机器人创新实验智能巡线小车报告
智能寻迹小车实验报告

DIY达人赛基于STC89C52单片机智能寻迹小车实验报告参赛队伍:队员:2014年4月一、引言我们所处的这个时代是信息革命的时代,各种新技术、新思想层出不穷,纵观世界范围内智能汽车技术的发展,每一次新的进步无不是受新技术新思想的推动。
随着汽车工业的迅速发展,传统的汽车的发展逐渐趋于饱和。
伴随着电子技术和嵌入式技术的迅猛发展,这使得汽车日渐走向智能化。
智能汽车由原先的驾驶更加简单更加安全更加舒适,逐渐的向智能驾驶系统方向发展。
智能驾驶系统相当于智能机器人,能代替人驾驶汽车。
它主要是通过安装在前后保险杠及两侧的红外线摄像机,对汽车前后左右一定区域进行不停地扫描和监视。
计算机、电子地图和光化学传感器等对红外线摄像机传来的信号进行分析计算,并根据道路交通信息管理系统传来的交通信息,代替人的大脑发出指令,指挥执行系统操作汽车。
1、来源汽车的智能化是21 世纪汽车产业的核心竞争力之一。
汽车的智能化是以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科交叉的科技。
2、智能汽车国外发展情况从20 世纪70 年代开始,美国、英国、德国等发达国家开始进行无人驾驶汽车的研究,目前在可行性和实用化方面都取得了突破性的进展。
目前日本、欧美已有企业取得实用化成果。
与国外相比,国内在智能车辆方面的研究起步较晚,规模较小,开展这方面研究工作的单位主要是一些大学和研究所,如国防科技大学、清华大学、吉林大学、北京理工大学、长安大学、沈阳自动化所等。
我国从20 世纪80 年代开始进行无人驾驶汽车的研究,国防科技大学在1992 年成功研制出我国第一辆真正意义上的无人驾驶汽车。
先后研制出四代无人驾驶汽车。
第四代全自主无人驾驶汽车于2000 年 6 月在长沙市绕城高速公路上进行了全自主无人驾驶试验,试验最高时速达到75.6Km/h。
3、我们的小车我们做的是基于STC89C52单片机开发,主要是研究3 轮小车的路径识别及其遥控运动。
智能循迹小车实验报告

智能循迹小车实验报告第一篇:智能循迹小车实验报告摘要本设计主要有单片机模块、传感器模块、电机驱动模块以及电源模块组成,小车具有自主寻迹的功能。
本次设计采用STC公司的89C52单片机作为控制芯片,传感器模块采用红外光电对管和比较器实现,能够轻松识别黑白两色路面,同时具有抗环境干扰能力,电机模块由L298N芯片和两个直流电机构成,组成了智能车的动力系统,电源采用7.2V的直流电池,经过系统组装,从而实现了小车的自动循迹的功能。
关键词智能小车单片机红外光对管 STC89C52 L298N 1 绪论随着科学技术的发展,机器人的设计越来越精细,功能越来越复杂,智能小车作为其的一个分支,也在不断发展。
在近几年的电子设计大赛中,关于小车的智能化功能的实现也多种多样,因此本次我们也打算设计一智能小车,使其能自动识别预制道路,按照设计的道路自行寻迹。
设计任务与要求采用MCS-51单片机为控制芯片(也可采用其他的芯片),红外对管为识别器件、步进电机为行进部件,设计出一个能够识别以白底为道路色,宽度10mm左右的黑色胶带制作的不规则的封闭曲线为引导轨迹并能沿该轨迹行进的智能寻迹机器小车。
方案设计与方案选择3.1 硬件部分可分为四个模块:单片机模块、传感器模块、电机驱动模块以及电源模块。
3.1.1 单片机模块为小车运行的核心部件,起控制小车的所有运行状态的作用。
由于以前自己开发板使用的是ATMEL公司的STC89C52,所以让然选择这个芯片作为控制核心部件。
STC89C52是一种低损耗、高性能、CMOS八位微处理器,片内有4k字节的在线可重复编程、快速擦除快速写入程序的存储器,能重复写入/擦除1000次,数据保存时间为十年。
其程序和数据存储是分开的。
3.1.2 传感器模块方案一:使用光敏电阻组成光敏探测器采集路面信息。
阻值经过比较器输出高低电平进行分析,但是光照影响很大,不能稳定工作。
方案二:使用光电传感器来采集路面信息。
巡线小车 实验报告

巡线小车实验报告巡线小车实验报告引言:巡线小车是一种能够自主巡线的机器人,它能够通过感知地面上的线条,进行自主导航和行动。
本实验旨在探索巡线小车的工作原理和应用场景,并通过实际操控巡线小车,验证其性能和功能。
一、巡线小车的原理巡线小车的核心原理是利用光电传感器感知地面上的线条,并通过控制电机的转速和方向,实现自主巡线。
在巡线小车的底部,安装有一组光电传感器,它们能够感知地面上的亮度变化。
当小车行驶在线条上时,光电传感器会感知到线条的亮度高于周围环境,从而根据传感器的输出信号来控制电机的运动。
二、巡线小车的搭建和调试为了搭建巡线小车,我们首先需要准备一台底盘,然后在底盘上安装电机和光电传感器。
接下来,我们需要使用电路板将电机和光电传感器与主控制器连接起来。
在连接完成后,我们需要编写控制程序,并将其烧录到主控制器中。
在调试过程中,我们需要根据实际情况调整光电传感器的灵敏度和阈值,以确保巡线小车能够准确地感知线条。
此外,我们还需要调整电机的转速和方向,以确保巡线小车能够沿着线条正确行驶。
通过不断的调试和优化,我们最终成功搭建了一台能够自主巡线的小车。
三、巡线小车的应用场景巡线小车具有广泛的应用场景。
首先,它可以应用于工业生产线上的物料搬运,通过巡线小车的自主导航能力,可以实现物料的自动搬运和分拣,提高生产效率。
其次,巡线小车还可以应用于仓库管理和物流配送。
它能够根据线条进行导航,自动将货物从仓库中取出,并将其送到指定的位置,大大降低了人力成本和运营风险。
此外,巡线小车还可以应用于智能家居领域。
通过在家中铺设线条,巡线小车可以自主巡逻,检测家居环境是否安全,并及时报警。
同时,巡线小车还可以帮助家庭成员寻找遗失的物品,提高生活的便利性。
结论:通过本次实验,我们深入了解了巡线小车的工作原理和应用场景。
巡线小车作为一种具有自主导航能力的机器人,具有广泛的应用前景。
未来,随着技术的不断进步和创新,巡线小车将在各个领域发挥更加重要的作用,为人们的生活带来更多的便利和效益。
智能小车实验报告心得(3篇)

第1篇一、引言随着科技的不断发展,人工智能技术逐渐渗透到我们生活的方方面面。
作为人工智能的一个典型应用,智能小车实验为我们提供了一个将理论知识与实践操作相结合的平台。
在本次智能小车实验中,我深刻体会到了理论知识的重要性,同时也感受到了动手实践带来的乐趣和成就感。
以下是我对本次实验的心得体会。
二、实验目的本次实验旨在通过设计、搭建和调试智能小车,让学生掌握以下知识:1. 传感器原理及在智能小车中的应用;2. 单片机编程及接口技术;3. 电机驱动及控制;4. PID控制算法在智能小车中的应用。
三、实验过程1. 设计阶段在设计阶段,我们首先对智能小车的功能进行了详细规划,包括自动避障、巡线、遥控等功能。
然后,根据功能需求,选择了合适的传感器、单片机、电机驱动器等硬件设备。
2. 搭建阶段在搭建阶段,我们按照设计图纸,将各个模块连接起来。
在连接过程中,我们遇到了一些问题,如电路板布局不合理、连接线过多等。
通过查阅资料、请教老师,我们逐步解决了这些问题。
3. 编程阶段编程阶段是本次实验的核心环节。
我们采用C语言对单片机进行编程,实现了小车的基本功能。
在编程过程中,我们遇到了许多挑战,如传感器数据处理、电机控制算法等。
通过查阅资料、反复调试,我们最终完成了编程任务。
4. 调试阶段调试阶段是检验实验成果的关键环节。
在调试过程中,我们对小车的各项功能进行了测试,包括避障、巡线、遥控等。
在测试过程中,我们发现了一些问题,如避障效果不稳定、巡线精度不高、遥控距离有限等。
针对这些问题,我们再次查阅资料、调整程序,逐步优化了小车的性能。
四、心得体会1. 理论与实践相结合本次实验让我深刻体会到了理论与实践相结合的重要性。
在实验过程中,我们不仅学习了理论知识,还通过实际操作,将所学知识应用于实践,提高了自己的动手能力。
2. 团队合作在实验过程中,我们充分发挥了团队合作精神。
在遇到问题时,我们互相帮助、共同探讨解决方案,最终完成了实验任务。
d25巡线小车实训报告

d25巡线小车实训报告一、引言巡线小车是一种能够沿着指定线路自主行驶的智能机器人,广泛应用于工业自动化、仓储物流等领域。
本实训报告将详细介绍d25巡线小车的设计原理、实验步骤和实验结果,以及对其性能的评估。
二、设计原理d25巡线小车采用了红外线传感器来检测地面上的黑线,通过对传感器信号的处理,可以确定小车应该向左转、向右转还是保持直行。
小车的控制系统基于单片机,通过PWM信号控制电机的转速和方向,从而实现小车的运动控制。
三、实验步骤1. 硬件搭建我们需要按照指导手册上的要求,将d25巡线小车的各个零部件组装起来。
这包括安装电机、红外线传感器、电池等。
在组装过程中,需要注意零部件的连接方式和安装位置,确保小车能够正常运行。
2. 系统调试完成硬件搭建后,我们需要对小车的控制系统进行调试。
首先,将小车连接到电脑上,通过编程软件对单片机进行烧录,确保程序能够正确运行。
然后,将小车放置在黑线上,观察传感器的输出信号是否能够准确地检测到黑线。
3. 运动控制在系统调试完成后,我们可以开始进行小车的运动控制实验。
首先,编写控制程序,根据传感器的输出信号来确定小车的运动方向。
然后,将小车放置在一条弯曲的黑线上,观察小车能否按照预期的路径进行行驶。
4. 性能评估为了评估d25巡线小车的性能,我们可以进行一系列的实验。
例如,可以测试小车在不同颜色和宽度的线路上的行驶稳定性;可以测试小车在不同角度的转弯时的准确性;还可以测试小车在不同速度下的响应能力等。
通过这些实验,我们可以了解小车的性能表现,并对其进行改进和优化。
四、实验结果经过一系列的实验,我们得到了如下的实验结果:1. d25巡线小车可以准确地检测到黑线,并按照预期的路径进行行驶。
2. 小车在直线行驶时稳定性较好,但在转弯时可能会有一定的偏差。
3. 小车对于较宽的黑线和较深的颜色有较好的识别能力,但对于较窄的黑线和较浅的颜色可能会有一定的误判。
五、性能评估与改进根据实验结果,我们可以评估d25巡线小车的性能,并提出一些改进措施。
智能小车实习报告

随着科技的不断发展,智能化技术逐渐渗透到各个领域,智能小车作为人工智能技术在工业、农业、军事、医疗卫生和宇宙探测等领域的重要应用之一,受到了广泛关注。
为了更好地了解和掌握智能小车的相关知识,提高自身的实践能力,我参加了为期一个月的智能小车实习。
二、实习目的1. 学习智能小车的原理和设计方法,掌握智能小车的构造和性能。
2. 了解智能小车在各个领域的应用,提高自身的创新意识和实践能力。
3. 通过实际操作,培养团队协作精神和动手能力。
三、实习内容1. 智能小车基础知识学习实习初期,我们学习了智能小车的定义、分类、组成及工作原理。
智能小车主要由传感器、控制器、执行器、电源和通信模块等组成。
传感器负责收集环境信息,控制器根据收集到的信息进行决策,执行器执行控制器的决策,电源为整个系统提供能量,通信模块实现与其他设备或系统的数据交换。
2. 智能小车硬件设计在硬件设计方面,我们学习了传感器选型、电路设计、电机驱动和电源设计等。
传感器选型主要包括红外传感器、超声波传感器、光电传感器等;电路设计包括单片机电路、驱动电路和电源电路等;电机驱动主要采用L298N驱动模块;电源设计主要考虑电池容量、电压和电流等。
3. 智能小车软件设计软件设计是智能小车实现功能的关键环节。
我们学习了单片机编程语言C语言,掌握了中断、定时器、串口通信等编程技巧。
在软件设计过程中,我们实现了小车的前进、后退、左转、右转、循迹和避障等功能。
4. 智能小车系统集成与调试在系统集成与调试阶段,我们将硬件和软件相结合,完成了小车各个模块的连接和调试。
通过不断调整参数,使小车能够稳定运行,实现了预期的功能。
通过本次实习,我们成功设计并实现了一款基于AT89C52单片机的智能小车。
该小车具备以下功能:1. 循迹功能:小车能够自动跟随黑线前进,实现自动循迹。
2. 避障功能:小车能够检测到前方障碍物,自动避开障碍物。
3. 远程控制功能:通过蓝牙模块,可以实现手机远程控制小车的前进、后退、左转、右转等功能。
巡迹小车实验报告

巡迹小车实验报告摘要:1.实验背景与目的2.实验设备与材料3.实验步骤与方法4.实验结果与分析5.实验结论与展望正文:一、实验背景与目的随着科技的快速发展,智能小车在物流、仓储等领域的应用越来越广泛。
为了提高小车的路径规划和自主导航能力,研究者们开展了许多实验。
本次实验旨在通过设计一款具有自主寻迹能力的小车,验证其路径跟踪精度和速度,为进一步优化和应用提供参考。
二、实验设备与材料1.小车底盘:采用常见的Arduino 开发板和直流电机驱动,配以车轮组件;2.电子元件:包括Arduino 开发板、电机驱动模块、电池、开关、传感器等;3.软件工具:使用Arduino IDE 编程环境进行程序开发。
三、实验步骤与方法1.搭建小车底盘:根据电路图和设计方案,将电子元件连接到Arduino开发板上,并将电机驱动模块与车轮组件相连;2.编写程序:利用Arduino IDE 编写程序,实现小车的路径跟踪功能;3.测试实验:将小车放置在预设的轨迹上,运行程序,观察小车是否能准确地跟踪轨迹。
四、实验结果与分析实验结果显示,小车能够准确地跟踪预设轨迹,且路径跟踪精度和速度均达到了预期目标。
通过对实验数据的分析,可以得出以下结论:1.小车底盘设计合理,能够满足路径跟踪的需求;2.程序设计有效,实现了小车的自主寻迹功能;3.实验结果表明,小车在实际应用中具有较高的可行性和可靠性。
五、实验结论与展望本次实验成功地设计并实现了一款具有自主寻迹能力的小车。
实验结果表明,小车具备较高的路径跟踪精度和速度,为进一步研究和应用提供了有力支持。
机器人创新实验智能巡线小车报告

实验报告(理工类)课程名称: 机器人创新实验课程代码: 106003199 学生所在学院: 机械工程学院年级/专业/班: 2014级机电一班学生姓名: 学号: 实验总成绩: 任课教师: 韦兴平开课学院: 机械工程学院实验中心名称: 机械工程基础实验中心一设计题目利用Arduino设计搭建智能巡线小车二小组成员分工姓名学号班级任务分工袁成3120140106114 机电一班原理分析黄博3120140106121 机电一班组装与程序分析代博3120140106107 机电一班测试与程序编写龙历3120140106126 机电一班程序导入与修正查垚润3120140106132 机电一班维护与报告撰写三实验内容(图文记录平时上课关键知识)1、小灯延时闪烁实验:小灯延时一秒闪烁一次,指令:delay(xx)。
应用举例:delay(500); // 延迟500ms。
2、呼吸灯实验:使小灯忽明忽暗,延时300ms。
3、串口通信监视实验:(1.按实验一的步骤把开发板连到PC机上;(2.采用杜邦线把红外探头VCC和GND分别连接到开发板的5V和地,OUT端连到开发板的任意一个模拟量输入端口;(3.设置对应的模拟量输入端口为输入模式;(4.读取模拟量端口的值;(5.打开串口并设置波特率;(6.打开串口监视器,拿一物体遮挡在红外探头前方并移动,观察串口监视器中读取的模拟量值是否变化;(7.观察串口监视器界面的运行结果,如不符合预期设计要求,则重复修改及下载程序,直到符合要求为止。
指令:Serial.begin(xx)。
打开串口并设置通信波特率。
应用举例:Serial.begin(9600) ; //打开串口并设置通信波特率为9600。
指令:Serial.println(val)。
在串口监视器中显示变量val的值。
应用举例:Serial.println(val) ; //在串口监视器中显示变量val的值。
4、红外线对管实验:前端红外探头输出是模拟电压,中控板通过电压比较器LM339模拟电压转化为高电平或者低电平两种结果,便于程序进行判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告(理工类)课程名称: 机器人创新实验课程代码:学生所在学院: 机械工程学院年级/专业/班: 2014级机电一班学生姓名:学号:实验总成绩:任课教师: 韦兴平开课学院: 机械工程学院实验中心名称: 机械工程基础实验中心一设计题目利用Arduino设计搭建智能巡线小车二小组成员分工姓名学号班级任务分工袁成三实验内容(图文记录平时上课关键知识)1、小灯延时闪烁实验:小灯延时一秒闪烁一次,指令:delay(xx)。
应用举例:delay(500); 实验一的步骤把开发板连到PC机上;(2.采用杜邦线把红外探头VCC和GND分别连接到开发板的5V和地,OUT端连到开发板的任意一个模拟量输入端口;(3.设置对应的模拟量输入端口为输入模式;(4.读取模拟量端口的值;(5.打开串口并设置波特率;(6.打开串口监视器,拿一物体遮挡在红外探头前方并移动,观察串口监视器中读取的模拟量值是否变化;(7.观察串口监视器界面的运行结果,如不符合预期设计要求,则重复修改及下载程序,直到符合要求为止。
指令:(xx)。
打开串口并设置通信波特率。
应用举例:(9600) ; //打开串口并设置通信波特率为9600。
指令:(val)。
在串口监视器中显示变量val的值。
应用举例:(val) ; //在串口监视器中显示变量val的值。
3、红外线对管实验:前端红外探头输出是模拟电压,中控板通过电压比较器LM339模拟电压转化为高电平或者低电平两种结果,便于程序进行判断。
以第一路红外探头来说明它的工作原理,IN1-为可调电阻调节的电压输入端,IN+为探头输出的电压,当IN1-大于 IN+电压时,对应的OUT1输出电压接近0V,此时,第一路的LED灯亮;当IN1-小于 IN+电压时,对应的OUT1输出电压接近5V,第一路的LED灯灭。
调节可调电阻旋钮,可以改变IN-参考电压值。
指令:pinMode(pin, mode)。
将一个引脚配置成输入或者输出模式。
应用举例:pinMode(7, INPUT); // 将引脚7定义为输入接口;pinMode(5, OUTPUT); // 将引脚7定义为输出接口。
指令:int analogRead(pin)。
读取模拟输入引脚的值,并将其表示为0至1023之间的数值,对应0至5V的电压。
应用举例:val = analogRead(0); // 读取模拟接口0的值,并赋值给val。
4、超声波测距实验:超声波距离测试。
6、小车循迹实验四最终作品设计方案(图文说明设计作品原理)(20分)1、小车循迹原理巡线小车红巡线原理采用了红外线探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。
单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。
红外探测器探测距离有限,一般最大不应超过3cm。
2、设计要求(1)自动寻迹小车从安全区域启动。
(2)小车按指定路线运行,自动区分直线轨道和弯路轨道,在指定弯路处拐弯,实现灵活前进、转弯、倒退等功能,在轨道上划出设定的地图。
(3)小车完成指定运行任务后,停止在终点位置上。
3、主体设计我们制定了左右两边分别用一个电机驱动的方案,即左边和右边的轮子分别用一个转速和力矩基本完全相同的直流减速电机进行驱动。
当小车需要直线前进时,两个电动机同时正转,实现直线前进。
当小车左边传感器检测到黑线时即需要左转时,此时左轮反转,右轮正转,实现一个差速,达到向左转向的目的。
当小车右边传感器检测到黑线时,即小车需要右转,即右边车轮反转,左边车轮正转,达到向右转向的目的。
五最终作品设计步骤(图文说明设计作品实现过程)1、确定小车主要各零部件:底盘1片车轮2个测速码盘2个减速直流电机2个4节5号电池盒1只(并排)万向轮1只船型开关1只紧固件4片螺丝、螺母、铜柱、杜邦线若干四路红外循迹/循迹模块1个电机驱动扩展板L293D 1个UNO R3开发板1个HC-SR04超声波模块1个2、确定各部件位置,根据拟定方案组装小车:(1、先把小车底板、紧固件、码盘的黄色保护纸撕掉,然后把紧固件插入小车底板。
(2、安装码盘,并把电机固定于底板。
码盘轴心一面大一面小,大的一面往电机轴插。
注意:电机引线铜片朝向内侧,即码盘一侧。
(3、插入螺丝,把电机固定到小车底板,并拧上螺帽。
(4、插入螺丝,固定电池盒。
(5、放入铜柱,拧入螺丝固定万向轮,手捏入电机并往里面插入轮子。
(6、用锡丝焊接排针,组合UNO R3开发板和电机驱动扩展板L293D。
(7、用杜邦线连接四路红外循迹/循迹模块与电机驱动扩展板L293D,并把两个红外感应安装在小车前端各左右两侧。
(8、用锡丝和杜邦线,焊接船型开关与4节5号电池盒,焊接两个电机与电机驱动扩展板L293D。
(9、编程进行调试检查,观察小车电机,红外感应,开发板及扩展板是否正常工作。
(10、若有零件或连线松动,重新组装或焊接。
(11、检查一切无误,则组装完成,可进行下一步实验。
六最终作品展示(图片及性能描述)红外感应障碍实验:小车在桌子上正常行驶,当到达桌子边缘,因为红外探测器探测距离有限,不超过3cm,小车前端的红外线感应接收不到红外光时,小车左轮右轮反转,后退行驶。
矩形循迹实验:驱动电机使小车在地面直线行驶,延时一段时间,左轮反转,右轮正转,程序循环而形成一个矩形循迹行驶。
最终循迹实验:小车从A点出发,经过黑线轨迹到达B点。
小车直线前进时,两个电动机同时正转,实现直线前进。
当小车左边传感器检测到黑线时,即小车需要左转时,此时左轮反转,右轮正转,实现一个差速,达到向左转向的目的。
当小车右边传感器检测到黑线时,即小车需要右转时,此时右边车轮反转,左边车轮正转,达到向右转向的目的。
当两个传感器都检测到黑线时,停止前进。
七设计心得(选作题)通过本次实验,利用Arduino设计搭建智能巡线小车加深了我们对巡线小车的了解,更进一步的掌握了各部件之间的功能特性,让我们在更多的实验当中灵活利用各个部件以实现结构更加复杂,功能更加强大的机构或机器。
在实验中要注意各个部件之间的连接是否稳定,是否能完成既定项目的要求。
经过这两周的实验,我们顺利的完成了我们的小车,我们非常的高兴,虽然整个过程中,我们遇到了不少的困难,在这次的设计中也得到了老师的指点,如果不是老师的细心指导我也不会这么顺利的做出来,特别是在调试的时候。
有一次我们在传感器的接收方式上不太了解,在我们问过老师后才了解传感器的接受方式。
小车在跑道上运行的时候发现小车不能在转弯处顺利的通过,经过我们的多次改变数据后,有时可以通过但有时又不能通过,始终不能理解到底是不是传感器灵敏度的问题,后来还是得到了老师的指点,帮我们调试好之后才解决了问题。
在这次的实训中我们懂得了团队合作的重要性,其实有很多事只靠自己是做不出来的,如果是一个团队就可以在优先的时间里做出更好的结果,而且我们可以取长补短使自己不断进步。
在课堂上我们学到的是理论知识,实验就是让我们把所学到的知识运用起来,解决实际问题,我们觉得非常好,如果我们只知道写一些小程序,当真让我们做一些东西时,你会发现还有实验的非常有用,对我们的许多小问题,并不是那么的简单,所以这次实验对我们的帮助很大,非常感谢老师和同学们的帮助。
八对本课程建议或意见(选作题)学习这门课程,锻炼了同学们的动手能力、协作能力及解决问题的能力等。
在此,我们非常感谢韦老师的热情帮助和悉心指导,让我们增长了见识,学到了对机器人的许多相关知识。
通过对本课程的学习,我们非常满意,无任何意见。
对于今后的该类课程,我们有如下几点建议:1.指导学生如何运用编程软件,加强编程能力。
2.改为半命题的开放性课题,让学生自由发挥,锻炼学生的创新能力。
3.给学生播放与实验相关的实验视频,加强学生对实验的了解,明白自己该怎么做。
4.让学生小组之间进行比赛,看最终的实验结果谁的最优,用笔或笔记本做奖品,调动学生的积极性,增强老师与同学,同学与同学之间的互动性。
附录(设计文件、工程图、代码等)小灯闪烁程序:int ledPin=13;void setup(){pinMode(ledPin,OUTPUT);}void loop(){digitalWrite(ledPin,HIGH);delay(1000);digitalWrite(ledPin,LOW);delay(1000);}呼吸灯程序:void setup() {pinMode(11,OUTPUT);}void loop() {for(int a=0;a<=255;a++) {analogWrite(11,a);delay(8);}{for(int a=255;a>=0;a--) {analogWrite(11,a);delay(8);}delay(300);}}串口通信监视程序:void setup() {pinMode(11,OUTPUT);(9600);}void loop() {for(int a=0;a<=255;a++) {analogWrite(11,a);delay(8);(a);}{for(int a=255;a>=0;a--) {analogWrite(11,a);delay(8);(a);}delay(300);}}红外线对管程序:int d;void setup() {pinMode(A0,INPUT); (9600);}void loop(){d=analogRead(A0);(d);delay(100);}超声波测距程序:int TrigPin=2;int EchoPin=3;float distance=0;void setup() {pinMode(TrigPin,OUTPUT);(9600);pinMode(EchoPin,INPUT);//("Ultrasonic sensor");}void loop(){digitalWrite(TrigPin,LOW);delayMicroseconds(2);digitalWrite(TrigPin,HIGH);delayMicroseconds(10);digitalWrite(TrigPin,LOW);distance=pulseIn(EchoPin,HIGH)/;(distance);("cm");();delay(1000);}矩形循迹程序:#include<>AF_DCMotor M2(2,MOTOR12_1KHZ);AF_DCMotor M3(3,MOTOR12_1KHZ);int a,d;void setup(){pinMode(A0,INPUT);pinMode(A1,INPUT);//put your setup code here,to run once:}void loop(){//put your main code here,to run repeatedly: a=analogRead(A0);d=analogRead(A1);(250);(250);if(a<=20&&d<=20){(FORWARD);(FORWARD);}else{(BACKWARD);(BACKWARD);delay(2000);(FORWARD);(RELEASE);delay(800);}}最终循迹程序:#include<>AF_DCMotor M2(2,MOTOR12_1KHZ);AF_DCMotor M3(3,MOTOR12_1KHZ);int a,d;void setup(){pinMode(A0,INPUT);pinMode(A1,INPUT);//put your setup code here,to run once:}void loop(){//put your main code here,to run repeatedly: a=analogRead(A0);d=analogRead(A1);(200);(200);if(a<300&&d<300){(FORWARD);(FORWARD);}else if(a<300&&d>300){(50);(250);(FORWARD);(FORWARD);}else if(a>300&&d<300){(250);(50);(FORWARD); (FORWARD); }else{(RELEASE); (RELEASE); }}。