北航卡尔曼滤波实验报告-GPS静动态滤波实验
卡尔曼滤波验证试验报告

卡尔曼滤波验证试验报告一、状态空间模型111---++=k k k k w Bu Ax xkk k k v Z Hx y ++=其中:A 是状态转移矩阵;B 是控制输入量增益矩阵;uk-1是控制输入量;wk-1是状态转移噪声,p(w) ~ N(0,Q);yk 是观测量;H 是观测矩阵;Zk 是系统误差项;vk 表示M 维观测噪声,p(v) ~ N(0,R) ; 二、演示验证由于实际应用中,A 、H 矩阵比较复杂,为了简化验证难度,取k x 为直流信号,即使得A 、H 都为1;k k v w 、为高斯白噪声,方差为Q 、R ;k k z u 、为零。
所以,有上述假设条件可得:状态空间模型:时间更新方程: 1ˆˆ-='k k x xQ P P k k +='-111--+=k k k w x x k k k v x y +=()R N v k ,0~()Q N w k ,0~1-状态更新方程:()k k k k k x y K x x '-+'=ˆˆˆ()1-+''=R P P K k k k()kk k P K I P '-= (1)P'k 越小,Kk 越小,先验估计精度高,估计值应当更加信任先验估计量,如图1所示。
图1 先验权重更大 (2)R 越小,Kk 越大,观测精度高,估计值更加信任观测获得的新息,如图2所示。
图2 观测值权重更大三、实验结论(1)观测噪声协方差R越小,新息的增益Kk越大。
特别地,R 趋向于零时,有Kk趋向于H-1。
因此,估计式中新息的权重(增益Kk)越来越大。
(2)另一方面,先验估计误差协方差P/k越小,新息的增益Kk越小。
特别地,P/k趋向于零时,有Kk趋向于0。
因此,估计式中新息的权重(增益Kk)越来越小。
北航惯性导航综合实验五实验报告

惯性导航技术综合实验实验五惯性基组合导航及应用技术实验惯性/卫星组合导航系统车载实验一、实验目的①掌握捷联惯导/GPS组合导航系统的构成和基本工作原理;②掌握采用卡尔曼滤波方法进行捷联惯导/GPS组合的基本原理;③掌握捷联惯导 /GPS组合导航系统静态性能;④掌握动态情况下捷联惯导 /GPS组合导航系统的性能。
二、实验内容①复习卡尔曼滤波的基本原理(参考《卡尔曼滤波与组合导航原理》第二、五章);②复习捷联惯导/GPS组合导航系统的基本工作原理(参考以光衢编著的《惯性导航原理》第七章);三、实验系统组成①捷联惯导/GPS组合导航实验系统一套;②监控计算机一台。
③差分GPS接收机一套;④实验车一辆;⑤车载大理石平台;⑥车载电源系统。
四、实验内容1)实验准备①将IMU紧固在车载大理石减振平台上,确认IMU的安装基准面紧靠实验平台;②将IMU与导航计算机、导航计算机与车载电源、导航计算机与监控计算机、GPS 接收机与导航计算机、GPS 天线与GPS 接收机、GPS 接收机与GPS 电池之间的连接线正确连接;③ 打开GPS 接收机电源,确认可以接收到4颗以上卫星; ④ 打开电源,启动实验系统。
2) 捷联惯导/GPS 组合导航实验① 进入捷联惯导初始对准状态,记录IMU 的原始输出,注意5分钟内严禁移动实验车和IMU ;② 实验系统经过5分钟初始对准之后,进入导航状态; ③ 移动实验车,按设计实验路线行驶;④ 利用监控计算机中的导航软件进行导航解算,并显示导航结果。
五、 实验结果及分析(一)理论推导捷联惯导短时段(1分钟)位置误差,并用1分钟惯导实验数据验证。
1、一分钟惯导位置误差理论推导:短时段内(t<5min ),忽略地球自转0ie ω=,运动轨迹近似为平面1/0R =,此时的位置误差分析可简化为:(1) 加速度计零偏∇引起的位置误差:210.88022t x δ∇==m (2) 失准角0φ引起的误差:202 0.92182g t x φδ==m (3) 陀螺漂移ε引起的误差:330.01376g t x εδ==m 可得1min 后的位置误差值123 1.8157m x x x x δδδδ=++= 2、一分钟惯导实验数据验证结果:(1)纯惯导解算1min 的位置及位置误差图:lat0.01s 度lon0.01s度北向位移误差0.01sm 东向位移误差0.01sm(2)纯惯导解算1min 的速度及速度误差图:-100-50050Vx0.01s m /s020406080Vy0.01sm /s100020003000400050006000-0.4-0.3-0.2-0.10Vx 误差0.01s m /s100020003000400050006000-0.1-0.0500.050.1Vy 误差0.01sm /s实验结果分析:纯惯导解算短时间内精度很高,1min 的惯导解算的北向最大位移误差,东向最大位移误差,可见实验数据所得位置误差与理论推导的位置误差在同一数量级,结果不完全相同是因为理论推导时做了大量简化,而且实验时视GPS 为真实值也会带来误差;另外,可见1min 内纯惯导解算的东向速度最大误差s ,北向速度最大误差s 。
卡尔曼滤波与组合导航课程实验报告

clear;
clc;
%载入数据
IMU=load('C:\Users\Administrator\Desktop\卡尔曼\IMU.dat');
GPS=load('C:\Users\Administrator\Desktop\卡尔曼\GPS.dat');
%%%%%%%%%%定义常数
e=1/298.3;
else
kesai=kesai_1-pi;
end
end
if Cnb(3,3)==0
if Cnb(1,3)>0
gama=pi/2;
else
gama=-pi/2;
end
elseif Cnb(3,3)>0
gama=gama_1;
else
if Cnb(1,3)>0
gama=gama_1-pi;
else
gama=gama_1+pi;
end
end
%%%%%%%%%%%%存储惯导解算求的的速度、位置和姿态角
velocity(i,:) = [vx,vy,vz];
position(i,:) = [lat/pi*180,long/pi*180,h];
gama=1.78357*pi/180 ; %横滚角
kesai=305.34023*pi/180 ; %航向角
q=[cos(kesai/2)*cos(cita/2)*cos(gama/2)-sin(kesai/2)*sin(cita/2)*sin(gama/2);
cos(kesai/2)*sin(cita/2)*cos(gama/2)-sin(kesai/2)*cos(cita/2)*sin(gama/2);
实验一 GPS静动态滤波实验课件

各种误差源造成的总的位置误差 X (t ) AX (t ) U (t ) W (t )
X x vx a x x y v y a y y z v z a z z
T
分别为载体在x、y、z坐标轴上的位置、速度、加速度分量及位置误差
(3)基于KF的GPS动态定位滤波
1)GPS动态定位数学模型建立 系统方程(续)
输入量:
ay ax az U (t ) 0 0 0 0 0 0 0 0 0 ax ay az
系统噪声:
T
W (t ) 0 0 wax wx 0 0 way wy 0 0 waz wz
接收机监控软件+数据接收存储软件(演示)
实验一 GPS静态/动态滤波实验
应用KF进行GPS定位动态滤波:
需 建 立
系统模型
观测模型
(1)运载体动态模型 (2)随机误差模型
实验一 GPS静态/动态滤波实验
(1)运载体动态模型
常速模型(CV模型) 常加速模型(CA模型)
常用模型
研 究 现 状
“当前”统计模型Βιβλιοθήκη 时间相关模型比较与分析半马尔科夫模型 Noval统计模型
微分多项式模型
实验一 GPS静态/动态滤波实验
(1)运载体动态模型
a)常加速模型(CA模型) 例:一维直线运动,考虑随机干扰情况。 当载体无机动,即匀速 或匀加速直线运动,三 阶常加速CA模型: 运载体 位置、 速度、 加速度 若载体运动表现出变加速 度a(t)特性时,运动模型为:
x 0 1 0 x 0 0 x 0 0 1 x 0 w(t ) 0 a ( t ) x 0 0 0 x 1 高斯白噪声: 1 均值=0、方差= 2
北航卡尔曼滤波实验报告-GPS静动态滤波实验

卡尔曼滤波实验报告2014 年 4 月GPS 静/动态滤波实验一、实验要求1、分别建立GPS 静态及动态卡尔曼滤波模型,编写程序对静态和动态GPS 数据进行Kalman 滤波。
2、对比滤波前后导航轨迹图。
3、画出滤波过程中估计均方差(P 阵对角线元素开根号)的变化趋势。
4、思考:① 简述动态模型与静态模型的区别与联系;② R 阵、Q 阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么;③ 本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman 滤波方法的优劣对比。
二、实验原理2.1 GPS 静态滤波选取系统的状态变量为[ ]TL h λ=X ,其中L 为纬度(deg),λ为经度(deg),h 为高度(m)。
设()w t 为零均值高斯白噪声,则系统的状态方程为:310()w t ⨯=+X(1)所以离散化的状态模型为:,111k k k k k W ---=+X X Φ(2)式中,,1k k -Φ为33⨯单位阵,k W 为系统噪声序列。
测量数据包括:纬度静态量测值、经度静态量测值和高度构成31⨯矩阵Z ,量测方程可以表示为:k k k Z HX V =+(3)式中,H 为33⨯单位阵,k V 为量测噪声序列。
系统的状态模型是十分准确的,所以系统模型噪声方差阵可以取得十分小,取Q 阵零矩阵。
系统测量噪声方差阵R 由测量确定,由于位置量测精度为5m ,采用克拉索夫斯基地球椭球模型,长半径e R 为6378245m ,短半径p R 为6356863m 。
所以R 阵为:2225180()005180()0cos()005p e R R L ππ⨯⎛⎫ ⎪⨯ ⎪ ⎪⨯= ⎪⨯⨯ ⎪ ⎪ ⎪⎝⎭R (4)2.2 GPS 动态滤波动态滤波基于当前统计模型,在地球坐标系下解算。
选取系统的状态变量为Tx x x y y y z z z X x v a y v a z v a εεε⎡⎤=⎣⎦,其中,,,x x x x v a ε依次为地球坐标系下x轴上的位置、速度、加速度和位置误差分量,,y z 轴同理。
实验报告-卡尔曼滤波

数字信号处理实验报告姓名: 专业: 通信与信息系统 学号: 日期:2015.11实验内容任务一:一连续平稳的随机信号()t x ,自相关函数()tx er -=τ,信号()t x 为加性噪声所干扰,噪声是白噪声,测量值的离散值()k z 为已知,s T s 02.0=,-3.2,-0.8,-14,-16,-17,-18,-3.3,-2.4,-18,-0.3,-0.4,-0.8,-19,-2.0,-1.2,-11,-14,-0.9,-0.8,10,0.2,0.5,-0.5,2.4,-0.5,0.5,-13,0.5,10,-12,0.5,-0.6,-15,-0.7,15,0.5,-0.7,-2.0,-19,-17,-11,-14,自编卡尔曼滤波递推程序,估计信号()t x 的波形。
任务二:设计一维纳滤波器。
(1)产生三组观测数据:首先根据()()()n w n as n s +-=1产生信号()n s ,将其加噪(信噪比分别为20dB ,10dB ,6dB ),得到观测数据() n x 1,() n x 2,() n x 3。
(2)估计() n x i , 1=i ,2,3的AR 模型参数。
假设信号长度为L ,AR 模型阶数为N ,分析实验结果,并讨论改变L ,N 对实验结果的影响。
实验任务一 1. 卡尔曼滤波原理1.1 卡尔曼滤波简介早在20世纪40年代,开始有人用状态变量模型来研究随机过程,到60年代初,由于空间技术的发展,为了解决对非平稳、多输入输出随机序列的估计问题,卡尔曼提出了递推最优估计理论。
它用状态空间法描述系统,由状态方程和量测方程所组成,即知道前一个状态的估计值和最近一个观测数据,采用递推的算法估计当前的状态值。
由于卡尔曼滤波采用递推法,适合于计算机处理,并且可以用来处理多维和非平稳随机信号,现已广泛应用于很多领域,并取得了很好的结果。
卡尔曼滤波一经出现,就受到人们的很大重视,并 在实践中不断丰富和完善,其中一个成功的应用是设计运载体的高精度组合导航系统。
利用卡尔曼滤波快速确定GPS整周模糊度的研究

双差观测量基本消除了接收机时钟误差、大气和星历误差, 理论分析可知双差整周模糊度
具有整数特性, 这就要求模糊度转换不应该改变其特性, 因此, 模糊度转换矩阵中应仅包含整
数元素, 同时还应确保原始空间和白化空间的相互转换。
2. 2 整数类型的白化处理
模糊度转换矩阵中仅包含整数元素的约束, 是保证白化处理过程正确实施的条件之一, 因
本文引入的白化处理过程, 消除或减弱短时间内 GPS 载波双差观测量的相关性, 这不仅 抑制了因 Ka lm an 滤波器递推过程造成舍入误差的传播与积累, 而且提高了 GPS 整周模糊度 解的可靠性, 简化了整数估计的算法。
1 整周模糊度的估计
在已知卫星瞬时位置的情况下, 测相伪距观测方程为:
∆x i
( j - 1) × k ≥ 5 + j 或 k ≥ (5 + j ) ( j - 1)
(5)
当同步观测卫星数目为 4 时, 代入式 (5) 可以得到结论: 观测历元数必须大于或等于 3。 因此,
这里选择 3 个历元的观测数据为一组进行 Ka lm an 滤波, 滤波器的递推过程如下[5]: Xδk k- 1= 5 Xδk- 1
U- 1 Z = U- 1 H X + U- 1 V
或者表示为
Zθ = H{ X + Vθ
由于这种转换是非正交的, 其结果使双差观测量不相关, 得到的观测量协方差矩阵为 R Μγ = E (Vθ VθT ) = E (U - 1VV TU - T ) = U - 1E (VV T )U - T = U - 1RU - T = D (7)
基金项目: 航空基础科学基金资助 (985E3047) 收稿日期: 2001203228 收修改稿日期: 2001- 06- 11
卡尔曼滤波报告

卡尔曼滤波实验报告一、实验任务产生含噪声信号X(n)=sin(2*pi*f*n)+w(n),f=0.05,w(n)~N(0,1.2)。
编写程序运用卡尔曼滤波进行去噪处理,要求画出去噪前和去噪后图形,滤波误差及收敛过程。
二、实验程序clc;clear;N=256 ; %信号与噪声的长度离散信号个数w=randn(1.2,N); %产生高斯白噪声,令方差为1.2f=0.05; %实正弦信号频率s=sin(2*pi*f*(0:N-1)) ; %产生正弦信号subplot(311);plot(s);title('有用信号s(n)')grid on;x=s+w;subplot(312);plot(x);title('加噪信号x(n)')grid on;c=[1]; %观测矩阵a=[1]; %状态转移矩阵b=[1]; %输入矩阵H=[1];R=std(w); %R是观测白噪声v(k)的方差Y(1)=20;P(1)=10;for i=1:1:N-1Y(i+1)=a*Y(i)+b*s(i);P(i+1)=a*P(i);Kg(i)=P(i+1)*H'*inv(H*P(i+1)*H'+R);Y(i+1)= Y(i+1)+Kg(i)*(x(i)-H*Y(i+1));P(i+1)=P(i+1)-Kg(i)*H*P(i+1);end;subplot(313);t=1:N;plot(t,Y);title('通过卡尔曼滤波后的估计信号y(n)')grid on;三、实验结果四、实验总结与维纳滤波器实验结果相比,卡尔曼滤波器的输出更加平滑,但是仍没有去除掉曲线中的椒盐噪声点,这一点需要继续改进。
卡尔曼滤波就是根据前一个估计值x^k-1和当前的观测值yk来对信号作递推估计,得到x^k 。
首先建立卡尔曼滤波器的模型,由状态方程和观测方程xk=Akxk-1+wk-1,y k =Ckxk+vk,由此可得到k时刻的预测值x^k’=Ak-1x^k-1与估计值y^k’=Ckx^k’=CkAkx^k-1,定义新息y~k =yk-y^k’,由于wk-1和vk的影响才产生了y~k,为了得到最有估计值,有必要利用一系列矩阵Hk 来校正预测值y^k’,此时x^k= Ak-1x^k-1+Hk(yk- CkAkx^k-1)上式为卡尔曼滤波器的递推方程,这样就可以根据前一个估计值x^k-1和当前观测值yk对信号作递推估计,得到x^k。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
卡尔曼滤波实验报告2014 年4 月GPS静/动态滤波实验一、实验要求1、分别建立GPS静态及动态卡尔曼滤波模型,编写程序对静态和动态GPS数据进行Kalman滤波。
2、对比滤波前后导航轨迹图。
3、画出滤波过程中估计均方差(P 阵对角线元素开根号)的变化趋势。
4、思考:① 简述动态模型与静态模型的区别与联系;② R 阵、Q 阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么;③ 本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman 滤波方法的优劣对比。
二、实验原理GPS 静态滤波选取系统的状态变量为[ ]TL h λ=X ,其中L 为纬度(deg),λ为经度(deg),h 为高度(m)。
设()w t 为零均值高斯白噪声,则系统的状态方程为:310()w t ⨯=+&X (1)所以离散化的状态模型为:,111k k k k k W ---=+X X Φ(2)式中,,1k k -Φ为33⨯单位阵,k W 为系统噪声序列。
测量数据包括:纬度静态量测值、经度静态量测值和高度构成31⨯矩阵Z ,量测方程可以表示为:k k k Z HX V =+(3)式中,H 为33⨯单位阵,k V 为量测噪声序列。
系统的状态模型是十分准确的,所以系统模型噪声方差阵可以取得十分小,取Q 阵零矩阵。
系统测量噪声方差阵R 由测量确定,由于位置量测精度为5m ,采用克拉索夫斯基地球椭球模型,长半径e R 为6378245m ,短半径p R 为6356863m 。
所以R 阵为:2225180()005180()0cos()005p e R R L ππ⨯⎛⎫ ⎪⨯ ⎪ ⎪⨯= ⎪⨯⨯ ⎪ ⎪ ⎪⎝⎭R (4)GPS 动态滤波动态滤波基于当前统计模型,在地球坐标系下解算。
选取系统的状态变量为Tx x x y y y z z z X x v a y v a z v a εεε⎡⎤=⎣⎦,其中,,,x x x x v a ε依次为地球坐标系下x 轴上的位置、速度、加速度和位置误差分量,,y z 轴同理。
系统的状态模型可以表示为:()()()()t t t t =++X AX U W &(5)式中,位置误差视为有色噪声,为一阶马尔科夫过程,可表示为:xx x x yy y yzz z z w w w εετεετεετ⎧=-+⎪⎪⎪⎪=-+⎨⎪⎪⎪=-+⎪⎩111&&& (6)其中,i τ(,,i x y z =)为对应马尔科夫过程的相关时间常数,(,,)i w i x y z =为零均值高斯白噪声。
系统矩阵A 可表示为:444444444444⨯⨯⨯⨯⨯⨯⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦000000x y z A A A A(7)其中,0100001000/0000/ττ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎢⎥⎣⎦11i i a i A (i =x,y,z ) 输入量U 可表示为:T()000000000x y zy x z a a a a a a t τττ⎡⎤=⎢⎥⎢⎥⎣⎦U(8)式中,(,,)i a i x y z =为机动加速度的当前均值,其自适应确定方法为:,/1ˆx k k k a x -=&&,同理可得,,y k z k a a 、。
系统噪声为:T()000000x y z a x a y a z t w w w w w w ⎡⎤=⎣⎦W (9)量测量为纬度动态量测值、经度动态量测值、高度和三向速度量测值。
由于滤波在地球坐标系下进行,为了简便首先将纬度、经度和高度转化为三轴位置坐标值,转化方式如下:(Re )cos()cos()(Re )cos()sin()(Re )sin()x h L y h L z h L λλ=+⎧⎪=+⎨⎪=+⎩(10)所以,滤波的量测量为三轴位置坐标值和三轴速度测量值,即[ ]Tx y z Z x y z v v v =。
量测方程为:Z =HX +V(11)式中,⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦100100000000000010010000000000001001010000000000000001000000000000000100H ,V为零均值高斯白噪声。
综上,离散化的Kalman 滤波方程为:1/1/11/1/111111/111/111/1/1/1111/()()()k k kk k k k k k k k k k T T k k k k k k k k k T k k k k k k k k k k k k k ΛΛ++ΛΛΛ++++++-++++++++++++++⎧'=⎪⎪=+-⎪⎪⎪=+⎨⎪⎪=+⎪⎪=-⎪⎩X ΦX X X K Z H X K P H H P H R P ΦP ΦQ P I K H P (12)式中,1/1/1/1/000000x k ky kk k kz k k ++++'⎡⎤⎢⎥''=⎢⎥⎢⎥'⎣⎦ΦΦΦΦ,21//1/20010(,,)00100i i kk T T T T i x y z e τ+-⎡⎤⎢⎥⎢⎥'==⎢⎥⎢⎥⎣⎦Φ ,1//1/1/000000x k ky k kk kz k k ++++⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1ΦΦΦΦ,/2/1///1(/1)001(1)0(,,)0000a ii ia iia ii T a aT i a k k T T T T e e i x y z ee τττττττ--+--⎡⎤-+⎢⎥⎢⎥-==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦Φ 离散化的系统噪声协方差阵为:222222000000x y z a x a y a z diag δδδδδδ⎡⎤=⎣⎦Q ,机动加速度自适应确定方法为:222max 1/max 22max 4π4πˆˆ[][] ππ4πˆ[] ? πxx a k k k a k a x a x a x δδ+---⎧=-=-⎪⎨-⎪=+<⎩00&&&&&&“当前”加速度>“当前”加速度 (13)离散化量测噪声协方差阵为:222x y z x y z v v v diag R R R R R R ⎡⎤=⎣⎦222R 。
三、实验结果GPS 静态滤波时间/s纬度/d e g时间/s经度/d e g时间/s高度/m-5时间/s纬度估计误差/d e g-5时间/s经度估计误差/d e g时间/s高度估计误差/m图1 GPS 静态滤波前后导航轨迹图和估计误差GPS 动态滤波时间/s纬度/d e g时间/s经度/d e g时间/s高度/m时间/s速度/(m /s )时间/s速度/(m /s )时间/s速度(m /s )-7时间/s纬度估计误差-7时间/s经度估计误差时间/s高度估计误差时间/s东向速度估计误差时间/s北向速度估计误差时间/s天向速度估计误差图2 GPS 动态滤波前后导航轨迹图和估计误差四、实验讨论1.简述动态模型与静态模型的区别与联系。
静态模型的速度和加速度均为0,系统静止,状态模型比较准确,模型误差较小,量测信息只有位置信息。
动态模型系统的速度和加速度均发生变化,采用当前统计模型建模,相比之下,系统模型的误差较大,量测信息由位置和速度信息。
静态模型是动态模型在速度和加速度均为0时的特殊情况。
2.R 阵、Q 阵,P0阵的选取对滤波精度及收敛速度有何影响,取值时应注意什么。
R 阵的取值对滤波精度的影响很大,当R 取得太大,系统就不能有效的利用量测信息对状态进行修正,因此滤波精度较低;相反,R 取得太小,系统过分依赖量测信息,无法利用状态模型有效的去除有害的量测噪声,同样降低滤波的精度。
Q 阵的取值对滤波精度的影响也很大:Q 取得太大,系统就不能有效的利用状态模型对测量噪声进行修正,因此滤波精度就较低;反之,Q 取得太小,系统就会过分的依赖状态模型的精度,以致量测信息无法对状态进行有效的修正,也会降低滤波精度;只有当R 和Q 的取值恰好与使用的状态模型的精度相吻合时,才能使状态模型和量测信息都能有效的发挥作用,互相补充,得到最高的滤波精度。
P0阵的取值对于可观测性良好的系统,只影响开始的滤波精度,对收敛精度影响不大,但影响收敛速度。
3)本滤波问题是否可以用最小二乘方法解决,如果可以,请阐述最小二乘方法与Kalman 滤波方法的优劣对比。
本滤波问题可以用最小二乘方法解决。
最小二乘方法的最大优点是算法简单,特别是对一般的最小二乘估计,根本不必知道量测误差的统计信息。
但又存在使用上的局限性,该方法只能估计确定性的常值向量,而无法估计随机向量的时间过程;最小二乘的最优指标只保证了量测的误差平方和最小,而并未确保被估计量的估计误差达到最佳,因此该方法的估计精度不高。
而卡尔曼滤波是一种线性最小方差估计,其算法是递推的,且使用状态空间法在时域内设计滤波器,适用于多维随机过程的估计;卡尔曼滤波的估计量可以是平稳的,也可以是非平稳的;卡尔曼滤波具有连续型和离散型两类算法,离散型算法可直接在数字计算机上实现。