Hydrogen Generation from Water Electrolysisi by Photovaltaic Power
电解水煤浆制氢技术研究进展

2016年第35卷第10期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·3129·化工进展电解水煤浆制氢技术研究进展朱凌岳,王宝辉,吴红军(东北石油大学化学化工学院,新能源化学与环境科学实验室,黑龙江大庆 163318)摘要:电解水煤浆制氢在能源消耗与产氢效率上都更优于电解水过程,并且在电解过程中可以同时达到对矿石能源净化的目的,是一种十分值得推广与发展的产氢新技术。
本文在综述电解水煤浆技术现状及特点的基础上,阐述了电解水煤浆制氢技术的原理,并以此为理论基础概述了反应温度、电解质种类、样品预处理对电解水煤浆制氢的影响,综述了国内外电解水煤浆电极材料的研究进展,并对电解水煤浆技术的发展现状和存在的不足进行了分析与展望。
指出电解水煤浆技术发展的重点方向为:降低电解水煤浆过程中的能量消耗,多使用可再生能源;深入研究反应机理,提高产氢效率,实现化学能与电能耦合向氢能的转变;改善电极的稳定性和耐腐蚀性,使电极更加耐久并降低电极成本;通过研究新型催化电极与催化剂来提高反应的效率。
关键词:水煤浆;电解;电化学;制氢中图分类号:TQ 536 文献标志码:A 文章编号:1000–6613(2016)10–3129–07DOI:10.16085/j.issn.1000-6613.2016.10.016Review on electrochemical splitting of coal water slurry for hydrogenZHU Lingyue,WANG Baohui,WU Hongjun(Lab of New-Energy Chemistry & Environmental Science,School of Chemistry & Chemical Engineering,NortheastPetroleum University,Daqing 163318,Heilongjiang,China)Abstract:Hydrogen generation from coal water slurry,which has a better efficiency in hydrogen production from coal water slurry than water splitting as well as purification of fossil fuels,is a worth promoting technology of hydrogen production. The basic principle of coal water slurry electrolysis based on its characteristics and current situations was discussed in this paper. The effects of the temperature,electrolyte and pretreatment of the sample were summarized according to the reaction mechanism of the electrolysis. The progress of the research on electrode materials in the electrolysis of coal water slurry was reviewed,and the present situation of electrolysis of water coal slurry technology and the existing problems were analyzed and prospected. The key direction of technology development was pointed out:①The energy consumption in the process of electrolysis of coal water slurry was reduced and the renewable energy was maximize used;②The mechanisms and kinetics of the reaction have been studied deeply with the purpose of improving the efficiency of hydrogen production,chemical energy and electricity;③Improve the stability and corrosion resistance of the electrode to implement the durable and the low-cost of electrode;and ④The efficiency of the reaction was improved by studying the new catalytic electrode and catalyst.Key words:coal water slurry;electrolysis;electrochemistry;hydrogen production由于全球性的能源危机,发展新的能源供应战略势在必行,至此许多新的能源方案在紧锣密鼓的研究中。
电解水生产的氧气液化流程

电解水生产的氧气液化流程英文回答:Electrolysis is a process that uses an electric current to split water molecules into hydrogen and oxygen gas. In the production of liquid oxygen from electrolysis, several steps are involved.Firstly, water is purified to remove impurities that may interfere with the electrolysis process. This is done by passing the water through filters and ion exchange resins. The purified water is then stored in a tank.Next, the purified water is electrolyzed using an electrolysis cell. The cell consists of two electrodes, an anode and a cathode, which are submerged in the purified water. When an electric current is passed through the electrodes, water molecules are split into hydrogen gas at the cathode and oxygen gas at the anode.The hydrogen gas is collected and stored separately, as it is a valuable byproduct that can be used in various industries. The oxygen gas, on the other hand, is directed into a liquefaction unit.In the liquefaction unit, the oxygen gas is cooled and compressed to convert it into a liquid state. This is achieved by passing the gas through a series of heat exchangers and compressors. The heat exchangers remove heat from the gas, causing it to cool down, while the compressors increase the pressure of the gas.Once the oxygen gas has been cooled and compressed, it is passed through a distillation column. The distillation column separates the oxygen gas from any remaining impurities, such as trace amounts of nitrogen or argon. The purified liquid oxygen is then collected and stored in cryogenic storage tanks.中文回答:电解水是一种利用电流将水分子分解成氢气和氧气的过程。
电解水制氢中钌基电催化剂的研究进展

电解水制氢中钌基电催化剂的研究进展姚俊杰;唐佳易;杨志娟;陈建;孙迎辉【摘要】能源枯竭引发了寻找替代能源的热潮,氢气作为一种清洁能源引起了人们的广泛关注,尤其关注于电解水制取氢气,因此开发高效、稳定、廉价的电解水析氢的催化剂就成为研究热点.本文综述了铂(Pt)族元素中最便宜的钌和钌基材料作为高效电催化剂在电解水析氢反应中的研究进展,展望了钌和钌基材料在电解水析氢反应中的产业化应用前景.【期刊名称】《电池工业》【年(卷),期】2019(023)003【总页数】6页(P151-156)【关键词】氢析出反应;电催化剂;钌基材料;进展【作者】姚俊杰;唐佳易;杨志娟;陈建;孙迎辉【作者单位】苏州大学能源学院和能源与材料创新研究院,江苏苏州 215006;江苏省先进碳材料与可穿戴能源技术重点实验室,江苏苏州 215006;苏州大学能源学院和能源与材料创新研究院,江苏苏州 215006;江苏省先进碳材料与可穿戴能源技术重点实验室,江苏苏州 215006;山东科技大学机械电子工程学院,山东青岛 266590;山东科技大学机械电子工程学院,山东青岛 266590;苏州大学能源学院和能源与材料创新研究院,江苏苏州 215006;江苏省先进碳材料与可穿戴能源技术重点实验室,江苏苏州 215006【正文语种】中文【中图分类】TQ116.2+11 引言近年来,全球人口爆炸造成对不可再生的化石能源的需求逐年增长,日益短缺的化石能源的及其使用过程中对环境造成的污染等问题,促使人类急切地寻找新型能源来替代这种传统能源[1,2]。
目前发展的一些新型可再生能源有风能、潮汐能、核能、太阳能和氢能等,其中,氢能因其具有可再生、重量轻和热值高等优点在众多可再生能源中脱颖而出[3-5]。
如何高效低能耗的制备氢气也就成为发展氢能的研究重点之一[6-7]。
其中,环保清洁的电解水制氢是近年来高速发展的一种制氢方法[8-10]。
电解水的本质是水的分解,如图1所示是电解水的简单示意图。
水能 高中英语作文

水能高中英语作文Hydroenergy, derived from the kinetic and potential energy of moving water, has long been recognized as a sustainable and renewable source of power. Its widespread application and increasing significance in the global energy mix are testament to its reliability, efficiency, and environmental friendliness. This essay delves into the intricacies of hydroenergy, exploring its principles, advantages, and challenges, with a focus on its role in high school English education.**The Principles of Hydroenergy**Hydroenergy conversion involves harnessing the natural flow of water to generate electricity. This is achieved through two primary methods: hydroelectric dams and tidal energy converters. Hydroelectric dams, such as those found on rivers, use the force of falling water to turn turbines, which in turn generate electricity. On the other hand,tidal energy converters capitalize on the natural rise and fall of tides in coastal areas to produce power.**Advantages of Hydroenergy**The appeal of hydroenergy lies in its numerous advantages. Firstly, it is a renewable resource, meaning it can be replenished naturally, ensuring a sustainable supply of energy. Secondly, hydroenergy has a low carbon footprint, resulting in reduced greenhouse gas emissions and a smaller impact on climate change. Furthermore, it is a reliable source of power, as water flows are relatively consistent and can be predicted with accuracy. Lastly, hydroenergy can be harnessed in both rural and urban settings, providing a versatile solution for meeting energy needs.**Challenges of Hydroenergy**Despite its numerous advantages, hydroenergy faces several challenges that limit its widespread application. One significant hurdle is the high initial capital investment required for dam construction and turbine installation. Additionally, the environmental impact of dams, including displacement of local communities and disruption of ecological systems, cannot be overlooked. Furthermore, the geographical limitations of tidal energy converters restrict their deployment to coastal areas.**The Role of Hydroenergy in High School English Education**Incorporating hydroenergy into high school English curricula offers students an engaging and relevant way to learn about renewable energy. Through reading and writing activities centered around hydroenergy, students can gain a deeper understanding of its principles, advantages, and challenges. This not only enhances their knowledge of science and technology but also cultivates their critical thinking and analytical skills.Moreover, discussing hydroenergy in an English classroom promotes cross-curricular learning, allowing students to apply their knowledge of language arts to real-world issues. Such integrated approaches foster a comprehensive understanding of complex topics, preparing students for the challenges of the 21st century.**Conclusion**In conclusion, hydroenergy represents a promising and sustainable solution for meeting our energy needs. Its potential to generate clean and renewable power isessential in the fight against climate change andenvironmental degradation. By integrating hydroenergy into high school English education, we can empower the next generation with the knowledge and skills necessary to shape a sustainable future.**水能的潜力:全球视角**水能,源自流动水的动能和势能,长期以来一直被视为一种可持续和可再生的能源。
简述水电解制氢装置电极间的最佳间隙

Optimum Gap Betweer Electrodes in Hydrogen Production Unis by Water Electrolysis
LI Jie1 ,CHEN Wenli2
(1. Handan Tianhai Human Resources Co. , Ltd. , Handan 056107, China ; 2. Hydrooen Professional Committee,China Industrial Gases Industrg Association, Handan 056107, China)
第39卷第3期 2021 年 6 月
低温与特气 LowTempeaatuaeand SpecoaetzGases
VoL 39,No. 3 Jun. ,2021
简述水电解制氢装置电极间的最佳间隙
李洁1"陈文理2
(1.邯郸市天海人力资源有限公司,河北邯郸056107; 2.中国工业气体工业协会氢气专业委员会秘书处,河北邯郸056107)
密度相当高和电极间的间隙相当小,而电极间的孔 隙变得相当大,导致极间电阻增加,继而降低电解效 率。因此,可以认为存在最佳的极间间隙,水电解效 率和最佳极间间隙取决于电流密度和其它实验条 件。 3.2其他参数对水电解效率的影响
本节中将逐个讨论电极高度、系统温度、用或不 用隔膜、电极倾斜度和表面可湿性对水电解效率的 影响。 3.2.1电极高度
电解制氢效率影响明显。当电流密度较低(*=0.1 ~0.5 A/cm2)时,如果极间的间隙较小,其电压下 降。如果极间的间隙变得更紧密,极间的电阻基本 上是比较小的。如当电流密度相当高时,即超出 0.6 A/cm2,而极间的间隙接近小的空间(3=1-2 mm),电压则小幅增加。这种结果可解释为:当电流
析氢反应是还原反应

析氢反应是还原反应一、介绍析氢反应是一种常见的还原反应,也称为氢气的制备方法之一。
在这种反应中,氢气从某些化合物中释放出来,并与还原剂反应,生成氢气和其他产物。
析氢反应可以在实验室和工业上广泛应用,具有重要的科学研究和工程应用价值。
二、析氢反应的背景2.1 还原反应的基本概念还原反应是一种化学反应,通过向物质中引入电子来减少氧化态。
在还原反应中,通常会有一个还原剂和一个氧化剂。
还原剂是一种能够将电子提供给其他物质的化合物,而氧化剂则是一种能够接受电子的物质。
还原反应可以产生新的化合物,并伴随着电子的转移。
2.2 氢气的制备方法氢气是一种常见的化学物质,在许多工业和实验室应用中都起着重要作用。
氢气的制备方法有多种,包括析水电解法、化学反应法和生物法等。
析水电解法是一种常用的氢气制备方法,通过通电将水分解为氢气和氧气。
三、析氢反应的机理析氢反应根据所使用的化合物不同可以分为多种不同反应类型,以下是一些常见的析氢反应机理:3.1 酸性金属和酸反应这是一种常见的析氢反应类型,在这种反应中,酸性金属(如锌)与酸反应生成氢气。
反应的机理如下:1.酸性金属(如锌)与酸(如盐酸)反应;2.锌与盐酸生成氯化锌和氢气;3.氯化锌溶于水中形成氯化氢和锌离子。
3.2 醇和金属反应这种反应类型中,醇(如乙醇)与金属(如钠)反应生成氢气。
反应的机理如下:1.醇(如乙醇)和金属(如钠)反应;2.乙醇和钠反应生成氢气、醇盐和氧化钠。
3.3 氨类化合物的反应氨类化合物(如氢氨、氨水等)与金属或其他化合物反应也可以生成氢气。
反应的机理如下:1.氨类化合物(如氢氨、氨水)与金属或其他化合物反应;2.氨类化合物通过给予氢离子的方式与金属反应产生氢气和其他产物。
四、析氢反应的实际应用析氢反应在许多领域都有实际应用价值,以下列举了一些常见的应用场景:4.1 氢能源氢气作为一种清洁能源,被广泛应用于燃料电池车辆和能源存储系统中。
通过析氢反应制备氢气,可以提供持续、清洁的能源来源。
氢氧结合形成水的英语作文

氢氧结合形成水的英语作文Title: The Formation of Water through Hydrogen and Oxygen Bonding。
Water, the essence of life, is a simple yet fundamental compound composed of hydrogen and oxygen. The combination of these two elements leads to a fascinating process, ultimately resulting in the creation of water molecules. In this essay, we delve into the intricate chemistry behind the formation of water through hydrogen and oxygen bonding.At the heart of water formation lies the unique properties of hydrogen and oxygen atoms. Hydrogen, with its single electron, seeks to attain a stable state by sharing its electron with another atom. Oxygen, on the other hand, is eager to accept electrons to complete its outer shell. This sets the stage for a remarkable chemical reaction where hydrogen and oxygen atoms come together to form water molecules.The process begins with hydrogen molecules (H2) and oxygen molecules (O2) encountering each other. Undersuitable conditions, such as in the presence of energy input, these molecules undergo a reaction known ashydrogen-oxygen bonding or combustion. During this reaction, the double bonds between oxygen atoms in O2 molecules are broken, freeing oxygen atoms to bond with hydrogen atoms.The hydrogen-oxygen bonding process can be represented by the following equation:2H2 + O2 → 2H2O。
浅谈氢氧火焰切割在连铸的生产应用

浅谈氢氧火焰切割在连铸的生产应用作者:胡雪林于金辉郝良慧来源:《科技资讯》 2013年第22期作者简介:胡雪林(1973.8.2-)男,炼钢助理工程师,大专学历,1995年毕业于株洲冶金工业学校,现在河北邯宝炼钢厂从事设备点检工作。
胡雪林于金辉郝良慧(河北省邯郸市邯钢邯宝炼钢厂河北邯郸 056015)摘要:连铸坯氢氧火焰切割就是利用“水电解氢氧发生器”电解制取的氢氧混合气作为能源介质,取代传统的乙炔、丙烷等工业燃气,点火形成氢氧焰,氢氧焰火焰集中,温度高达2800度,燃烧强度仅次于乙炔而高于其它燃气,因而能快速切割连铸坯。
关键词:水电解氢氧发生器氢氧混合气回火中图分类号:TG4 文献标识码:A文章编号:1672-3791(2013)08(a)-0000-00Application of oxyhydrogen flame cutting in the continuous casting processHU Xue-lin, YU JIN-hui, HAO Liang-huiHanbao steel plant of Handan steel company, Hebei, 056003Abstract: Oxyhydrogen flame cutting in the continuous casting is use the gas which mixed by the hydrogen and oxygen get from the water electrolyze oxyhydrogen creator as the utility, instead of the traditional and industrialized gas such as the acetylene、dimethylmethane, then get the ignition oxyhydrogen flame, and the temperature get to 2800℃,the intensity of combustibility only lower than the acetylene, but higher than other gases, so it can cut the slab faster than before.Key words: the water electrolyze oxyhydrogen creator, the gas which mixed by the hydrogen and oxygen, backfire“连铸坯氢氧火焰切割技术”在1999年成功地应用于连铸坯火焰切割后,经过不断发展完善,目前已有100多台连铸机、450多流连铸坯使用了氢氧火焰切割。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Power: from photovoltaic power 供电:光伏发电
• H2 Storage in high pressure bottle 储氢:高压钢瓶
光伏发电水电解制氢介绍
8
Demand to Photovaltaic Power 对光伏电源的要求
• Alternating Current
Hydrogen Generation from Water Electrolysis by Photovaltaic Power 光伏发电水电解制氢
William Chen Jun 2020
Hydrogen Generation Main Commercial Methods 主要的商业制氢方法
光伏发电水电解制氢介绍
11
• Steam / ຫໍສະໝຸດ atural gas method 水蒸汽/天然气高温转化
CH4 + H2O -> CO + 3H2
光伏发电水电解制氢介绍
2
Electrolysis of Water 水电解制氢
光伏发电水电解制氢介绍
3
Natural Gas with Steam 天然气和水蒸气高温转化
光伏发电水电解制氢介绍
4
Methane Cracking 烷烃裂解
光伏发电水电解制氢介绍
5
Never Depleted Solar Energy & True Green Energy of Hydrogen 永不枯竭的太阳能和真正的清洁氢能源
• All foil energy such as coal, oil, natural gas will be depleted on earth, while solar energy is the energy never depleted. 地球上所有化石燃料如煤炭、石油、天然气都将被耗尽,而唯有 太阳能不会枯竭
• Raw Material water consumption is 804g/Nm3 H2 原料水消耗量为804克/标准立方氢气
光伏发电水电解制氢介绍
7
Project Plan 项目计划
• To construct a small commercial high purity dihydrogen unit package suitable for electrical industry application.
• By the cracking of methane 烷烃(甲烷)裂解 When natural gas is heated in the absence of air up to 700C, it decomposes to produce hydrogen.
CH4 -> C (solid) + 2H2 Byproduct: During cracking of methane "Carbon Black" is obtained as byproduct.
Cost and Power Demand in Electrolysis 水电解制氢成本和电能消耗
• Main cost of Hydrogen generation in electrolysis process is power cost 水电解制氢主要成本在电能消耗上,原材料消耗成本极低
• Average power consumption is 5 kWh/Nm3 Dihydrogen (H2) 目前工业化生产平均耗电量为:每标准立方氢气电耗为5千瓦时。
• By the electrolysis of water 水电解制氢 Water is a weak electrolyte .When an electrolyte(acid, base or a salt) is added to water, it conducts electricity. When electric current is passed, water dissociates into positive and negative ions. Hydrogen is collected at cathode and oxygen at anode.
• Hydrogen is the true green energy on earth. The only emission is water after combustion with oxygen. 氢气是地球上真正的绿色环保能源,氢气和氧气燃烧后唯一排放 物是水蒸汽。
光伏发电水电解制氢介绍
6
交流电
• Nominal voltage 380 – 400 V 额定电压 380 – 400 V
• Total Power capacity:
总额定功率:> 75 kW
• Electrolysis power capacity: ~ 50 kW, direct current, voltage 电解功率需求:~ 50 千瓦,直流,电压 28 ~ 56 V
建设一座小型商业化适合电子工业现场应用的高纯度氢气装置,
• Scale 10 Nm3 H2/hr 产气规模 10 标准立方氢气/小时 • H2 Purity > 99.999% 氢气纯度 > 99.999% • Process: Water electrolysis, with KOH 工艺采用水电解(KOH)
• Hydrogen compression power capacity: 氢压缩储存电力需求:~ 15 千瓦,交流,380 V
• Other power demand capacity:
其它电力需求:~ 10 千瓦,交流,220 V
• Operation mode: batch operation/continuous operation when sun light available
操作模式:可以间歇/连续操作,有充足阳光时
光伏发电水电解制氢介绍
9
光伏发电水电解制氢介绍
水 电 解 制 氢 和 制 氧 流 程 图
10
直接投资预算
• 主要投资预算为:
• 光伏发电和电流整流系统 • 水电解氢制氢系统(包括控制系统) • 氢气高纯度干燥和压缩储存系统 • 配套的土建以及钢结构等费用 • 少量原材料费用