桥梁桩基抗震动力特性分析验算

合集下载

公路桥梁抗震设计要点及计算分析

公路桥梁抗震设计要点及计算分析

公路桥梁抗震设计要点及计算分析随着交通运输的发展,公路桥梁作为交通网络的重要组成部分,对于地震力的抗震设计显得尤为重要。

公路桥梁抗震设计是为了保证桥梁结构在地震发生时能够充分发挥其承载力和变形能力,确保桥梁的安全性和稳定性。

以下是公路桥梁抗震设计要点及计算分析。

一、设计要点1.建立合理的地震动力学模型:对于公路桥梁的抗震设计,首先要进行地震动力学分析,建立桥梁结构的地震响应模型。

在进行地震动力学模型分析时,应考虑到地震动的频段特性、地震动的荷载形式以及土(场)基地效应等因素。

2.选择合适的荷载组合:在进行荷载组合时,应根据桥梁的结构形式和地震作用特点,选择合适的地震荷载组合。

地震荷载组合应包括惯性荷载、附加荷载和额外荷载等。

3.合理选取桥梁的抗震设防烈度:为了确保桥梁能够承受地震力的作用,应根据桥梁的使用功能和地震区的地震烈度等级,合理选取桥梁的抗震设防烈度。

设计时还应根据桥梁的结构形式、材料性能和施工工艺等因素,确定合理的安全等级。

4.合理选用桥梁结构形式及材料:在选择桥梁结构形式和材料时,应综合考虑桥梁的抗震性能和经济性。

一般情况下,对于长大桥、特大桥和重要桥梁等,应优先考虑采用抗震性能好的结构形式和高强度、高耐久性、高可靠性的材料。

5.合理设置桥梁的支承方式:在设计桥梁的支承方式时,应考虑地震作用对桥梁结构的影响,通过合理的支承方式来提高桥梁的抗震性能。

一般来说,采用承台-支座-桩基或橡胶支座等形式,可以有效减小桥梁结构的刚度和应力,并提高桥梁的整体稳定性。

二、计算分析1.地震荷载计算:地震荷载计算主要包括地震动力学分析和结构响应计算两个方面。

在地震动力学分析时,可以利用有限元法或有限差分法来建立桥梁结构的地震响应模型,计算得到地震荷载的频谱特性和时程特性。

在结构响应计算时,可以采用静力分析和动力分析相结合的方法,分析桥梁结构的变形、应力和位移等参数的变化情况。

2.桥梁抗震能力评估:在进行桥梁抗震设计时,应根据桥梁结构的抗震设防烈度和设计荷载等,进行桥梁的抗震能力评估。

桥梁桩基础抗震性能分析及工程设计中的应用

桥梁桩基础抗震性能分析及工程设计中的应用

第2期(总第156期)2003年4月山西交通科技SHANX I SC IENCE &TECHNOLOG Y OF COMM UN I CAT I ONS No .2Apr .收稿日期:2003201213作者简介:高凤昌(1950- ),男,山东莱芜人,副总工程师,高级工程师,1979年毕业于华北水电学院水工系。

桥梁桩基础抗震性能分析及工程设计中的应用高凤昌(太原市市政工程设计研究院,山西 太原 030002) 摘要:文章对桥梁桩基础抗震性能进行了较系统的论述,并根据工程设计中的应用,对多跨连拱桥制动墩的设置和对液化地基处理提出了新的见解,对桥梁设计工作可起借鉴作用。

关键词:桥梁;桩基;抗震性能;分析;工程;应用中图分类号:U 443.15 文献标识码:A 文章编号:100623528(2003)022*******引言在基础设施工程建设中,由于桩基能将上部结构荷载传到深层稳定的土层上去,从而大大减少基础沉降和建筑物不均匀沉降。

所以,桩基础在地震区、湿陷性黄土地区,软土地区、膨胀土地区以及冻土地区等,都被广泛采用,在公路、铁路和城市桥梁工程建设中,应用更为普遍。

实践证明,它是一种极为有效的、安全可靠的基础形式,尤其在抵御地震灾害中,起着非常重要的作用。

工程抗震最基本的原则是充分利用现代科学技术成就,寻求最佳的工程抗震设计和抗震措施,合理解决抗震安全与经济之间的矛盾。

桥梁工程是交通运输枢纽的重要组成部分,一旦毁于地震,城市或地区交通中断,致使机能瘫痪,使灾情进一步扩大。

所以,减轻桥梁震害,保证交通畅通,对及时恢复正常社会生产、生活秩序,具有十分重要的意义。

1 我国《公路工程抗震设计规范》提出的基本要求和假定条件现行的《公路工程抗震设计规范》(JTJ 004-89)适用于《中国地震烈度区划图(1990)》中所规定的基本烈度为 、 、 度地区的公路工程抗震设计。

对于基本烈度大于 度的地区,公路工程抗震设计应进行专门研究。

桥梁抗震分析、验算与延性构造措施

桥梁抗震分析、验算与延性构造措施
柱式墩由墩身自重在板式橡胶支座顶面产生的水平地震力
Ehp = S G h1 tp / g
6 抗震分析
在E2地震作用下,可按下式计算墩顶的顺桥向和横桥向水平位移:
Δd = cδ
δ
F
结构周期
c
T ≤ 0.1s
T ≥ Tg
0.1s ≤ T ≤ Tg 时
1.5 1.0 按线性插值求得
6 抗震分析
6.8 能力保护构件计算
6.4 反应谱法
6 抗震分析
m ax
m ax
m ax
T1
T2
T3
图 3.7 反 应 谱 概 念
m ax T4
m ax T5
φ ji m1
m2 m3
Fj1 Fj2 Fj3 Fji = γ jφ ji S j mi
6 抗震分析
..
.
..
[M ]{x(t)}+[C]{x(t)}+[K]{x(t)}= −[M ]{I}u{t}
Vs
= 0.1 Ak b Sk
f yh
≤ 0.067 ×
f
' c
Ae
7 强度与变形验算
7.4 B类、C类桥梁墩柱的变形验算
E2地震作用下,一般情况应验算潜在塑性铰区域沿顺桥向和 横桥向的塑性转动能力,但对于规则桥梁,验算桥墩墩顶的 位移,对于高宽比小于2.5的矮墩,验算强度。
7 强度与变形验算
E2地震作用下,桥墩潜在塑性铰区域沿顺桥向和横桥向的塑性转动 应满足:
N
∑ {x(t)} = {φ} j Yj (t) j =1
..
.
..
Yj (t) + 2ξ jω j Y j (t) + ω 2jYj (t) = −γ j u(t)

桥梁桩基础抗震性能试验研究综述

桥梁桩基础抗震性能试验研究综述

第26卷第5期2010年10月结构工程师St r uc t ur a l Eng i neer sV01.26,N o.5O et.2010桥梁桩基础抗震性能试验研究综述张德明+叶爱君(同济大学桥梁3-程系,上海200092)摘要对近几十年来国内外有关桩基弹塑性变形性能、土体对桩基的水平抗力特性以及同时考虑桩土及其相互作用时桩基抗震性能的试验研究现状做一梳理,以阐明国内外桥梁桩基抗震能力研究中已取得的成果,并对今后桥梁桩基抗震性能的试验研究重点提出几点建议。

关键词桥梁,桩基础,抗震性能,试验R e vi e w of E xper i m ent al R es ea r ch on Sei s m i cPe r f or m anc e of B r i dge Pi l e Foundat i onsZ H A N G D e m i ng+Y E A i jun(D epa rt m e nt of B r i d ge E ns i neef i ng,Tongj i U ni v er si t y。

Shang hai200092,C hi na)A bs t r act Thi s paper s um m ar i l y des cr i bes t he pre se nt st a t us of e xpe ri m ent al r ese a rch on i nel a st i c behavi o r of pi l e f ounda t i on and t he hor i zont a l s oil r e si s t anc e char act er i s t i c s.T e st s w i t h t he pres ence of bot h pi l e and s oil g O a8t o t a ke a c count of t he pil e—s oil i n t er a ct i o n ef f e ct s on pi l e f ounda t i on s ei sm i c perf or m ance ar e al so s um m ar i z ed.T he r esu l t s of pi l e f ounda t i on s ei sm i c perf or m an ce ar e r evi ew ed,and t he i m por t a nt pr obl em s i n f ut ur e r es ea rc h ar e pr opos ed.K eyw or ds br i dge,pi l e f oundat i on,s ei s m i c perf or m ance,experi m ental1引言桩基础是一种应用广泛的深基础形式,与其它形式的基础相比,能较好地适应复杂地质条件以及各种荷载情况,同时具有承载能力大、稳定性好、差异沉降小等优点,因而近年来在我国的城市高架桥、大型越江或跨海桥梁工程中得到了广泛应用。

桥梁结构动力特性分析

桥梁结构动力特性分析

桥梁结构动力特性分析桥梁结构是城市交通建设中必不可少的重要组成部分。

为了确保桥梁的安全性和可靠性,在设计和施工过程中,必须对桥梁的动力特性进行充分的分析。

本文将对桥梁结构的动力特性进行详细讨论,包括桥梁结构的固有频率、自由振动、强迫振动以及可能引起的共振现象等。

一、固有频率固有频率是指桥梁结构在没有外力作用的情况下,自身固有特性所具有的振动频率。

桥梁结构的固有频率是通过结构的质量、刚度和几何尺寸来确定的。

一般来说,桥梁的固有频率越高,结构的刚度越大,相应地,结构的稳定性和抗风、抗震能力也会更高。

二、自由振动自由振动是指桥梁结构在受到外力激励之前的自由振动行为。

当桥梁结构受到外力干扰后,会出现固有频率下的自由振动。

自由振动是桥梁在没有外力干扰下的自然振动,也是研究桥梁动力特性的重要基础。

三、强迫振动强迫振动是指桥梁结构在受到外力激励时的振动行为。

在桥梁的正常使用过程中,会受到行车荷载、风力、地震等各种外力的作用,从而引起结构的强迫振动。

通过对桥梁结构的强迫振动进行分析,可以评估结构的动力响应和力学性能。

四、共振现象共振是指外力激励频率与桥梁结构的固有频率非常接近,从而导致结构发生巨大振幅的现象。

共振是桥梁结构动力特性中非常重要和危险的现象,因为共振会导致结构的破坏和失效。

因此,在桥梁设计和施工过程中,必须避免共振的发生。

五、动力特性分析方法为了分析桥梁结构的动力特性,工程师们可以采用多种分析方法。

常见的方法包括模态分析、频率响应分析和时程分析等。

模态分析是通过计算桥梁结构的固有振型和固有频率来进行分析,可以预测结构在不同固有频率下的振动情况。

频率响应分析是通过施加频率变化的外力激励,来分析桥梁结构的响应情况。

时程分析是通过实测或模拟不同的时间历程,来研究桥梁结构在动力加载下的响应和变形情况。

六、桥梁结构动力特性在实际工程中的应用在实际桥梁工程中,准确分析桥梁结构的动力特性对于设计和施工至关重要。

首先,通过分析桥梁的固有频率和自由振动,可以确定结构的稳定性和抗风、抗震能力。

桥梁抗震分析报告

桥梁抗震分析报告

抗震分析报告
1. 模型的建立
采用有限元建立模型,主梁桥墩采用梁单元,考虑到地基条件采用墩底固结,在边墩处采用滑动支座,建立的计算模型见图1。

图1 结构动力计算模型
2. 动力特性:
结构动力特性描述见表1,重要振型的振型图见图2~5。

表1 结构振动周期和振型描述
图2 对称侧弯
图3 主墩纵向弯曲
图4 反对称侧弯
图5 主梁对称竖弯
3. 地震动的输入:
根据场地地质条件,地震动的输入偏安全的采用二类场地,根据《公路工程抗震设计规范》第4.2.3条,放大系数见图2。

地震设防烈度采用7度,水平地震系数K h根据《公路工程抗震设计规范》第1.0.8条采用0.1,竖向地震系数K v取K h/2,即0.05。

水平向和竖向采用相同的放大系数,如图6所示。

采用两种地震动输入方式:1)纵向+竖向;2)横向+竖
向,取前300阶,按CQC法进行组合,方向组合采用SRSS 法。

图6. 二类场地放大系数图
4. 桥梁构件的抗震性能:
1)关键构件部位的弹性地震力见表2
表2 关键构件部位的弹性地震力
注:对于桥墩1方向为竖向,2方向为纵桥向,3方向为横桥向;对于主梁1方向纵桥向,2方向为竖向,
3方向为横桥向。

2)关键构件部位的设计地震力
地震设计力F=Cz*Ci*F E,C z为综合影响系数,偏安全的取为1, C i为重要性修正系数, 《公路工程抗震设计规范》第1.0.4条采用1.7, F E为弹性地震力。

关键构件部位的设计地震力见表3。

表3 关键构件部位的设计地震力
3)关键部位位移见表4
表4 关键部位位移。

桥梁设计中的抗震性能分析

桥梁设计中的抗震性能分析

桥梁设计中的抗震性能分析桥梁作为交通运输的重要枢纽,在现代社会中发挥着不可或缺的作用。

然而,地震作为一种不可预测且破坏力巨大的自然灾害,对桥梁的安全构成了严重威胁。

因此,在桥梁设计中充分考虑抗震性能至关重要。

地震对桥梁的破坏形式多种多样。

常见的有桥梁结构的倒塌、桥墩的断裂、梁体的移位以及支座的损坏等。

这些破坏不仅会导致交通中断,还可能造成严重的人员伤亡和财产损失。

为了减少地震带来的危害,桥梁设计中的抗震性能分析就显得尤为重要。

首先,我们来了解一下影响桥梁抗震性能的因素。

桥梁的结构形式是一个关键因素。

不同的结构形式在地震中的表现差异较大。

例如,简支梁桥相对连续梁桥在抗震性能上可能会有所不同。

桥梁的跨度、墩高以及墩的形式也会对其抗震能力产生影响。

较长的跨度和较高的桥墩在地震作用下更容易产生较大的变形和内力。

地基条件也是不可忽视的因素之一。

软弱地基在地震时容易发生较大的变形,从而增加桥梁结构的地震响应。

而坚实的地基则能为桥梁提供更好的支撑,减小地震的影响。

材料的性能同样会影响桥梁的抗震性能。

高强度、高韧性的材料能够更好地承受地震作用下的应力和变形。

在桥梁设计中,抗震设计方法主要包括静力法、反应谱法和时程分析法。

静力法是一种较为简单的方法,但它过于保守,不能准确反映地震的动态特性。

反应谱法考虑了结构的动力特性,能够较为合理地评估结构在地震作用下的响应。

时程分析法则通过直接输入地震波,对结构进行动态分析,可以更精确地模拟地震对桥梁的作用过程。

为了提高桥梁的抗震性能,在设计中通常会采取一系列的措施。

合理的桥梁布局是基础。

例如,尽量使桥梁的质量和刚度分布均匀,避免出现局部薄弱环节。

加强桥墩和桥台的设计,增加其强度和延性。

采用减隔震装置也是一种有效的手段。

常见的减隔震装置有橡胶支座、铅芯橡胶支座等,它们能够有效地减小地震传递到桥梁结构上的能量。

此外,对桥梁进行抗震验算也是必不可少的环节。

通过计算结构在地震作用下的内力和变形,确保其满足抗震要求。

桥梁抗震性能的理论与实验研究

桥梁抗震性能的理论与实验研究

桥梁抗震性能的理论与实验研究桥梁作为交通运输的重要枢纽,在地震发生时其安全性至关重要。

地震可能导致桥梁结构的损坏甚至倒塌,不仅会造成巨大的经济损失,还会威胁到人们的生命安全。

因此,对桥梁抗震性能的研究具有极其重要的意义。

桥梁抗震性能的理论研究是一个复杂而系统的工程。

首先,需要对地震波的特性进行深入分析。

地震波在传播过程中具有不同的频率、振幅和相位,这些因素都会对桥梁结构产生不同程度的影响。

通过对地震波的频谱分析,可以了解其能量分布情况,从而为桥梁的抗震设计提供基础。

在理论研究中,结构动力学是一个关键的领域。

桥梁结构在地震作用下会产生振动,而结构动力学则研究这种振动的规律和特性。

通过建立桥梁结构的数学模型,可以计算出结构的自振频率、振型等动力特性。

这些参数对于评估桥梁在地震中的响应至关重要。

另外,材料力学在桥梁抗震理论中也起着重要作用。

桥梁所使用的材料,如钢材、混凝土等,在地震作用下会表现出不同的力学性能。

研究这些材料在复杂应力状态下的强度、变形和破坏模式,有助于更准确地预测桥梁结构的抗震能力。

有限元分析方法是目前桥梁抗震理论研究中常用的工具之一。

它可以将复杂的桥梁结构离散为多个单元,通过求解方程组来计算结构在地震作用下的响应。

利用有限元软件,可以模拟不同类型的桥梁结构、不同的地震工况,从而为设计提供详细的分析结果。

除了理论研究,实验研究也是评估桥梁抗震性能的重要手段。

振动台实验是其中一种常见的方法。

通过将桥梁模型放置在振动台上,施加模拟的地震波,可以直观地观察桥梁结构的振动情况和破坏模式。

在实验中,模型的制作至关重要。

模型需要按照一定的相似比例缩小,同时要保证材料特性和结构细节的相似性。

这样才能使实验结果能够准确反映实际桥梁的抗震性能。

另外,传感器的布置也是实验中的关键环节。

通过在桥梁模型的关键部位布置位移传感器、加速度传感器等,可以获取结构在地震作用下的位移、加速度等数据,为分析结构的响应提供依据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

桥梁桩基抗震动力特性分析验算
摘要:模拟地震作用下,桥梁的桩土相互作用机理,从而对桩基进行抗震分析与抗震验算。

应用有限单元程序midas/civil与xtract软件分别建立有限元模型及桩基的弯矩与曲率关系,模拟地震作用时,桩基的动力特性反应,并检验是否满足设计与规范要求。

关键词:桥梁桩基抗震动力特性
中图分类号:u4 文献标识码:a 文章编号:1007-0745(2013)06-0144-01
桩基础在公路、铁路和城市桥梁工程建设中被普遍采用。

其抗震性能作为桥梁整体结构抗震中最重要的一项,对提高结构抗震性能,减轻震害有着重要的影响。

对桩基动态特性进行分析时,考虑桩土相互作用,根据m法对桩基土弹簧进行模拟,得出地震力作用下桩基础的水平力、弯矩以及剪力。

另外根据桩基的实际尺寸、配筋以及实际受力等状态拟定出桩基的弯矩与曲率关系图,计算出构件的承载值。

从而与地震作用下的荷载对照,对桩基抗震进行精确的分析与验算。

1、工程概述
巢湖市跨后河河口大桥上部结构为(42.5+69.48+42.5)m变截面连续梁,由中间单箱双室梁及两侧单箱单室梁组成。

支座采用gxp 盆式支座,下部结构桥墩和桩基础采用c30混凝土,普通钢筋采用r235和hrb335钢筋。

1号、2号墩桩基长35m,直径1.3m。

地基土层从上之下有,粉质粘土层,细砂层,卵石层、漂卵石层以及强分
化千枚岩层。

2、有限元模型分析与验算
2.1 结构抗震模型前处理
全桥的各构件共有1700个单元,1703个节点构成。

盆式橡胶支座考虑初始刚度影响,依据规范《公路桥梁抗震细则 jtg
b02-01-2008》6.3.7条计算和取值,采用弹性连接模拟。

桩土相互作用用土弹簧模拟,忽略阻尼和刚度特性的影响。

根据地基土层特性,通过“m”法计算桩基节点弹性支撑的顺桥向刚度与横桥向刚度。

巢湖市地震基本烈度为ⅶ度,地震反谱特征周期为0.35s,地震动峰值加速度值为0.10g,模态叠加时采用cqc法。

建立地震反应谱曲线e1、e2,对结构进行反应谱分析。

2.2结构抗震模型后处理
(1)荷载标准:永久作用包括自重与二期恒载,偶然作用包括7度烈度e1和e2地震作用下加速度反应谱。

荷载组合如下:
组合ⅰ:恒载+e1纵向与竖向作用组合;组合ⅱ:恒载+e1横向与竖向作用组合;组合ⅲ:恒载+e2纵向与竖向作用组合;组合ⅳ:恒载+e2横向与竖向作用组合。

竖向输入取为水平向输入反应谱的1/2 。

(2)荷载作用下内力值
选取1#、2#墩桩基顶端与承台结合处截面1、2为桩基最不利截面。

通过模拟软件,分别计算各工况下截面内力值。

(3)桩基抗震验算
根据地震作用下桩基的实际轴力值,通过xtrct软件,拟定桩基的弯矩与曲率变化关系,得到初始屈服弯矩与等效屈服弯矩值[4]。

桩基的抗剪承载性能通过加州规范中计算圆形截面抗剪公式[5]。

注:在e1地震作用下,屈服弯矩为初始弯矩值;e2地震作用下,屈服弯矩为等效弯矩值。

由上述验算,通过对桩基动力分析,得到以下结论:在e1地震作用下的结构安全系数均大于1;在e2地震作用下结构安全系数均大于1,结构满足e1及e2地震作用下的抗震性能要求。

3、结论
(1)桥梁桩基抗震前期模型模拟中,要注重对支座的准确模拟。

盆式支座可根据其临界活动摩擦力,采用理想弹塑形弹簧单元模拟。

(2)m法对桩基土弹簧进行模拟,要根据实际的土层地质勘测材料。

才能较真实地模拟出地震作用下的桩土相互作用。

(3)地震作用下的桩基内力值,在输入e2反应谱作用时达最大值。

所以桥梁桩基抗震内力应有e2控制。

参考文献:
[1]公路桥涵抗震设计细则jtg/t b02-01-2008,人民交通出版社,2008
[2]邱顺东.桥梁工程软件midas civil 常见问题解答[m].北京:
人民交通出版社,2009
[3]赵凯,桥梁桩基基础的刚度计算及有限元模拟,engappp-003,2009
[4]杨红.地震作用下基于节点弯矩平衡方式的框架柱屈服机理
分析,重庆建筑大学学报,2000
[5]刘同焰.圆形截面混凝土结构抗剪承载力计算方法探.合肥工业大学出版社,2007。

相关文档
最新文档