500.64︒≈)16.(2019·山东中考真题)把两个同样大小含45︒角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个三角尺的直角顶点重合于点A ,且另外三个锐角顶点,,B C D 在同一直线上.若2AB =,则CD =____.17.(2019·湖北中考真题)如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).18.(2019·贵州中考真题)如图,在Rt ABC ∆中,90BAC ∠=︒,且3BA =,4AC =,点D 是斜边BC 上的一个动点,过点D 分别作DM AB ⊥于点M ,DN AC ⊥于点N ,连接MN ,则线段MN 的最小值为________.19.(2019·青海中考真题)如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD 为_______米(结果保留根号).20.(2019·山西中考真题)如图,在△ABC 中,∠BAC=90°,AB=AC=10cm ,点D 为△ABC 内一点,∠BAD=15°,AD=6cm ,连接BD ,将△ABD 绕点A 逆时针方向旋转,使AB 与AC 重合,点D 的对应点E ,连接DE ,DE 交AC 于点F ,则CF 的长为________cm.21.(2019·北京中考真题)如图所示的网格是正方形网格,则PAB PBA ∠∠+=_____°(点A ,B ,P 是网格线交点).22.(2019·江苏中考真题)如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.23.(2019·江苏中考真题)无盖圆柱形杯子的展开图如图所示.将一根长为20cm 的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm .24.(2019·湖南中考真题)已知∠AOB =60°,OC 是∠AOB 的平分线,点D 为OC 上一点,过D 作直线DE⊥OA ,垂足为点E ,且直线DE 交OB 于点F ,如图所示.若DE =2,则DF =_____.25.(2019·山东中考真题)小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在ABC ∆中,AB AC =,M 是平面内任意一点,将线段AM 绕点A 按顺时针方向旋转与BAC ∠相等的角度,得到线段AN ,连接NB .(1)如图1,若M 是线段BC 上的任意一点,请直接写出NAB ∠与MAC ∠的数量关系是 ,NB 与MC 的数量关系是 ;(2)如图2,点E 是AB 延长线上点,若M 是CBE ∠内部射线BD 上任意一点,连接MC ,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在111A B C ∆中,118A B =,11160A B C ∠=,11175B A C ∠=,P 是11B C 上的任意点,连接1A P ,将1A P 绕点1A 按顺时针方向旋转75,得到线段1A Q ,连接1B Q .求线段1B Q 长度的最小值. 26.(2019·四川中考真题)在△ABC 中,已知D 是BC 边的中点,G 是△ABC 的重心,过G 点的直线分别交AB 、AC 于点E 、F .(1)如图1,当EF ∥BC 时,求证:1BE CF AE AF+=; (2)如图2,当EF 和BC 不平行,且点E 、F 分别在线段AB 、AC 上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.(3)如图3,当点E 在AB 的延长线上或点F 在AC 的延长线上时,(1)中的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.27.(2019·辽宁中考真题)思维启迪:(1)如图1,A ,B 两点分别位于一个池塘的两端,小亮想用绳子测量A ,B 间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B 点的点C ,连接BC ,取BC 的中点P (点P 可以直接到达A 点),利用工具过点C 作CD ∥AB 交AP 的延长线于点D ,此时测得CD =200米,那么A ,B 间的距离是 米.思维探索:(2)在△ABC 和△ADE 中,AC =BC ,AE =DE ,且AE <AC ,∠ACB =∠AED =90°,将△ADE 绕点A 顺时针方向旋转,把点E 在AC 边上时△ADE 的位置作为起始位置(此时点B 和点D 位于AC 的两侧),设旋转角为α,连接BD ,点P 是线段BD 的中点,连接PC ,PE .①如图2,当△ADE 在起始位置时,猜想:PC 与PE 的数量关系和位置关系分别是 ;②如图3,当α=90°时,点D 落在AB 边上,请判断PC 与PE 的数量关系和位置关系,并证明你的结论; ③当α=150°时,若BC =3,DE =l ,请直接写出PC 2的值.28.(2019·湖北中考真题)在ABC ∆中,90ABC ∠=︒,AB n BC=,M 是BC 上一点,连接AM (1)如图1,若1n =,N 是AB 延长线上一点,CN 与AM 垂直,求证:BM BN =(2)过点B 作BP AM ⊥,P 为垂足,连接CP 并延长交AB 于点Q .①如图2,若1n =,求证:CP BM PQ BQ=②如图3,若M 是BC 的中点,直接写出tan BPQ ∠的值(用含n 的式子表示)29.(2019·江苏中考真题)如图,已知等边△ABC 的边长为8,点P 是AB 边上的一个动点(与点A 、B 不重合),直线l 是经过点P 的一条直线,把△ABC 沿直线l 折叠,点B 的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC 边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l //AC ,则BB’的长度为 ;(3)如图3,点P 在AB 边上运动过程中,若直线l 始终垂直于AC ,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l 变化过程中,求△ACB’面积的最大值.30.(2019·四川中考真题)如图,某数学兴趣小组为测量一颗古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪AF 测得古树顶端H 的仰角HFE ∠为45︒,此时教学楼顶端G 恰好在视线FH 上,再向前走10米到达B 处,又测得教学楼顶端G 的仰角GED ∠为60︒,点A 、B 、C 三点在同一水平线上.(1)求古树BH 的高;(2)求教学楼CG 的高.(参考数据:2 1.4,3 1.7==)31.(2019·江苏中考真题)如图,ABC ∆中,90C =∠,4AC =,8BC =.(1)用直尺和圆规作AB 的垂直平分线;(保留作图痕迹,不要求写作法)(2)若(1)中所作的垂直平分线交BC 于点D ,求BD 的长.32.(2019·湖南中考真题)如图,在平行四边形ABCD 中,连接对角线AC ,延长AB 至点E ,使BE AB =,连接DE ,分别交BC ,AC 交于点F ,G .(1)求证:BF CF =;(2)若6BC =,4DG =,求FG 的长.33.(2019·吉林中考真题)墙壁及淋浴花洒截面如图所示,已知花洒底座A 与地面的距离AB 为170cm ,花洒AC 的长为30cm ,与墙壁的夹角CAD ∠为43°.求花洒顶端C 到地面的距离CE (结果精确到1cm )(参考数据:0sin 430.68=,0cos430.73=,0tan 430.93=)34.(2019·陕西中考真题)如图,点A ,E ,F 在直线l 上,AE=BF ,AC//BD ,且AC=BD ,求证:CF=DE35.(2019·辽宁中考真题)如图,A ,B 两市相距150km ,国家级风景区中心C 位于A 市北偏东60︒方向上,位于B 市北偏西45︒方向上.已知风景区是以点C 为圆心、50km 为半径的圆形区域.为了促进旅游经济发展,有关部门计划修建连接A ,B 两市的高速公路,高速公路AB 是否穿过风景区?通过计算加以说明.(参考数据:3 1.73≈)36.(2019·重庆中考真题)如图,在ABC ∆中,AB AC =,AD BC ⊥于点D .(1)若42C ︒∠=,求BAD ∠的度数;(2)若点E 在边AB 上,EF AC 交AD 的延长线于点F .求证:AE FE =.。

专题10 相似三角形小题重难点题型分类(解析版)-初中数学上学期重难点题型分类高分必刷题(人教版)

专题10 相似三角形小题重难点题型分类(解析版)-初中数学上学期重难点题型分类高分必刷题(人教版)

专题10 相似三角形小题重难点题型分类-高分必刷题(解析版)专题简介:本份资料包含《相似》这一模块在各次期中、期末考试中常考的填空、选则题,具体包含的题型有:同A 字模型、8字模型、相似三角形的判定、反A 模型、射影定理、一线三等角模型、位似图形、相似比与周长比面积比关系这8类题型,适合培训机构辅导老师辅导学生时使用或者学生考前刷题使用。

题型一:A 字模型1.(师大)如图,D ,E 分别是ABC ∆中AB ,AC 边上的点,//DE BC ,下列结论错误的是( ) A.AD AEAB AC=B.AD AEDB EC=C.AB ACDB EC= D.DE AEBC EC =【解答】解:∵DE ∥BC ,∴,,,△ADE ∽△ABC ,∴.故A ,B ,C 正确,D 错误.故选:D .2.(北雅)如图,在ABC ∆中,点D E 、分别在AB AC 、上,DE BC ∥,若4,2AD DB ==,则DEBC的值为( ) A .12 B .23 C .34D .2【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴=,∵AD =4,DB =2,∴===.则的值为.故选:B .3.(雅礼)若ABC ADE △∽△,若9AB =,6AC =,3AD =,则EC 的长是( ) A.2B.3C.4D.5【解答】解:设EC =x ,∵AC =6,∴AE =6﹣x ,∵△ABC ∽△ADE ,∴,∴,解得:x =4,故选:C .4.(雅礼)如图,小雅同学在利用标杆BE 测量建筑物的高度时,测得标杆BE 高1.2m ,又知2m AB =,16m BC =,则建筑物CD 的高是( ) A.9.6mB.10.8mC.12mD.14m【解答】解:∵AB =2m ,BC =16m ,∴AB :BC =1:8,∴AB :AC =1:9, ∵EB ∥CD ,∴△ABE ∽△ACD ,∴==,∵BE =1.2,∴CD =10.8m ,故选:B .题型二:8字模型5.(雅礼)如图,在□ABCD 中,E 在DC 上,若:2:3DE EC =,则:AF AC = 。

高中数学专题复习10解斜三角形应用举例

高中数学专题复习10解斜三角形应用举例

第五章平面向量课题:解斜三角形应用举例(一)教学目标:1.能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题;2.了解常用的测量相关术语教学重点:实际问题中抽象出一个或几个三角形,然后逐个解决三角形,得到实际问题的解。

教学难点:根据题意建立数学模型,画出示意图。

教学过程:Ⅰ.课题导入1、[复习旧知]复习提问什么是正弦定理、余弦定理以及它们可以解决哪些类型的三角形?2、[设置情境]请学生回答完后再提问:前面引言第一章“解三角形”中,我们遇到这么一个问题,“遥不可及的月亮离我们地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,是什么神奇的方法探索到这个奥秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测量方案,比如可以应用全等三角形、相似三角形的方法,或借助解直角三角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会不能实施。

如因为没有足够的空间,不能用全等三角形的方法来测量,所以,有些方法会有局限性。

于是上面介绍的问题是用以前的方法所不能解决的。

今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用,首先研究如何测量距离。

Ⅱ.讲授新课(1)解决实际测量问题的过程一般要充分认真理解题意,正确做出图形,把实际问题里的条件和所求转换成三角形中的已知和未知的边、角,通过建立数学模型来求解[例题讲解](2)例1、如图,设A、B两点在河的两岸,要测量两点之间的距离,测量者在A的同侧,在所在的河岸边选定一点C,测出AC的距离是55m,∠BAC=︒75。

求A、B两点的51,∠ACB=︒距离(精确到0.1m)启发提问1:∆ABC中,根据已知的边和对应角,运用哪个定理比较适当?启发提问2:运用该定理解题还需要那些边和角呢?请学生回答。

分析:这是一道关于测量从一个可到达的点到一个不可到达的点之间的距离的问题,题目条件告诉了边AB的对角,AC为已知边,再根据三角形的内角和定理很容易根据两个已知角算出AC 的对角,应用正弦定理算出AB边。

中考数学专题训练第10讲三角形与全等三角形1(原卷版)

中考数学专题训练第10讲三角形与全等三角形1(原卷版)

三角形与全等三角形(压轴题组)1.(2021·江西赣州·九年级期中)如图1.在等腰直角三角形ABC中.∠BAC=90°.点E.F 分别为AB.AC的中点.H为线段EF上一动点(不与点E.F重合).将线段AH绕点A逆时针方旋转90°.得到AG.连接GC.HB.(1)证明:△AHB≌△AGC(2)如图2.连接HG和GF.其中HG交AF于点Q.①证明:在点H的运动过程中.总有∠HFG=90°.②若AB=AC=4.当EH的长度为多少时.△AQG为等腰三角形?2.(2021·北京市第三十一中学九年级期中)四边形ABCD是正方形.△BEF是等腰直角三角形.∠BEF=90°.BE=EF.G为DF的中点.连接EG.CG .EC.(1)如图1.若点E在CB边的延长线上.直接写出EG与GC的位置关系及ECGC的值.(2)将图1中的△BEF绕点B顺时针方向旋转至图2所示位置.在(1)中所得的结论是否仍然成立?若成立.请写出证明过程.若不成立.请说明理由.(3)将图1中的△BEF.绕点B顺时针旋转α(0°<α<90°).若BE=1.AB=2.当E.F.D 三点共线时.求DF的长.3.(2021·湖北青山·九年级期中)已知.在菱形ABCD中.∠BCD=60°.将边CD绕点C顺时针旋转α°(0<α<120).得到线段CE.连接ED、ED或其延长线交∠BCE的角平分线于点F.(1)如图1.若α=20.直接写出∠E与∠CFE的度数.(2)如图2.若60<α<120.求证:EF﹣DF=CF.(3)如图3.若AB=6.点G为AF的中点.连接BG.则DC旋转过程中.BG的最大值为.4.(2021·福建安溪·九年级期中)在等腰直角△ABC中.AB=AC.点D在底边BC上.∠EDF 的两边分别交AB、AC所在直线于E、F两点.∠EDF=2∠ABC.BD=nCD.(1)如图1.若n=1.则DE DF.(填“>”“<”或“=”)(2)连接EF.①如图2.沿着直线EF折叠.使得点A落在边BC上的D点.求AEAF的值(含n的式子表示).②如图3.EF∥BC.且59EFBC.求出n的值.5.(2021·陕西莲湖·九年级期中)在菱形ABCD中.∠ABC=60°.P是射线BD上一动点.以AP为边向右侧作等边△APE.点E的位置随着点P的位置变化而变化.问题提出(1)如图1.当点E在菱形ABCD内部或边上时.连接CE.BP与CE的数量关系是.CE与CB的位置关系是.(2)如图2.当点E在菱形ABCD外部时.(1)中的结论是否还成立?若成立.请予以证明.若不成立.请说明理由.问题解决(3)如图3.连湖公园有一块观赏园林区.其形状是一个边长为20m的菱形ABCD.其中∠ABC=60°.对角线BD是一条花间小径.现计划在BD延长线上(包括D点)取点P.以AP 为边长修建一个等边△APE 的娱乐区.放置各类运动娱乐设施.从娱乐区顶点E 再修一条直直的小路BE .为了让游客们更轻松愉快地游玩.园区还计划在BE 中点处设置一个直饮水点F .求饮水点F 到C 点的最短距离.6.(2021·陕西·交大附中分校九年级期中)问题研究.如图.在等腰△ABC 中.AB AC =.点D 、E 为底边BC 上的两个动点(不与B 、C 重合).且DAE B ∠=∠.(1)请在图中找出一个与ABE △相似的三角形.这个三角形是__________.(2)若90BAC ∠=︒.分别过点D 、E 作AB 、AC 的垂线.垂足分别为F 、G .且DF 、EG 的反向延长线交于点M .若1AB =.求四边形AFMG 的面积.问题解决(3)如图所示.有一个矩形仓库ABCD .其中40AB =米.30AD =米.现计划在仓库的内部的E 、F 两处分别安装监控摄像头.其中点E 在边BC 上.点F 在边DC 上.设计要求45EAF ∠=︒且CE CF =.则CE 的长应为多少米?7.(2021·黑龙江·哈尔滨市第六十九中学校九年级期中)如图.在平面直角坐标系中.直线AB 的解析式为y =kx +3分别交x 轴、y 轴于点A 、B .∠BAO =45°.(1)求直线AB 的解析式.(2)点C 在x 轴负半轴上.连接CB .过点B 作BC 的垂线交x 轴于点P .设点P 的横坐标为t .△BAP 的面积为S .求S 与t 之间的函数解析式.(不要求写出自变量t 的取值范围). (3)在(2)的条件下.延长BC 至Q .使BQ =BP .过点Q 作x 轴的垂线交x 轴于点D .点E 为线段CQ 的中点.过点E 作BQ 的垂线交BD 的延长线与点F .若EF 10.求Q 点坐标.8.(2021·河南·金明中小学九年级期中)把两个等腰直角△ABC 和△ADE 按如图1所示的位置摆放.将△ADE 绕点A 按逆时针方向旋转.如图2.连接BD .EC .设旋转角为α(0360α︒<<︒).(1)如图1.BD与EC的数量关系是___________.BD与EC的位置关系是___________. (2)如图2.(1)中BD和EC的数量关系和位置关系是否仍然成立.若成立.请证明.若不成立请说明理由.(3)如图3.当点D在线段BE上时.BEC∠=___________.△的面积最大.(4)当旋转角α=__________时.ABD9.(2021·北京·景山学校九年级期中)在△ABC中.AB=23.CD⊥AB于点D.CD=2.(1)如图1.当点D是线段AB中点时.①AC的长为.②延长AC至点E.使得CE=AC.此时CE与CB的数量关系为.∠BCE与∠A的数量关系为.(2)如图2.当点D不是线段AB的中点时.画∠BCE(点E与点D在直线BC的异侧).使∠BCE=2∠A.CE=CB.连接AE.①按要求补全图形.②求AE的长.10.(2021·山西·九年级期中)综合与实践问题情境:数学活动课上.老师要求学生出示两个大小不一样的等腰直角三角形.如图1所示.把Rt△ADE和Rt△ABC摆在一起.其中直角顶点A重合.延长CA至点F .满足AF=AC.然后连接DF、BE.实践猜想:(1)图1中的BE与DF的数量关系为:.位置关系为:.猜想证明:(2)当△ADE绕着点A顺时针旋转一定角度α(0<α<90°)时.如图2所示.(1)中的结论是否还成立若成立.请写出证明过程.若不成立.请说明理由.问题解决:(3)若42,22BC DE==.△ADE绕着点A顺时针旋转一定角度α(0<α<360°)的过程中.求BE的最大值与最小值.。

专题10 解三角形问题(解析版)

专题10 解三角形问题(解析版)

专题10 解三角形问题【高考真题】1.(2022·全国甲理) 已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小 值时,BD =________. 1.答案 3-1 解析 设CD =2BD =2m >0,则在△ABD 中,AB 2=BD 2+AD 2-2BD AD cos∠ADB =m 2+4+2m ,在△ACD中,AC 2=CD 2+AD 2-2CD AD cos ∠ADC =4m 2+4-4m ,所以AC 2AB 2=4m 2+4-4m m 2+4+2m =4(m 2+4+2m )-12(1+m )m 2+4+2m=4-12(m +1)+3m +1≥4-()44233211m m ≥=-+⋅+,当且仅当m +1=3m +1,即m =3-1时,等号成立,所以当ACAB取最小值时,m =3-1.故答案为3-1.【知识总结】 1.正弦定理及其变形a sin A =b sin B =c sin C=2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R .a ∶b ∶c =sin A ∶sin B ∶sin C . 2.余弦定理及其推论、变形a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C . 推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2abcos C . 3.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .【同类问题】题型一 三角形中基本量的计算1.(2021·全国乙)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,B =60°,a 2+c 2=3ac , 则b = .1.答案 22 解析 由题意得S △ABC =12ac sin B =34ac =3,则ac =4,所以a 2+c 2=3ac=3×4=12,所以b 2=a 2+c 2-2ac cos B =12-2×4×12=8,则b =22(负值舍去).2.(2017·全国Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.2.答案 (1)75° 解析 由正弦定理,得sin B =b sin Cc =6×323=22,结合b <c 得B =45°,则A =180° -B -C =75°.3.(2017·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A .π12B .π6C .π4D .π33.答案 B 解析 由题意得sin(A +C )+sin A (sin C -cos C )=0,∴sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,则sin C (sin A +cos A )=2sin C sin ⎝⎛⎭⎫A +π4=0,因为C ∈(0,π),所以sin C ≠0,所以sin ⎝⎛⎭⎫A +π4=0,又因为A ∈(0,π),所以A +π4=π,所以A =3π4.由正弦定理asin A =c sin C ,得2sin3π4=2sin C ,则sin C =12,又C ∈(0,π),得C =π6. 4.(2018·全国Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为a 2+b 2-c 24,则C =( )A .π2B .π3C .π4D .π64.答案 C 解析 因为a 2+b 2-c 2=2ab cos C ,且S △ABC =a 2+b 2-c 24,所以S △ABC =2ab cos C4=12ab sin C , 所以tan C =1.又C ∈(0,π),故C =π4.5.(2020·全国Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则cos B 等于( )A .19B .13C .12D .235.答案 A 解析 由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos C =42+32-2×4×3×23=9,所以AB =3,所以cos B =AB 2+BC 2-AC 22AB ·BC =9+9-162×3×3=19.6.(2020·全国Ⅰ)如图,在三棱锥P -ABC 的平面展开图中,AC =1,AB =AD =3,AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB =________.6.答案 -14 解析 在△ABD 中,∵AB ⊥AD ,AB =AD =3,∴BD =6,∴FB =BD =6.在△ACE中,∵AE =AD =3,AC =1,∠CAE =30°,∴EC =32+12-2×3×1×cos 30°=1,∴CF =CE =1.又∵BC =AC 2+AB 2=12+32=2,∴在△FCB中,由余弦定理得cos ∠FCB =CF 2+BC 2-FB 22×CF ×BC =12+22-622×1×2=-14.7.(2016·全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a=1,则b =________. 7.答案2113 解析 因为A ,C 为△ABC 的内角,且cos A =45,cos C =513,所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =6365×53=2113.8.(2016·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A .2B .3C .2D .3 8.答案 D 解析 由余弦定理,得5=b 2+22-2×b ×2×23,解得b =3⎝⎛⎭⎫b =-13舍去. 9.在平面四边形ABCD 中,BC ⊥CD ,∠B =3π4,AB =32,AD =210,若AC =35,则CD 为 .9.答案 1或5 解析 因为在△ABC 中,∠B =3π4,AB =32,AC =35,由正弦定理可得ACsin B= AB sin ∠ACB ,所以sin ∠ACB =AB ·sin B AC =32×2235=55,又BC ⊥CD ,所以∠ACB 与∠ACD互余,因此cos ∠ACD =sin ∠ACB =55,在△ACD 中,AD =210,AC =35,由余弦定理可得cos ∠ACD =55=AC 2+CD 2-AD 22AC ·CD =5+CD 265CD ,所以CD 2-6CD +5=0,解得CD=1或CD =5.10.(多选)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,2b sin A =5a cos B ,AB =2,AC =26,D 为BC的中点,E 为AC 上的点,且BE 为∠ABC 的平分线,下列结论正确的是( ) A .cos ∠BAC =-66B .S △ABC =35 C .BE =2D .AD =5 10.答案 AD 解析 由正弦定理可知2sin B sin A =5sin A cos B ,∵sin A ≠0,∴2sin B =5cos B .又sin 2B+cos 2B =1,∴sin B =53,cos B =23,在△ABC 中,AC 2=AB 2+BC 2-2AB ·BC cos B ,得BC =6.A 项,cos ∠BAC =AB 2+AC 2-BC 22AB ·AC =4+24-362×2×26=-66;B 项,S △ABC =12AB ·BC sinB =12×2×6×53=25;C 项,由角平分线性质可知AE EC =AB BC =13,∴AE =62.BE 2=AB 2+AE 2-2AB ·AE cos A =4+32-2×2×62×⎝⎛⎭⎫-66=152,∴BE =302;D 项,在△ABD 中,AD 2=AB 2+BD 2-2AB ·BD cos B =4+9-2×2×3×23=5,∴AD =5.题型二 三角形的面积11.(2014·福建)在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于________. 11.答案 23 解析 在△ABC 中,由正弦定理得23sin60°=4sin B,解得sin B =1,所以B =90°,所以S △ABC=12×AB ×23=12×42-232×23=23.12.(2019·全国Ⅱ)△ABC 的内角内角A ,B ,C 所对的边分别是a ,b ,c .若b =6,a =2c ,B =π3,则△BDC的面积是________. 12.答案3解析 由余弦定理得2222cos b a c ac B =+-,所以2221(2)2262c c c c +-⨯⨯⨯=,即212c =, 解得23, 3c c ==-(舍去),所以243a c ==,113sin 43236322ABC S ac B ==⨯=△13.(2018·全国Ⅰ)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为__________. 13.答案233解析 已知b sin C +c sin B =4a sin B sin C ⇒2sin B sin C =4sin A ·sin B sin C ,所以sin A =12,由b 2+c 2-a 2=8>0知A 为锐角,所以cos A =32,所以32=b 2+c 2-a 22bc =4bc ,所以bc =83=833,所以S △ABC =12bc sin A =12×833×12=233. 14.(2017·浙江)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC的面积是________,cos ∠BDC =________. 14.答案152104解析 在△ABC 中,AB =AC =4,BC =2,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC=42+22-422×4×2=14,则sin ∠ABC =sin ∠CBD =154,所以S △BDC =12BD ·BC sin ∠CBD =152.因为BD =BC =2,所以∠BDC =12∠ABC ,则cos ∠BDC =cos ∠ABC +12=104.15.(2013·全国Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,B =π6,C =π4,则△ABC 的面积为( )A .23+2B .3+1C .23-2D .3-115.答案 B 解析 因为B =π6,C =π4,所以A =7π12.由正弦定理得b sin π6=csin π4,解得c =22.所以三角形的面积为12bc sin A =12×2×22sin 7π12.因为sin 7π12=sin ⎝⎛⎭⎫π3+π4=32×22+22×12=22⎝⎛⎭⎫32+12,所以12bc sin A =22×22⎝⎛⎭⎫32+12=3+1,故选B .16.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C ,并且a =2,则△ABC 的面积为________. 16.答案 52 解析 因为0<A <π,cos A =23,所以sin A =1-cos 2A =53.又由5cos C =sin B =sin(A+C )=sin A cos C +cos A sin C =53cos C +23sin C 知,cos C >0,并结合sin 2C +cos 2C =1,得sin C =56,cos C =16.于是sin B =5cos C =56.由a =2及正弦定理a sin A =c sin C ,得c =3.故△ABC 的面积S =12ac sin B =52.17.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且(2b -a )cos C =c cos A ,c =3,sin A +sin B =26sin A sin B ,则△ABC 的面积为( )A .338B .2C .32D .33417.答案 D 解析 因为(2b -a )cos C =c cos A ,由正弦定理得,(2sin B -sin A )cos C =sin C cos A ,化简得2sin B cos C =sin B ,又sin B ≠0,因为C ∈(0,π),所以cos C =12,所以C =π3.又由sin A+sin B =26sin A sin B ,可得(sin A +sin B )·sin C =32sin A sin B ,由正弦定理可得(a +b )c =32ab ,所以a +b =2ab .因为c 2=a 2+b 2-2ab cos C ,所以2(ab )2-3ab -9=0,所以ab =3(负值舍去),所以S △ABC =12ab sin C =334.18.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a =1,2b -3c =2a cos C ,sin C =32,则 △ABC 的面积为( ) A .32 B .34 C .32或34D .3或3218.答案 C 解析 因为2b -3c =2a cos C ,所以由正弦定理可得2sin B -3sin C =2sin A cos C ,所以2sin(A +C )-3sin C =2sin A cos C .所以2cos A sin C =3sin C ,又sin C ≠0,所以cos A =32,因为A ∈(0°,180°),所以A =30°,因为sin C =32,所以C =60°或120°.当C =60°时,A =30°,所以B =90°,又a =1,所以△ABC 的面积为12×1×2×32=32;当C =120°时,A =30°,所以B =30°,又a =1,所以△ABC 的面积为12×1×1×32=34,故选C .19.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin(B +A )+sin(B -A )=2sin2A ,且c =6,C =π3,则△ABC 的面积是( )A .3B .33C .3或1D .3或3319.答案 A 解析 ∵在△ABC 中,C =π3,∴B =2π3-A ,B -A =2π3-2A ,∵sin(B +A )+sin(B -A )=2sin2A ,∴sin C +sin ⎝⎛⎭⎫2π3-2A =2sin 2A ,即sin C +32cos 2A +12sin 2A =2sin 2A ,整理得3sin ⎝⎛⎭⎫2A -π6=sin C =32,∴sin ⎝⎛⎭⎫2A -π6=12.又A ∈⎝⎛⎭⎫0,2π3,∴2A -π6=π6或5π6,解得A =π6或π2.当A =π6时,B =π2,tan C =c a =6a =3,解得a =2,∴S △ABC =12ac sin B =3;当A =π2时,B =π6,tan C =c b =6b =3,解得b =2,∴S △ABC =12bc =3.综上,△ABC的面积是3.20.托勒密(Ptolemy)是古希腊天文学家、地理学家、数学家,托勒密定理就是由其名字命名,该定理指出:圆的内接凸四边形两组对边乘积的和等于两条对角线的乘积.已知凸四边形ABCD 的四个顶点在同一个圆的圆周上,AC ,BD 是其两条对角线,AB =AD ,∠BAD =120°,AC =6,则四边形ABCD 的面积为 .20.答案 93 解析 在△ABD 中,设AB =a ,由余弦定理得BD 2=AB 2+AD 2-2AB ·AD ·cos ∠BAD =3a 2,所以BD =3a ,由托勒密定理可得a (BC +CD )=AC ·3a ,即BC +CD =3AC ,又∠ABD =∠ACD =30°,所以四边形ABCD 的面积S =12BC ·AC sin 30°+12CD ·AC sin 30°=14(BC +CD )·AC =34AC 2=93. 题型三 三角形中的最值(范围)问题21.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且a >b >c ,a 2<b 2+c 2,则角A 的取值范围是( )A .⎝⎛⎭⎫π2,πB .⎝⎛⎭⎫π4,π2C .⎝⎛⎭⎫π3,π2D .⎝⎛⎭⎫0,π2 21.答案 C 解析 因为a 2<b 2+c 2,所以cos A =b 2+c 2-a 22bc>0,所以A 为锐角.又因为a >b >c ,所以A 为最大角,所以角A 的取值范围是⎝⎛⎭⎫π3,π2.22.在△ABC 中,若AB =1,BC =2,则角C 的取值范围是( )A .⎝⎛⎦⎤0,π6B .⎝⎛⎭⎫0,π2C .⎝⎛⎭⎫π6,π2D .⎝⎛⎦⎤π6,π2 22.答案 A 解析 因为c =AB =1,a =BC =2,b =AC .根据两边之和大于第三边,两边之差小于第三边可知1<b <3,根据余弦定理cos C =12ab (a 2+b 2-c 2)=14b (4+b 2-1)=14b (3+b 2)=34b +b 4=14⎝ ⎛⎭⎪⎫3b -b 2+32≥32.所以0<C ≤π6.故选A . 23.在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin2A ,则角A 的取值范围为( )A .⎝⎛⎦⎤0,π6B .⎝⎛⎦⎤0,π4C .⎣⎡⎦⎤π6,π4D .⎣⎡⎦⎤π6,π3 23.答案 B 解析 法一:在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin2A ,即2sin B cos A=22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b =2a ,所以A 为锐角,又sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. 法二:在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理,得b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =12b 2+c 22bc ≥2 12b 2·c22bc =22,当且仅当c =22b 时等号成立,所以A ∈⎝⎛⎦⎤0,π4. 24.(2014·江苏)若△ABC 的内角满足sin A +2sin B =2sin C ,则cos C 的最小值是________.24.答案6-24解析 由sin A +2sin B =2sin C ,结合正弦定理得a +2b =2c .由余弦定理得cos C=a 2+b 2-c 22ab=a 2+b 2-a +2b 242ab=34a 2+12b 2-2ab 22ab≥2 ⎝⎛⎭⎫34a 2⎝⎛⎭⎫12b 2-2ab 22ab=6-24,故6-24≤cos C <1,故cos C 的最小值为6-24. 25.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A =b sin A ,则sin A +sin C 的最大值为( )A .2B .98C .1D .7825.答案 B 解析 ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sinB ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 26.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a cos B -b cos A =12c ,当tan(A -B )取最大值时,角B 的值为________.26.答案 π6 解析 由a cos B -b cos A =12c 及正弦定理,得sin A cos B -sin B cos A =12sin C =12sin(A +B )=12(sin A cos B +cos A sin B ),整理得sin A cos B =3cos A sin B ,即tan A =3tan B ,易得tan A >0,tan B >0.所以tan(A -B )=tan A -tan B 1+tan A tan B =2tan B 1+3tan 2B =21tan B +3tan B ≤223=33,当且仅当1tan B =3tan B ,即tan B =33时,tan(A -B )取得最大值,所以B =π6. 27.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A +b sin B =c sin C -2a sin B ,则sin2A tan 2B的最大值是__________.27.答案 3-22 解析 依题意得a 2+b 2-c 2=-2ab ,则2ab cos C =-2ab ,所以cos C =-22, 所以C =3π4,A =π4-B ,所以sin2A tan 2B =cos2B tan 2B =(1-tan 2B )tan 2B 1+tan 2B .令1+tan 2B =t ,其中t ∈(1,2),则有(1-tan 2B )tan 2B 1+tan 2B=(2-t )(t -1)t =-⎝⎛⎭⎫t +2t +3≤3-22,当且仅当t =2时取等号.故sin 2A tan 2B 的最大值是3-22.28.在△ABC 中,若sin C =2cos A cos B ,则cos 2A +cos 2B 的最大值为________. 28.答案2+12解析 解法1 因为sin C =2cos A cos B ,所以,sin(A +B )=2cos A cos B ,化简得tan A +tan B=2,cos 2A+cos 2B=cos 2A sin 2A +cos 2A +cos 2B sin 2B +cos 2B =1tan 2A +1+1tan 2B +1=tan 2A +tan 2B +2(tan A tan B )2+tan 2A +tan 2B +1=(tan A +tan B )2-2tan A tan B +2(tan A tan B )2+(tan A +tan B )2-2tan A tan B +1=6-2tan A tan B(tan A tan B )2-2tan A tan B +5.因为分母(tan A tan B )2-2tan A tan B +5>0,所以令6-2tan A tan B=t (t >0),则cos 2A +cos 2B =4t t 2-8t +32=4t +32t -8≤4232-8=2+12(当且仅当t =42时取等号).解法2 由解法1得tan A +tan B =2,令tan A =1+t ,tan B =1-t ,则cos 2A +cos 2B =1tan 2A +1+1tan 2B +1=1t 2+2+2t +1t 2+2-2t =2(t 2+2)(t 2+2)2-4t 2,令d =t 2+2≥2,则cos 2A+cos 2B =2dd 2-4d +8=2d +8d -4≤228-4=2+12,当且仅当d =22时等号成立. 解法3 因为sin C =2cos A cos B ,所以sin C =cos(A +B )+cos(A -B ),即cos(A -B )=sin C +cos C ,cos 2A +cos 2B =1+cos2A 2+1+cos2B2=1+cos(A +B )cos(A -B )=1-cos C (sin C +cos C )=12-12(sin2C +cos2C )=12-22sin(2C +π4)≤12+22=2+12,当且仅当2C +π4=3π2,即C =5π8时取等号.29.设△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,已知a 2+2b 2=c 2,则tan Ctan A =_____;tan B 的最大值为________. 29.答案 -3 33 解析 由正弦定理可得tan C tan A =sin C sin A ·cos A cos C =c a ·cos Acos C,再结合余弦定理可得tan C tan A =c a ·cos A cos C=c a ·b 2+c 2-a 22bc ·2ab a 2+b 2-c 2=b 2+c 2-a 2a 2+b 2-c 2.由a 2+2b 2=c 2,得tan C tan A =b 2+a 2+2b 2-a 2a 2+b 2-a 2-2b 2=-3.由已知条件及大边对大角可知0<A <π2<C <π,从而由A +B +C =π可知tan B =-tan(A +C )=-tan A +tan C 1-tan A tan C=-1+tan C tan A 1tan A -tan C =23-tan C+(-tan C ),因为π2<C <π,所以3-tan C +(-tan C)≥23-tan C×(-tan C)=23(当且仅当tan C=-3时取等号),从而tan B≤223=33,即tan B的最大值为33.30.在锐角△ABC中,角A,B,C的对边分别为a,b,c.若a=2b sin C,则tan A+tan B+tan C的最小值是()A.4B.33C.8D.63 30.答案C解析由a=2b sin C得sin A=2sin B sin C,∴sin(B+C)=sin B cos C+cos B sin C =2sin B sin C,即tan B+tan C=2tan B tan C.又三角形中的三角恒等式tan A+tan B+tan C=tan A tan B tan C,∴tan B tan C=tan Atan A-2,∴tan A tan B tan C=tan A·tan Atan A-2,令tan A-2=t,得tan A tan B tan C=(t+2)2t=t+4t+4≥8,当且仅当t=4t,即t=2,tan A=4 时,取等号.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[点评] 应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,也可用余弦定理,应注意用哪一个定理更方便、简捷.
跟踪练习1:
已知在△ABC 中,a =7,b =3,c =5,求三角形中的最大角及角C 的正弦值.
[解析] ∵a >c >b ,∴角A 为最大角
由余弦定理有cos A =b 2+c 2-a 22bc =-1
2,
∴A =120°,∴sin A =
32
, 再根据正弦定理,有a sin A =c
sin C

∴sin C =c a sin A =57³32=53
14
.
2.命题方向:与面积有关的问题
[例2] 在△ABC 中,A =60°,b =1,其面积为,则△ABC 外接圆的直径是________.
[分析] 三角形外接圆直径是和正弦定理联系在一起的,已经知道了A =60°,只要再能求出边a ,问题就解决了,结合已知条件求边a 是解决问题的关键.
[解析] 由题意知,S △ABC =1
2
bc sin A ,所以c =4.
由余弦定理知:a =b 2
+c 2
-2bc cos A =13, 再由正弦定理2R =
a
sin A

1332

239
3
. 即△ABC 外接圆的直径是239
3.
[答案]
239
3
跟踪练习2 :
(2008·江苏)满足条件AB =2,AC =2BC 的△ABC 的面积的最大值为________.
[答案] 2 2
[解析] 设BC =x ,则AC =2x ,根据面积公式得
S △ABC =12
AB ²BC ²sin B
=12³2x 1-cos 2
B ① 根据余弦定理得
cos B =AB 2+BC 2-AC 22AB ²BC =
4+x 2-2x 2
4x
=4-x
2
4x

代入①式可得
S △ABC =x
1-⎝ ⎛⎭
⎪⎫4-x 2
4x 2=128-x 2-
2
16

由三角形三边关系有⎩⎨

2x +x >2,x +2>2x ,
解得22-2<x <22+2.
故当x =23时,S △ABC 取得最大值2 2.
3.命题方向:判断三角形的形状
[例3] 在△ABC 中,a cos A +b cos B =c cos C ,试判断三角形的形状.
[分析] 判定三角形的类型,一般是从题设条件出发,依正弦定理、余弦定理和面积公式,运用三角函数式或代数式的恒等变形导出角或边的某种特殊关系,从而判定三角形的类型 .
[解析] 方法一:由正弦定理,设a sin A =b sin B =c
sin C =k >0,
则a =k sin A ,b =k sin B ,c =k sin C 代入已知条件得 k sin A cos A +k sin B cos B =k sin C cos C , 即sin A cos A +sin B cos B =sin C cos C .
根据二倍角公式得sin2A +sin2B =sin2C ,
sin[(A +B )+(A -B )]+sin[(A +B )-(A -B )]=2sin C cos C , ∴2sin(A +B )cos(A -B )=2sin C cos C . ∵A +B +C =π⇒A +B =π-C , ∴sin(A +B )=sin C ≠0,
∴cos(A -B )=cos C ,∴cos(A -B )+cos(A +B )=0, ∴2cos A cos B =0⇒cos A =0或cos B =0,
即A =90°或B =90°,∴△ABC 是直角三角形. 方法二:由余弦定理知
cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2
2ab

代入已知条件得
a ²
b 2+
c 2-a 22bc +b ²a 2+c 2-b 22ac +c ²c 2-a 2-b 2
2ab
=0,
化简得
a 2(
b 2+
c 2-a 2)+b 2(a 2+c 2-b 2)+c 2(c 2-a 2-b 2)=0, 展开整理得(a 2-b 2)2=c 4,∴a 2-b 2=±c 2, 即a 2=b 2+c 2或b 2=a 2+c 2.
根据勾股定理知△ABC 是直角三角形.
跟踪练习3:△ABC 中,a 2tan B =b 2tan A ,判断三角形的形状是( ) A .等腰三角形 B .直角三角形 C .等腰三角形或直角三角形 D .等腰直角三角形 [答案] C
[解析] 由正弦定理得sin2A tan B =sin2B tan A , sin A cos A =sin B cos B ,即sin2A =sin2B .
又因为A ,B ∈(0,π),所以A =B 或A +B =90°.
4.命题方向:正、余弦定理的综合应用
[例4] △ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且b 2+c 2-a 2
+bc =0.
(1)求角A 的大小;
(2)若a =3,求bc 的最大值;
(3)求
a sin (30°-C )
b -c
的值.
[分析] (1)由b 2
+c 2
-a 2
+bc =0的结构形式,可联想余弦定理,求出cos A ,进而求出A 的值.
(2)由a =3及b 2
+c 2
-a 2
+bc =0,可求出关于b ,c 的关系式,利用不等式即可求出bc 的最大值. (3)由正弦定理可实现将边化角的功能,从而达到化简求值的目的.
[解析] (1)∵cos A =b 2+c 2-a 22bc =-bc 2bc =-1
2

∴A =120°.
(2)由a =3,得b 2
+c 2
=3-bc .
又∵b 2
+c 2
≥2bc (当且仅当c =b 时取等号), ∴3-bc ≥2bc (当且仅当c =b 时取等号), 即当且仅当c =b =1时,bc 取得最大值为1. (3)由正弦定理,得a sin A =b sin B =c
sin C =2R , ∴
a
(30°-C )b -c =2R sin A (30°-C )
2R sin B -2R sin C
=
sin A
(30°-C )
sin B -sin C

32⎝ ⎛⎭
⎪⎫
12cos C -32sin C (60°-C )-sin C =34cos C -34sin C 32cos C -3
2
sin C =12.
跟踪练习4:在△ABC 中,A 、B 、C 所对的边长分别为a ,b ,c ,设a ,b ,c 满足条件b 2+c 2-bc =a 2和c b =1
2+3,
求A 和tan B 的值.
[解析] 由余弦定理cos A =b 2+c 2-a 22bc =bc 2bc =1
2

因此A =60°.
在△ABC 中,C =180°-A -B =120°-B . 由已知条件,应用正弦定理 12+3=c b =sin C
sin B
=-B sin B

sin120°cos B -cos120°sin B sin B =32cot B +1
2

解得cot B =2,从而tan B =1
2
.
(五)思想方法点拨
1.在利用正弦定理解决已知三角形的两边和其中一边的对角解三角形问题时,可能出现一解、两解或无解情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍.。

相关文档
最新文档