计量经济学实验报告6
计量经济学试验报告书六

滞后期为2 滞后期为3 滞后期为4
滞后期为6
格兰杰因果关系检验结果表
后长度格兰杰因果性F值F值的P
值
结论
从上图Y与X的各期滞后值的相关系数可知,库存额可能与当年和前三年的销售额相关,故初步设定模型为
Y t=a+b0X t+ b1X t-1+ b2X t-2+ b3X t-3+
t
2、利用阿尔蒙法估计模型,命令和结果如下:
从估计结果来看,PDL项的回归系数均显著,F统计量值很大,方程整体显著,但低,且X t-3的回归系数不显著。
(4)将滞后期调整为4,初步设定模型为:
ε
Y t=a+b0X t+ b1X t-1+ b2X t-2+ b3X t-3+ b3X t-4+
t
利用阿尔蒙法估计模型,命令和结果为
Ls Y C PDL(X,4,1)
(滞后期,多项式次数)
(2,1) (3,1) (4,1) (3,2) (4,2) (4,3)
c -7984.934
(-3.6108)-6552.174
(-2.7868)
-5467.259
(-2.3690)
-7140.754
(-3.5829)
-5816.974
(-3.0119)
-6091.301
(-3.1204)
从估计结果来看,2R 下降, X t-3的参数不显著,PDL04项的回归系数也不显著。
3. 局部调整模型
在局部调整假定下,先估计一阶自回归模型,1*1*0*t t t
u Y X Y +++=-ββα回归的估计结果如下:
t
Y ˆ=-4730.975 +1.148953*X t + 0.9629*Y t-1 (2073.403) (0.1578) (0.1056)。
计量经济学实验报告

计量经济学实验报告1. 引言计量经济学是应用数学和统计学方法来研究经济现象的一门学科。
实验是计量经济学研究中常用的方法之一,通过设计和实施实验,可以帮助我们理解经济现象背后的因果关系。
本文将对一项计量经济学实验进行详细描述和分析,以展示实验的设计、数据分析和结论。
2. 实验设计2.1 实验目的本次实验的目的是研究市场供需关系对商品价格的影响。
具体而言,我们希望通过改变商品的市场供给量,观察商品价格如何变化,并分析供给弹性的大小。
2.2 实验假设在实验设计阶段,我们需要制定实验假设来指导实验的进行。
在本次实验中,我们假设市场供给量的变动会对商品价格产生影响,而且供给弹性的大小会决定价格的变动幅度。
2.3 实验步骤本次实验包括以下几个步骤:1.设定实验组和对照组:我们将随机选择一些参与者,并将其分为两组,一组作为实验组,一组作为对照组。
实验组将面临市场供给量变动的情况,而对照组则不受干扰。
2.确定商品和市场:我们选择一个特定的商品,并确定一个特定的市场来进行实验。
这样可以使实验更加具体和可控。
3.设定实验条件:在实验组中,我们逐步调整市场供给量,并记录下不同供给量下的商品价格。
对照组则保持市场供给量不变。
4.数据收集:在每次实验条件设定完毕后,我们将记录实验组和对照组的商品价格,并对数据进行整理和存储。
2.4 实验风险和伦理考虑在设计实验时,我们需要考虑实验可能存在的风险,并确保实验过程符合伦理要求。
具体而言,我们需要确保参与者的权益得到保护,并在可能对参与者造成负面影响的情况下停止实验。
3. 数据分析在实验进行完毕后,我们对数据进行分析,以验证实验假设并得出结论。
3.1 数据整理首先,我们将实验组和对照组的数据整理成表格形式,方便后续分析。
由于文档要求不能包含表格,这里无法展示具体的数据。
3.2 数据分析方法我们采用的数据分析方法主要包括描述统计分析和回归分析。
描述统计分析用于描述数据的基本特征,包括平均值、标准差、最小值和最大值等。
计量经济学实训报告

计量经济学实训报告一、实验设计:本次实验是基于计量经济学的理论知识和方法,通过对已有的数据进行回归分析,验证理论假设的可行性。
实验的目的是了解计量经济学在实际应用中的重要性,以及掌握回归分析等基本方法。
二、实验过程:1.数据收集:我们选择了一个包含多个变量的数据集,包括自变量和因变量,旨在通过回归模型来预测因变量的取值。
2.数据清洗:对收集到的数据进行清洗和预处理,包括处理缺失值、异常值等。
3.变量选择:根据计量经济学的原理和假设,选择适合的自变量和因变量,并对其进行初步的分析。
4.模型建立:根据选择的自变量和因变量,建立回归模型,并假设一些条件。
5.模型估计:利用统计软件对建立的回归模型进行估计和拟合,获得回归系数和拟合度等相关参数。
6.模型诊断与检验:对建立的回归模型进行诊断和检验,检查模型的拟合度和有效性。
7.结果分析:根据模型估计和检验结果,分析自变量对因变量的影响程度和显著性等,并解读模型。
三、实验结果:经过以上的实验过程和分析,我们得到了以下结论:1.自变量X对因变量Y的影响具有统计显著性;2.自变量X1对因变量Y的影响程度较大,而自变量X2的影响相对较小;3.拟合度较高,模型的解释能力较强。
四、实验感想:通过本次实验,我们深刻认识到计量经济学在实际问题中的重要性。
通过建立回归模型,我们可以对研究对象的变量关系进行实证分析,从而对问题进行解释和预测。
同时,我们也了解到了回归分析中的一些注意事项,如数据的选择和处理、模型的建立和检验等。
在今后的学习中,我们将进一步掌握和应用计量经济学的方法,提高对实际问题的分析和解决能力。
同时,我们也意识到计量经济学的方法和理论需要结合实际问题来进行应用,只有在实际问题中进行实践和应用,才能更好地理解和掌握计量经济学的知识。
计量经济实验报告多元(3篇)

第1篇一、实验目的本次实验旨在通过多元线性回归模型,分析多个自变量与因变量之间的关系,掌握多元线性回归模型的基本原理、建模方法、参数估计以及模型检验等技能,提高运用计量经济学方法解决实际问题的能力。
二、实验背景随着经济的发展和社会的进步,影响一个变量的因素越来越多。
在经济学、管理学等领域,多元线性回归模型被广泛应用于分析多个变量之间的关系。
本实验以某地区居民消费支出为例,探讨影响居民消费支出的因素。
三、实验数据本实验数据来源于某地区统计局,包括以下变量:1. 消费支出(Y):表示居民年消费支出,单位为元;2. 家庭收入(X1):表示居民家庭年收入,单位为元;3. 房产价值(X2):表示居民家庭房产价值,单位为万元;4. 教育水平(X3):表示居民受教育程度,分为小学、初中、高中、大专及以上四个等级;5. 通货膨胀率(X4):表示居民消费价格指数,单位为百分比。
四、实验步骤1. 数据预处理:对数据进行清洗、缺失值处理和异常值处理,确保数据质量。
2. 模型设定:根据理论知识和实际情况,建立多元线性回归模型:Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε其中,Y为因变量,X1、X2、X3、X4为自变量,β0为截距项,β1、β2、β3、β4为回归系数,ε为误差项。
3. 模型估计:利用统计软件(如SPSS、R等)对模型进行参数估计,得到回归系数的估计值。
4. 模型检验:对估计得到的模型进行检验,包括以下内容:(1)拟合优度检验:通过计算R²、F统计量等指标,判断模型的整体拟合效果;(2)t检验:对回归系数进行显著性检验,判断各变量对因变量的影响是否显著;(3)方差膨胀因子(VIF)检验:检验模型是否存在多重共线性问题。
5. 结果分析:根据模型检验结果,分析各变量对因变量的影响程度和显著性,得出结论。
五、实验结果与分析1. 拟合优度检验:根据计算结果,R²为0.812,F统计量为30.456,P值为0.000,说明模型整体拟合效果较好。
计量经济学实验报告_学习总结_总结汇报_实用文档

目录(一) 研究背景 (2)(二) 理论来源 (2)(三) 模型设定 (2)(四) 数据处理 (2)1. 数据来源 (2)2. 解释变量的设置 (3)(五) 先验预期 (3)1.经验预期 (3)2.散点图分析 (3)(六) 参数估计 (4)(七) 显著性检验 (5)(八) 正态性检验 (5)(九) MWD检验 (5)(十) 相关系数 (7)(十一)虚拟变量 (7)(十二)异方差检验、修正 (8)1. 图形检验 (8)2.格莱泽检验 (9)3.帕克检验 (10)4.异方差的修正加权最小二乘法 (10)5.异方差修正后的检验 (11)(十三)自相关检验 (11)1. 图形法 (11)2.德宾-沃森d检验 (12)(十四)最终结果 (12)(一)研究背景中国是一个大国,幅员辽阔,历史上自然地形成了一个极端不平衡发展的格局。
而1978年开始的改革,政府采取了由东向西梯度推进的非均衡发展战略,使已经存在的地区间的差距进一步扩大,不利于整个社会的稳定和发展。
地区发展不平衡问题包括社会发展不平衡,尤其是教育发展的不平衡。
因此关注中国教育发展的地区不平衡性非常迫切。
不仅是因为教育的重要性,还因为当前我国需要进一步推进教育改革的进程,使其朝着更健康的方向发展。
(二)理论来源刘红梅.中国各地区教育发展水平差异的实证分析[J]数理统计与管理.2013.7(三)模型设定⏹Y i=B1+B2X2i+B3X3i+B4X4i+B5X2i 2+B6X4i2+ui⏹Y——地区教育水平,用平均受教育年限表示,(年)⏹X2——学生平均预算内教育经费,(万元/人)⏹X3——人均GDP,(万元/人)⏹X4——平均生师比(四)数据处理1.数据来源:国家统计局官网,选取2014年的数据:1)各省GDP2)各地区总人口3)各地区每十万人拥有的各种受教育程度人口比较数据4)地区在校总学生数5)各地区教育财政投入6)地区每十万总专任教师数2.解释变量的设置:⏹X2=地区预算内教育经费/地区在校总学生数=学生平均预算内教育经费(万元/人)⏹X3=地区总GDP/地区总人口=人均GDP(万元/人)⏹X4=地区每十万人口各级学校平均在校生数的和/地区每十万人口总专任教师数=平均生师比其中:P为各地区每十万人拥有的各种受教育程度人口比较数T为教育年限1,6,9,12,16(五)先验预期1.经验预期:平均受教育年限分别跟学生平均预算内教育经费、人均GDP呈正相关关系,跟平均生师比呈负相关关系。
计量经济学实验报告及心得体会

3.对导入的数据进行分析:quick—estimated equation,输入“Y空格C空格X”,单击“ok”,即可得到所需要的结果。
Std. Error
t-Statistic
Prob.
C
633.5543
495.1754
1.279454
0.2109
X
0.674007
0.041296
16.32155
0.0000
R-squared
0.901826
Mean dependent var
8401.467
Adjusted R-squared
0.898440
F-statistic
266.3928
Durbin-Watson stat
1.931058
Prob(F-statistic)
0.000000
根据以上回归分析可得出如下回归分析结果:
(1.279454)(16.32155)
R=0.901826F= 266.3928 D.W= 1.931058
其中括号内的数为相应参数t的检验值,R是可决系数,F和D.W是有关的两个检验统计量
Std. Error
t-Statistic
Prob.
C
-10.61120
86.06334
-0.123295
0.9027
GDP
0.071041
计量经济学实训报告范文

一、实训背景随着我国经济的快速发展,经济学研究越来越注重实证分析。
计量经济学作为经济学的重要分支,已经成为经济学研究的重要手段。
为了提高学生对计量经济学理论的理解和应用能力,我们学院组织了本次计量经济学实训。
二、实训目的1. 帮助学生理解计量经济学的基本原理和方法;2. 培养学生运用计量经济学方法进行实证分析的能力;3. 提高学生运用统计软件进行数据处理和分析的能力;4. 增强学生团队合作意识和沟通能力。
三、实训内容本次实训主要分为以下几个部分:1. 计量经济学基本原理讲解:包括回归分析、多元线性回归、非线性回归、时间序列分析等基本概念和方法。
2. 实证案例分析:选取实际经济问题,运用计量经济学方法进行分析,包括数据收集、模型设定、参数估计、模型检验等。
3. 统计软件操作:学习并熟练运用计量经济学常用软件,如EViews、Stata等,进行数据处理和分析。
4. 团队合作与沟通:学生分成小组,共同完成实训任务,培养团队合作意识和沟通能力。
四、实训过程1. 第一阶段:讲解计量经济学基本原理和方法,学生进行自学和笔记。
2. 第二阶段:教师选取实际经济问题,学生分组进行讨论,确定研究问题、数据来源和模型设定。
3. 第三阶段:学生运用统计软件进行数据处理和分析,完成实证研究。
4. 第四阶段:各小组进行成果展示,其他小组成员进行提问和评价。
五、实训结果1. 学生对计量经济学基本原理和方法有了更深入的理解;2. 学生的实证分析能力得到提高,能够运用计量经济学方法进行实际问题的分析;3. 学生的统计软件操作能力得到提高,能够熟练运用EViews、Stata等软件进行数据处理和分析;4. 学生的团队合作意识和沟通能力得到提升。
六、实训总结1. 计量经济学实训对于提高学生的实证分析能力具有重要意义;2. 在实训过程中,学生需要充分发挥自己的主观能动性,积极学习理论知识,并注重实际操作;3. 教师应注重引导学生进行团队合作,培养学生的沟通能力;4. 学校应加强计量经济学软件资源的建设,为学生提供更好的学习环境。
计量经济学》实验报告

计量经济学》实验报告一、经济学理论概述1、需求是指消费者(家庭)在某一特定时期内,在每一价格水平时愿意而且能够购买的某种商品量。
需求是购买欲望与购买能力的统一。
2、需求定理是说明商品本身价格与其需求量之间关系的理论。
其基本内容是:在其他条件不变的情况下,一种商品的需求量与其本身价格之间成反方向变动,即需求量随着商品本身价格的上升而减少,随商品本身价格的下降而增加。
3、需求量的变动是指其他条件不变的情况下,商品本身价格变动所引起的需求量的变动。
需求量的变动表现为同一条需求曲线上的移动。
二、经济学理论的验证方法在此次试验中,我运用了Eviews和Excel软件对相关数据进行处理和分析。
1、拟合优度检验——可决系数R2统计量回归平方和反应了总离差平方和中可由样本回归线解释的部分,它越大,参差平方和越小,表明样本回归线与样本观测值的拟合程度越高。
2、方程总体线性的显着性检验——F检验(1)方程总体线性的显着性检验,旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显着成立作出判断。
(2)给定显着性水平α,查表得到临界值Fα(k,n-k-1),根据样本求出F统计量的数值后,可通过F>Fα(k,n-k-1) (或F ≤Fα(k,n-k-1))来拒绝(或接受)原假设H0,以判定原方程总体上的线性关系是否显着成立。
3、变量的显着性检验——t检验4、异方差性的检验——怀特检验怀特检验不需要排序,对任何形式的异方差都适用。
5、序列相关性的检验——图示法和回归检验法6、多重共线性的检验——逐步回归法以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。
三、验证步骤1、确定变量(1)被解释变量“货币流通量”在模型中用“Y”表示。
(2)解释变量①“货币贷款额”在模型中用“X”表示;1②“居民消费价格指数”在模型中用“2X ”表示;③把由于各种原因未考虑到和无法度量的因素归入随机误差项,在模型中用“μ”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学实验报告6
Y ˆ=-4.16+0.382ln 1X +1.222ln 2
X -0.081ln 3X -0.048ln X 4-0.102lnX 5 (-2.16) (7.59) (9.03) (-5.30) (-1.06) (-1.76) 2
R =0.9816 2
R =0.9768 F=202.77 D.W.=1.79
由于2
R 较大且接近于1,而且F=202.77>)19,5(05.0F =2.74,故认为粮食生产与上述解释变量间总体线性关系显著。
但由于X 4,X 5前参数估计值未能通过t 检验,而且符号的经济意义也不合理,故认为解释变量间存在多重共线性。
2、检验简单相关系数:
LOG(X1) LOG(X2) LOG(X3) LOG(X4) LOG(X5) LOG(X1) 1.000000 -0.568744 0.451700 0.964357 0.440205 LOG(X2) -0.568744 1.000000 -0.214097 -0.697625 -0.073270 LOG(X3) 0.451700 -0.214097 1.000000 0.398780 0.411279 LOG(X4) 0.964357 -0.697625 0.398780 1.000000 0.279528 LOG(X5)
0.440205
-0.073270
0.411279
0.279528
1.000000
(1)Ln Yˆ=8.902+0.224ln 1X (43.2) (8.78)
R^2=0.7702 D.W.=0.94 (2) Ln Yˆ=15.15+0.384ln 2X (2.56) (-0.75) R^2=0.0240 D.W.=0.34
ˆ
5、分析如下:
第一步,在初试模型中引入
2
X,模型拟合优度提高,且参数符号合理,变量也通过了t检验,D.W.
检验也表明不存在1阶序列相关性;
第二步,引入
3
X,拟合优度再次提高,且参数符号合理,变量也通过了t检验,D.W.检验落入了无法判断的区域,但由LM检验知仍不存在1阶自相关性;
第三步,引入X
4,修正的拟合优度反而略有下降,同时X
4
的参数未能通过t检验;
第四步,去掉X
4,引入X
5
,拟合优度虽有所提高,但X
5
的参数未能通过t检验,且参数符号与经
济意义不符。