第一章_电弧焊基础知识 (2)分解
电弧焊-基础知识

27
(二)电子的发射
(2)场致发射
当阴极表面空间有强电场存在时,金属 电极内的电子在电场静电库仑力的作用下, 从电极表面飞出的现象称为场致发射。
冷阴极电弧正是主要依靠这种方式获得足 够的电子以维持电弧稳定燃烧的。
28
(二)电子的发射
(3)光发射
当金属电极表面接受光辐射时,电极表面的 自由电子能量增加,当电子的能量达到一定值时 能飞出电极的表面,这种现象称为光发射。
9
(一)气体的电离
(1)电离与激励
电离能通常以电子伏(eV)为单位, 1电子伏就是1个电子通过1V电位差的空间所 获得的能量,其数值为1.6×10-19J。为了便 于计算,常把以电子伏为单位的能量转换为 数值上相等的电压来处理,单位为伏(V), 此电压称为电离电压。电弧气氛中常见气体 的电离电压如表1-1所示。
(1)热发射 金表面承受热作用而产生电子发射的现象称 为热发射。金属电极内部的自由电子受到热作用 以后,热运动加剧,动能增加,当自由电子的动 能大于该金属的电子逸出功时,就会从金属电极 表面飞出,参加电弧的导电过程。电子发射时从 金属电极表面带走能量,故能对金属产生冷却作 用。当电子被另外的同种金属表面接受时,将释 放能量,使金属表面加热。
二、焊接电弧的导电特性
其中,暗放电和辉光放电的电流较小,电 压较高,发热发光较弱,而电弧放电的电流最 大,电压最低,温度最高、发光最强。正是因 为电弧具有这样的特点,因此在工业中广泛用 来作为热源和光源,在焊接技术中成为一种不 可缺少的能源。 综上所述,从电弧的物理本质来看,它是一种 在具有一定电压的两电极之间的气体介质中所 产生的电流最大、电压最低、温度最高、发光 最强的自持放电现象。
第一章电弧焊基础知识
焊接方法与设备培训知识(PPT 188页)

焊接电弧物理基础
中性气体粒子失去第一个电子所需要的 最小能量成为第一电离能
失去第二个电子所需的能量称为第二电 离能。
…… 单位:电子伏(eV) 为:1.6*10-19J
焊接方法与设备
第一章 电弧焊基础知识
电弧焊重要性
– 高效
本章基本内容
– 电弧物理基础 – 工艺特性 – 焊丝熔化与熔滴过渡 – 母材熔化及焊缝成型
主要章节
电弧焊基本历史 焊接电弧 焊丝的熔化与熔滴过渡 母材熔化与焊缝成形
电弧焊基本历史
1801 迪威
电弧放电现象
1855 俄罗斯人 碳弧焊
– 应用:铁管及容器的制造 蒸汽机修理
– 问题:碳元素使金属接头变得脆硬
1891 俄罗斯人 金属极焊接法
– 空气中 铁电极
电弧焊基本历史
1907 瑞典人 焊条电弧焊 1912 瑞典人 开发出保护良好的厚涂
层焊条 1920 英国人 全焊接船下水 焊条电弧焊问题:
– 有限长度焊条
电弧焊基本历史
– 而弧柱区电场强度为:10V/cm左右,电场 作用不明显
焊接电弧物理基础
由于电子质量远小于其他粒子的质量, 因而在电场的作用下,速度快,动能大, 其余其他粒子发生非弹性碰撞,几乎将 本身的动能全部传递给相应的粒子,使 中性粒子发生电离或激励。因而场致电 离中电子起到主要的作用。
焊接电弧物理基础
焊接电弧物理基础
金属导电符合欧姆定律
– 原因:导电机制没有发生变化
焊接电弧物理基础
非自持放电
自持放电
电焊机基础知识

第一节 焊接的种类
焊接:是指通过适当的物理化学过程(加热或加压),使两个工件产生原子(或分子)之间结合力而连成一体的加工方法。
一、焊接方法的分类
一焊条电弧焊(ARC)
一熔 化 极一一埋弧焊
一CO2电弧焊(MAG)
氩气电弧焊(MIG)
一电弧焊一
一钨极氩弧焊(TIG)
2、熔焊:
是在焊接过程中,将焊接接头加热至熔化状态,不加压完成焊接的方法。
3、压焊:
是在焊接过程中,对焊件施加压力(加热或不加热,)以完成焊接的方法。
4、钎焊:
是采用比母材熔点低的金属材料,将焊件和钎料加热至高于钎料熔点,低于母材熔点的温度,利用液态钎润湿母材,填充接头间隙并母材互相扩散实现联接焊件的方法。
四、四种常用的弧焊方式
1、 手弧焊:
使用焊钳夹住焊条进行焊接的方法;
2、 氩弧焊:
用工业钨或活性钨作不熔化电级,惰性气体氩气作保护气的焊接方法。简称TIG。
3、 二氧化碳气体保护焊:
用金属焊丝作为熔化电极,惰性气体(CO2)作保护的弧焊 接方法。简称MIG。
(5) 电弧温度高、热输入小、速度快、热影响面小、焊接变形小。
(6) 填充金属和添加量不受焊接电流的影响。
3、氩弧焊适用焊接范围
适用于碳钢、合金钢、不锈钢、难熔金属铝及铝镁合金、铜及铜合金、钛及钛合金,以及超薄板0.1mm,同时能进行全方位焊接,特别对复杂焊件难以接近部位等等。
2、一般氩弧焊的优点:
(1) 能焊接除熔点非常低的铝锡外的绝大多数的金属和合金。
(2) 交流氩弧焊能焊接化学性质比较活泼和易形成氧化膜的铝及铝镁合金。
(3) 焊接时无焊渣、无飞溅。
电弧焊基础知识

第一章电弧焊基础知识一、教学目的:能正确认识焊接电弧中带电粒子的产生原理了解焊接电弧的工艺特性及电弧力的种类了解阴极斑点及阳极斑点的定义了解熔滴上的作用力掌握熔滴过渡的主要形式及其特点能正确认识焊缝形成过程了解焊接工艺参数对焊缝成形的影响了解焊缝成形缺陷的产生及防止二、教学重点:焊接电弧中带电粒子的产生原理熔滴过渡的主要形式及其特点焊接工艺参数对焊缝成形的影响三、教学难点:电离和激励极斑点及阳极斑点最小电压原理焊缝成形缺陷的产生及防止四、参考学时数:4~6学时五、主要教学内容:第一节焊接电弧一、焊接电弧的物理基础(一)电弧及其电场强度分布电弧是一种气体放电现象,它是带电粒子通过两电极之间气体空间的一种导电过程。
电弧有三个部分构成:阴极区、阳极区、弧柱区。
(二)电弧中带电粒子的产生1、气体的电离在外加能量作用下,使中性的气体分子或原子分离成电子和正离子的过程称为气体电离。
其本质是中性气体粒子吸收足够的能量,使电子脱离原子核的束缚而成为自由电子和正离子的过程。
电离种类:(1)热电离气体粒子受热的作用而产生电离的过程称为热电离。
其本质为粒子热运动激烈,相互碰撞产生的电离。
(2)场致电离带电粒子在电场中加速,和其中的中性粒子发生非弹性膨胀而产生的电离。
电离程度:电离度:单位体积内电离的粒子数浴气体电离前粒子总数的比值称为电离度。
(3)光电离中性气体粒子受到光辐射的作用而产生的电离过程称为光电离。
2、阴极电子发射(1)电子发射:阴极中的自由电子受到外加能量时从阴极表面逸出的过程称为电子发射。
其发射能力的大小用逸出功A w表示。
(2)阴极斑点阴极表面光亮的区域称为阴极斑点。
阴极斑点具有“阴极清理”(“阴极破碎”)作用,原因:由于氧化物的逸出功比纯金属低,因为阴极斑点会移向有氧化物的地方,将该氧化物清除。
(3)电子发射类型1)热发射阴极表面受热引起部分电子动能达到或超过逸出功时产生的电子发射。
热阴极以热发射为主要的发射形式。
焊接基础知识-手工电弧焊

7.焊条的牌号
焊条牌号是指除焊条国家标准的焊条型号外,考虑到国内各行业 对原部标的焊条牌号印象较深。因此仍保留了原焊条分十大类的 牌号名称,其编制方法为:每类电焊条的第一个大写汉语特征字 母表示该焊条的类别,例如J(或“结”)代表结构钢焊条
J 42 2
酸性焊条钛钙型,交直流两用(若为1、3、4、5均为酸条; 若为6、7均为碱性焊条) 焊缝金属抗拉强度不小于42 Kgf/mm2(412 Mpa) 结构钢焊条
常用术语:
第二章 焊接方法分类及应用
一、焊接方法分类 可分为三大类: 熔化焊 压力焊 钎 焊 熔化焊: 是将焊接接头加热至熔化状态而不加压力的一类 焊接方法,如电弧焊(手工电弧焊、埋弧自动焊 等)、气焊、气体保护焊(氩弧焊、CO2气体保 护焊等)、电渣焊和激光焊等。
压力焊: 是对焊件施加压力,加热或不加热 的 焊接方法,如电阻焊(点焊、缝焊、对 焊)、摩擦焊和爆炸焊等。 钎焊: 是采用熔点比焊件金属低的钎料,将 焊件和钎料加热到高于钎料的熔点而焊件 金属不熔化,利用毛细管作用使液态钎料 填充接头间隙与母材原子相互扩散的焊接 方法,如烙铁钎焊、火焰钎焊、电阻钎焊 等。
表1-2 焊接方法分类
焊
钎 焊 压 力 焊
接
熔 化 焊 气 体 保 护 焊 电 弧 焊
烙铁钎焊 火焰钎焊 电阻钎焊 真空钎焊 超声波钎 焊 盐浴钎焊
摩擦焊 电 气压焊 阻 冷压焊 焊 超声波焊 爆炸焊 扩散焊 凸 对 缝 点 高频焊 焊焊焊焊
铝电等 激电 子 光 束 氩 C02 热 渣 离 焊焊 气 气 焊焊子 焊 弧 体 焊 保 护 焊
手 工 电 弧 焊 焊 接 过 程
在焊接中,焊条的焊芯熔化后以熔滴的形式向熔池过渡,同时焊条涂层产 生一定量气体和液态熔渣。产生的气体充满在电弧和熔池周围,隔绝空气。 液态熔渣比液态金属密度小,浮在熔池上面,从而起到保护熔池作用。熔池 内金属冷却凝固时熔渣也随之凝固形成焊渣覆盖在焊缝表面,防止高温的焊 缝金属被氧化,并且降低焊缝的冷却速度。在焊接过程中,液态金属与液态 熔渣和气体间进行脱氧、去硫、去磷、去氢等复杂的冶金反应,从而使焊缝 金属获得合适的化学成分和组织。
四川大学 焊接工程学 知识点总结

焊接工程基础第一章电弧焊基础知识第一节焊接电弧1.焊接电弧的导电特点电弧是一种气体放电现象,即当两电极之间存在电位差时,电荷通过两极之间的气体空间的一种导电现象。
电弧是由两个电极和它们之间的气体放电空间构成,电弧的带电粒子主要由气体的电离和电极发射电子产生。
电弧放电区是气体放电中电压最低、电流最大、温度最高、发光最强的一个放电区域。
电离:在一定的条件下,中性气体分子或原子分离成为电子和正离子的现象。
使中性气体粒子失去第一个电子所需要的最低外加能量称为第一电离能,生成的正离子称为一价正离子,这种电离称为一次电离。
通常把这种决定电弧气氛的电离电压称为实效电离电压。
当中性气体粒子受外来能量作用,但能量不足以使电子完全脱离气体原子或分子,而可能使电子从较低的能级转移到较高的能级时,中性粒子内部的稳定状态将被破坏,但对外仍呈电中性,这种状态称为激励。
使中性粒子激励所需的最低外加能量称为最低激励能。
激励能小于电离能,也用电压值来表示,称为激励电压。
能量的传输途径:碰撞传递(主要途径):1.弹性碰撞:引起粒子温度变化,不产生电离 2.非弹性碰撞:导致粒子内部结构变化,并产生电离(当具有足够动能的电子与中性粒子碰撞时,其动能几乎可以全部传递给中性粒子,转换为内能,使其电离。
)光辐射传递(次要途径):通过光辐射传递能量的方法直接接受外界所施加的能量,使其内能增加,造成内部结构改变而电离。
电弧中气体粒子的电离因外加能量的种类不同而分为三种:由于气体粒子的热运动发生碰撞而产生的热电离;带电粒子在电场的作用下与中性粒子产生非弹性碰撞而产生的场电离;中性粒子由于光辐射的作用而产生的光电离。
电子发射是电极表面的电子在外加能量的作用下冲破表面的束缚而飞到电弧空间的现象。
热发射:金属表面由于受热将使其内部的电子的热运动加剧,当最外层电子的动能大于逸出功时,飞出金属表面参加电弧的导电现象。
电场发射:当金属表面存在一定强度的正电场时,金属内部的电子会受到电场力的作用,当电场力足够大时电子飞出金属表面的现象。
焊接基本知识详解

焊接应力过大的严重后果是焊件(工件)产生裂纹, 危害极大,对重要工件焊后应探伤。
焊接裂纹与: 焊接材料的成分(如硫、磷含量高)有关; 和焊缝金属的结晶特点(结晶区间要小)有关; 含氢量的多少有关。
摘自GB 5117-85
焊条 牌号 型号
E4303 J422
药皮 类型
钛钙型
J422G M
J422F e
E5016 J506
低氢钾 型
焊接电源 焊接位置
用途
交流或直 用于较重要的低碳钢及强度
流全位置 等级较低的低合金钢,
焊接
如09Mn2等。
适于海上平台、船舶、工程 机械等表面装饰焊缝的 焊接。
适于较重要的低碳钢结构焊 接。
芯同时熔化,形成熔池。同时药皮熔化和分解。 药皮熔化→进入熔池发生反应→形成熔渣→保护熔化金属。 药皮分解→CO2,CO,H2等气体→围绕在电弧周围→保护熔化 金属。 焊缝质量有很多因数决定,如母材 金属和焊条质量、焊前的清理程度、 焊时电弧的稳定情况、焊接参数、 焊接操作技术、焊后冷却速度、以及 焊后热处理等。
第四篇 焊接
第一章 电弧焊
§1 .1焊接电弧
焊接电弧:是电极与工件之间气体介质中长时间的放电现象。 一般情况下,电弧热量在阳极区产生的较多,约占总热量的43%,阴极
约36%,弧柱约21%。 温度:用钢焊条焊钢材时
阳极区—2600K 阴极区—2400K 电弧中心—6000~8000K 使用直流电源焊接时有正接、反接两种: 正接:正极接工件—工件温度可稍高一些。 反接:负极接工件,工件温度可稍低一些。 交流焊机、无正反接特点,温度均为2500K。 焊机的空载电压就是焊接时引弧电压,一般为50~90V,电弧稳定燃烧 时电压为电弧电压。电弧长度越大,电弧电压也越高,一般为16~35V。
《电弧焊基础》重点整理

第一章焊接电弧基础1. 电弧的本质是气体放电,是气体放电的一种表现形态。
2. 三种放电形式:(自持,非自持,辉光)放电3. 带电粒子来源:一是电源通过电极(阴极)向气隙空间发射电子。
二是气隙中的中性粒子被电离产生电子和离子。
4. 阳离子和电子来源:阳离子(电离)电子(阴极电子发射,包括热发射,场致发射)5. 电弧压降包括哪三部分:(阳极,弧柱,阴极)压降6. 维持电弧放电的条件:1、放电气隙内带电粒子的生成。
2、保持阴极、阳极与电弧间电的连续性。
7. 焊接电弧的热量的来源:焊接电弧的热量来自电源提供的电能,电源向电弧的弧柱区、阳极区和阴极区即电弧整体提供的电能:Pa=IUa=I(Ua+Uc+Up)8. 焊接电弧的热效率影响因素:热效率的数值与焊接方法、弧长因素、母材情况等有关。
热效率:相对于电弧功率(电弧电压X电弧电流),向母材传送的热量(热输入量)所占的比例称作焊接电弧热效率。
9. 电弧静压力(电磁收缩力)在两根互相平行导体中,通过同方向的电流时,导体间产生相互吸引的力,若电流方向相反,则产生排斥力。
10. 交流电弧:是指电弧(电极)极性随时间交替变化的电弧,也就是焊接电流方向按照一定的时间间隔变化,一般用在TIG焊接、等离子弧焊接和焊条电弧焊中。
11. 直流正/反接的区别:直流正接的热量比反接的热量要高,所以焊接厚板的时候多用直流正接。
焊接薄板的时候为了防止焊穿,采用直流反接的方法。
而焊接铝镁合金的时候直流反接,钨极为正极,电流大,对氧化膜有冲击清理的作用,但是容易烧穿,所以用交流焊接交替电波焊接,这样可以有效清理氧化膜还防止烧穿。
12. 焊接电弧静特性产生原因:小电流区,电弧温度低,其间粒子电离度低,电弧导电性较差,需要有较高的电场推动电荷运动在电弧极区,特别是阴极区,由于电极温度较低,极区的电子提供能力较差,不能实现大量的热电子发射,会形成较强的极区电压降,表现出较高的电压值。
增大电流值弧柱温度增加,电弧中的粒子电离度增加,电弧的导电性增加,同时电极温度提高,阴极热发射能力增强,Uc值降低,阳极蒸发量增加UA值降低,两极区电场相对减弱,电弧电压下降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e U i) kT
2020/10/9
第一章 电弧焊基础知识
9
第一节 焊接电弧
说明
1、Ui为实效电离电压,主要取决于电离电压较低的气体
成分,例如焊条药皮中加K、Na、Ca稳弧。 CO2、N2气氛电
弧电压和电弧温
2、气氛中的多原子气体电离前首先解离。 度比Ar气氛高。
3、弧柱区温度为5000~30000K,热电离是其产生带电 粒子的最主要途径。
处逸出,形成阴极 斑点。如铝合金的
阴极雾化 13
第一节 焊接电弧
阴极电子发射机构可分为 :
对电极有 冷却作用
(1)热发射 阴极表面因受到热作用而使其内部的自由电 子热运动加剧,动能增加,当一部分电子的动能大于大 于逸出功时,则飞出到表面外的空间中去而产生的电子 发射现象。
热发射电子流密度:i=AT2exp(-eUω/kT) 热阴极电弧:热发射强弱受到阴极材料沸点的影响,沸 点高的钨或碳做阴极时,电极可以被加热到比较高的温 度,通过热发射可以提供足够多的电子。
第一章 电弧焊基础知识
第一章 电弧焊基础知识
学习目标
1、掌握焊接电弧的物理基础;
2、深入了解焊接电弧的主要工艺特性;
3、明确焊丝熔化与熔滴过渡的过程以及母材熔化与焊 缝成形的基本规律等。
主要内容
第一节 焊接电弧
第二节 焊接电弧中的能量平衡及电弧力
第三节 磁场对电弧的作用
第四节 焊丝的熔化及熔滴过渡
第五节 2020/10/9 母材熔化和第焊一章缝电成弧焊形基础知识
2
第一节 焊接电弧
电弧是所有电弧焊方法的能源,能有效而简便地把弧焊电 源输送的电能转换成焊接过程所需要的热能和机械能。
一、焊接电弧的导电特点
电弧是一种气体放电现 象,是指两电极存在电
位差时,电荷通过两电
极之间气体空间的一种
导电现象。电能转换为 热能、机械能和光能。
第一节 焊接电弧
电离种类
❖ 热电离:气体粒子受热作用而产生的电离过程。
实质:气体粒子的热运动形成频繁而激烈的碰撞
气体热电离的电离度:单位体积内被电离的粒子数与气
体电离前粒子总数的比率。
x=电离后的电子或离子密度/电离前中性粒子密度
萨哈公式
1
x2 - x2
P
3.16 10-7 T
2.5
exp(-
2020/10/9
第一章 电弧焊基础知识
10
第一节 焊接电弧
❖ 电场作用下的电离——场致电离
定义:在两电极间电场的作用下,气体中的带电粒子被
加速,电能转化为带电粒子的动能,当带电粒子的动能 达到一定数值时,则可能与中性粒子发生非弹性碰撞而 使之电离。
场致电离发生的位置
主要是两极区,由于在这两个区域内电场强度可达 105~107V/cm 弧柱区电场强度为:10V/cm左右,电场作用不明显 场致电离中电子起主要作用。
500nm
气体
K
Na
Al Ca Mg Cu Fe
O
H CO N Ar He
电离能 (eV)
4.3
5.1 5.96 6.1 7.61 7.7
7.8 13.5 13.5 14.1 14.5 15.7 24.5
临界波 长(nm) 287.4 242.3 207.3 202.6 162.4 160.5 158.5 91.5 91.5 87.6 85.2 78.7 50.4
4
第一节 焊接电弧
气体导电与金属导电的比较
气体
金属
不含自由移动带电粒子; 所有粒子都可以自由移动
含自由移动带电电子; 离子不可以自由移动
不呈现导电性
呈现导电性
气体导电必须具备两个基本条件:两电极之间有带电粒子;
2020/10/9
两电极之间有电场。
第一章 电弧焊基础知识
5
第一节 焊接电弧
电弧产生的必要条件
焊接电弧导电示意图
2020/10/9
第一章 电弧焊基础知识
3
第一节 焊接电弧
气体导电时,导电部分的电压与电流不遵循欧姆定律。
电弧的特点: 低电压、大 电流、温度 高、亮度大
金属导电伏安特性
2020/10/9
气体导电伏安特性
Ⅰ-非自持放电 Ⅱ-自持放电 Ⅲ-辉光放电 Ⅳ-电弧放电
第一章 电弧焊基础知识
外加能量可以通过碰撞和光辐射两种方式传递给中性气体
粒子。
电弧本身制造带电粒子维
持其导电的最主要途径。
碰撞传递:只有非弹性碰撞才产生电离过程。
光辐射传递:气体粒子接受光量子形式施加的能量,产生 激励或电离,超过电离能部分转换为电离生成电子的动能。
2020/10/9
第一章 电弧焊基础知识
次要途径
8
2020/10/9
第一章 电弧焊基础知识
12
第一节 焊接电弧
(二)电子发射
电极表面受到外加能量的作用,使其内部的电子冲破电极 表面的束缚而飞到电弧空间的现象。
使一个电子从金属表面飞出所需要的最低外加能量称为逸
出功(Wω)。
几种金属及其氧化物的逸出功
金属
W
Fe
Al
Cu
K
Ca Mg
纯金属 4.54 4.48 4.25 4.36 2.02 2.12 3.78
2020/10/9
第一章 电弧焊基础知识
6
第一节 焊接电弧
2020/10/9
第一章 电弧焊基础知识
稳弧剂:电离电压低、
易电离的元素
7
第一节 焊接电弧
当中性粒子受外来能量作用其能量还不足以使电子完全脱 离气体原子或分子,但可能使电子从较低的能级转移到较 高的能级时,则中性粒子内部的稳定状态也被破坏,这种 状态称为激励。
2020/10/9
第一章 电弧焊基础知识
11
第一节 焊接电弧
❖ 光电离
定义:中性气体粒子受到光辐射的作用而产生的电离。
范围:电弧的辐射只可能对K、Na、Ca、Al等金属蒸气直
接引起电离,而对焊接电弧气氛中的其他气体则不能直接
引起电离。
光电离是产生带电粒子的次要途径。
常见气体光电离的临界波长
电弧的光辐射 波长在170~
电弧中带电粒子的产生过程
电弧的带电粒子主要依靠气体的电离和电极发射电子产生。
(一)气体电离 在外加能量作用下,中性气体分子或原子分离成正离子和电子
的现象。 使中性气体粒子失去第一个电子所需要的最低外加能量称
为第一电离能,生成的正离子称为一价正离子,这种电离 称为一次电离。电离能转换为数值上相等的电压来表示则 为电离电压或电离势。
逸出功(eV)
氧化物
3.92 3.9 3.85 0.46 1.8 3.31
钨极成分 逸出功(eV)
W W-Cs W-Ba W-Th 4.54 1.36 1.56 2.63
钨极加入Th、Cs等成
2020/10/9
分提高电子发射能力 和改善工艺性能。
第一章 电弧焊基础知识
W-Zr 氧化物逸出功较低, 3.14 电子容易从氧化膜