理论力学课后习题答案

合集下载

理论力学习题册答案

理论力学习题册答案

第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体.还适用于变形体。

()2、作用于刚体上三个力的作用线汇交于一点.该刚体必处于平衡状态。

()3、刚体是真实物体的一种抽象化的力学模型.在自然界中并不存在。

()4、凡是受两个力作用的刚体都是二力构件。

()5、力是滑移矢量.力沿其作用线滑移不会改变对物体的作用效果。

()二.选择题1、在下述公理、法则、原理中.只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。

未画重力的物体不计自重.所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

b(杆ABa(球A ))d(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。

未画重力的物体不计自重.所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。

未画重力的物体不计自重.所有接触处均为光滑接触。

多杆件的整体受力图可在原图上画。

WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’.所以力偶的合力等于零。

()2、用解析法求平面汇交力系的合力时.若选用不同的直角坐标系.则所求得的合力不同。

()3、力偶矩就是力偶。

()二.电动机重P=500N.放在水平梁AC的中央.如图所示。

理论力学课后习题答案

理论力学课后习题答案

理论力学(盛冬发)课后习题答案c h12(总14页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第12章动能定理一、是非题(正确的在括号内打“√”、错误的打“×”)1.圆轮纯滚动时,与地面接触点的法向约束力和滑动摩擦力均不做功。

( √ )2.理想约束的约束反力做功之和恒等于零。

( √ )3.由于质点系中的内力成对出现,所以内力的功的代数和恒等于零。

( × )4.弹簧从原长压缩10cm和拉长10cm,弹簧力做功相等。

( √ )5.质点系动能的变化与作用在质点系上的外力有关,与内力无关。

( × )6.三个质量相同的质点,从距地相同的高度上,以相同的初速度,一个向上抛出,一个水平抛出,一个向下抛出,则三质点落地时的速度相等。

( √ )7.动能定理的方程是矢量式。

( × )8.弹簧由其自然位置拉长10cm,再拉长10cm,在这两个过程中弹力做功相等。

143144( × )二、填空题1.当质点在铅垂平面内恰好转过一周时,其重力所做的功为 0 。

2.在理想约束的条件下,约束反力所做的功的代数和为零。

3.如图所示,质量为1m 的均质杆OA ,一端铰接在质量为2m 的均质圆轮的轮心,另一端放在水平面上,圆轮在地面上做纯滚动,若轮心的速度为o v ,则系统的动能=T 222014321v m v m +。

4.圆轮的一端连接弹簧,其刚度系数为k ,另一端连接一重量为P 的重物,如图所示。

初始时弹簧为自然长,当重物下降为h 时,系统的总功=W 221kh Ph -。

图 图5.如图所示的曲柄连杆机构,滑块A 与滑道BC 之间的摩擦力是系统的内力,设已知摩擦力为F 且等于常数,则曲柄转一周摩擦力的功为Fr 4-。

1456.平行四边形机构如图所示,r B O A O ==21,B O A O 21//,曲柄A O 1以角速度ω转动。

理论力学习题答案

理论力学习题答案

理论力学习题答案(总26页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2第一章 静力学公理和物体的受力分析一、是非判断题在任何情况下,体内任意两点距离保持不变的物体称为刚体。

( ∨ ) 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。

( × ) 加减平衡力系公理不但适用于刚体,而且也适用于变形体。

( × ) 力的可传性只适用于刚体,不适用于变形体。

( ∨ ) 两点受力的构件都是二力杆。

( × ) 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。

( × ) 力的平行四边形法则只适用于刚体。

( × ) 凡矢量都可以应用平行四边形法则合成。

( ∨ ) 只要物体平衡,都能应用加减平衡力系公理。

( × ) 凡是平衡力系,它的作用效果都等于零。

( × ) 合力总是比分力大。

( × ) 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。

( × )若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。

( ∨ )当软绳受两个等值反向的压力时,可以平衡。

( × )静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。

( ∨ )静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。

( ∨ )凡是两端用铰链连接的直杆都是二力杆。

( × )如图所示三铰拱,受力F ,F 1作用,其中F 作用于铰C 的销子上,则AC 、BC 构件都不是二力构件。

( × )图3二、填空题力对物体的作用效应一般分为 外 效应和 内 效应。

对非自由体的运动所预加的限制条件称为 约束 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 相反 ;约束力由 主动 力引起,且随 主动 力的改变而改变。

理论力学课后题参考答案

理论力学课后题参考答案

1.1 沿水平方向前进的枪弹,通过某一距离s 的时间为t 1,而通过下一等距离s 的时间为2t .试证明枪弹的减速度(假定是常数)为由题可知示意图如题1.1.1图: {{SSt t 题1.1.1图设开始计时的时刻速度为0v ,由题可知枪弹作匀减速运动设减速度大小为a .则有:()()⎪⎪⎩⎪⎪⎨⎧+-+=-=221210211021221t t a t t v s at t v s 由以上两式得 11021at t s v +=再由此式得 ()()2121122t t t t t t s a +-=1.26一弹性绳上端固定,下端悬有m 及m '两质点。

设a 为绳的固有长度,b 为加m 后的伸长,c 为加m '后的伸长。

今将m '任其脱离而下坠,试证质点m 在任一瞬时离上端O 的距离为解 以绳顶端为坐标原点.建立如题1.26.1图所示坐标系.题1.26.1图设绳的弹性系数为k ,则有 kb mg = ① 当 m '脱离下坠前,m 与m '系统平衡.当m '脱离下坠前,m 在拉力T 作用下上升,之后作简运.运动微分方程为 ()ym a y k mg &&=-- ② 联立①② 得 b b a g y b g y +=+&& ③ 0=+y bg y &&齐次方程通解 t b g A t b g A Y sin cos 211+= 非齐次方程③的特解 b a Y +=0 所以③的通解b a t bg A t b g A Y +++=sin cos 211代入初始条件:0=t 时,,c b a y ++=得0,21==A c A ;故有 b a t b g c y ++=cos 即为m 在任一时刻离上端O 的距离.'1.39 一质点受一与距离23次方成反比的引力作用在一直线上运动。

试证此质点自无穷远到达a 时的速率和自a 静止出发到达4a 时的速率相同。

理论力学课后习题答案

理论力学课后习题答案

理论力学(盛冬发)课后习题答案c h11(总18页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第11章 动量矩定理一、是非题(正确的在括号内打“√”、错误的打“×”)1. 质点系对某固定点(或固定轴)的动量矩,等于质点系的动量对该点(或轴)的矩。

(×)2. 质点系所受外力对某点(或轴)之矩恒为零,则质点系对该点(或轴)的动量矩不变。

(√)3. 质点系动量矩的变化与外力有关,与内力无关。

(√)4. 质点系对某点动量矩守恒,则对过该点的任意轴也守恒。

(√)5. 定轴转动刚体对转轴的动量矩,等于刚体对该轴的转动惯量与角加速度之积。

(×)6. 在对所有平行于质心轴的转动惯量中,以对质心轴的转动惯量为最大。

(×)7. 质点系对某点的动量矩定理e 1d ()d nOO i i t ==∑L M F 中的点“O ”是固定点或质点系的质心。

(√)18. 如图所示,固结在转盘上的均质杆AB ,对转轴的转动惯量为20A J J mr =+2213ml mr =+,式中m 为AB 杆的质量。

(×)9. 当选质点系速度瞬心P 为矩心时,动量矩定理一定有e 1d()d nP P i i t ==∑L M F 的形式,而不需附加任何条件。

(×)10. 平面运动刚体所受外力对质心的主矩等于零,则刚体只能做平动;若所受外力的主矢等于零,刚体只能作绕质心的转动。

(×)图二、填空题1. 绕定轴转动刚体对转轴的动量矩等于刚体对转轴的转动惯量与角速度的乘积。

2. 质量为m ,绕z 轴转动的回旋半径为ρ,则刚体对z 轴的转动惯量为2ρm J z =。

3. 质点系的质量与质心速度的乘积称为质点系的动量。

24. 质点系的动量对某点的矩随时间的变化规律只与系统所受的外力对该点的矩有关,而与系统的内力无关。

5. 质点系对某点动量矩守恒的条件是质点系所受的全部外力对该点之矩的矢量和等于零,质点系的动量对x 轴的动量矩守恒的条件是质点系所受的全部外力对x 轴之矩的代数和等于零。

理论力学习题及答案(全)

理论力学习题及答案(全)

第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。

()2.在理论力学中只研究力的外效应。

()3.两端用光滑铰链连接的构件是二力构件。

()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。

()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。

()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。

()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。

()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。

()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。

则其合力可以表示为。

①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。

①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。

③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。

3.三力平衡定理是。

①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。

4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。

①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。

5.在下述原理、法则、定理中,只适用于刚体的有。

①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。

三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。

2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。

《理论力学》课后习题解答[赫桐生,高教版]

《理论力学》课后习题解答[赫桐生,高教版]
解:取带轮与轴为研究对象,坐标系如图示,受力分析为一空间任意力系,平衡方程为:
习题4-6.手摇钻由支点B、钻头A和一个弯曲手柄组成,当在B处施力P并在手柄上加力F后,即可带动钻头绕轴转动而切削(支点B不动)。已知力P的垂直分量Pn=50N, F =150N,求材料对钻头的阻抗作用力及力P在轴x和y方向的分量Px、Py之值。
解:(1)研究整体,受力分析(注意1杆是二力杆),画受力图:
列平衡方程:
解方程组:
(2)研究1杆(二力杆),受力分析,画受力图:
由图得:
(3)研究铰C,受力分析,画受力图:
由力三角形得:
杆1和杆3受压,杆2受拉。
习题3-9.图示破碎机传动机构,活动颚板AB=60cm,设破碎时对颚板作用力垂直于AB方向的分力P=1kN,AH=40cm,BC=CD=60cm,OE=10cm;求图示位置时电机对杆OE作用的转矩M。
解:(1)正常工作时,m1和m2的合力偶为零。整体受力分析:
由对称性可知:
(2)非正常工作时,分别讨论m2和G作用的情况:
G单独作用时,情况同(1):
m2单独作用时,列平衡方程:
共同作用情况时:
NA的实际方向向下,NB的实际方向向上。
习题2-12.四连杆机构OABO1在图示位置平衡,已知OA=40cm,O1B=60cm,作用在曲柄OA上的力偶矩大小为m1=1N.m,不计杆重;求力偶矩m2的大小及连杆AB所受的力。
解:(1)研究锤头,受力分析,画受力图:
(2)列平衡方程:
解方程:
习题2-11.图示轧钢机工作机构,机架和轧辊共重G=650kN,为了轧制钢板,在轧辊上各作用一力偶,力偶矩大小为m1=m2=828kN,机架的支点距离l=1380mm;当发生事故时,m1=0,m2=1656kN.m;求在正常工作与发生事故两种情形下支点A、B的反力。

理论力学第二版习题答案

理论力学第二版习题答案

理论力学第二版习题答案理论力学第二版习题答案理论力学是力学的基础学科,它研究物体在力的作用下的运动规律。

对于学习理论力学的学生来说,做习题是非常重要的一部分,通过做习题可以巩固理论知识,提高解题能力。

本文将为大家提供理论力学第二版习题的答案,希望对广大学生有所帮助。

第一章:牛顿力学的基本概念和基本定律1. 问题:一个质点从速度为v0的位置自由下落,求它下落的时间。

答案:根据自由下落的运动学公式,下落的时间t可以通过以下公式计算:t =√(2h/g),其中h为下落的高度,g为重力加速度。

由于自由下落是垂直向下的,所以h可以表示为h = (1/2)gt^2。

将h代入上述公式,可得t = √(2h/g) =√(2(1/2)gt^2/g) = √t^2 = t。

2. 问题:一个质点在水平方向上以初速度v0做匀速直线运动,求它在时间t内所走的距离。

答案:由于匀速直线运动的速度保持不变,所以在时间t内,质点所走的距离s 可以通过以下公式计算:s = v0t。

第二章:质点的运动方程1. 问题:一个质点在x轴上做直线运动,其运动方程为x = 2t^2 + 3t + 1,求其速度和加速度。

答案:质点的速度可以通过对运动方程求导得到:v = dx/dt = 4t + 3。

质点的加速度可以通过对速度求导得到:a = dv/dt = 4。

2. 问题:一个质点在y轴上做直线运动,其运动方程为y = 3t^3 + 2t^2 + t,求其速度和加速度。

答案:质点的速度可以通过对运动方程求导得到:v = dy/dt = 9t^2 + 4t + 1。

质点的加速度可以通过对速度求导得到:a = dv/dt = 18t + 4。

第三章:质点系和刚体的运动1. 问题:一个质点系由两个质点组成,质点1质量为m1,质点2质量为m2,它们之间通过一根质量可忽略不计的绳子连接,求质点系的重心位置。

答案:质点系的重心位置可以通过以下公式计算:x = (m1x1 + m2x2)/(m1 + m2),其中x1和x2分别为质点1和质点2的位置坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等教育出版社,金尚年,马永利编著的理论力学课后习题答案
第一章 1.2
写出约束在铅直平面内的光滑摆线
上运动的质点的微
分方程,并证明该质点在平衡位置附近作振动时,振动周期与振幅无关.
解:
设s 为质点沿摆线运动时的路程,取 =0时,s=0
S=
= 4 a (1
)
X
Y

为质点所在摆线位置处切线方向与x 轴的夹角,取逆时针为正,
即切线斜率
=
受力分析得:

,此即为质点的运动微分方程。

该质点在平衡位置附近作振动时,振动周期与振幅无关,为.
1.3
证明:设一质量为m 的小球做任一角度0θ的单摆运动
运动微分方程为θθθ
F r r m =+)2(&&&& θθ
sin mg mr =&& ①
给①式两边同时乘以d θ θθθθ
d g d r sin =&& 对上式两边关于θ&积分得 c g r +=θθcos 2
12& ②
利用初始条件0θθ=时0=θ
&故0cos θg c -= ③ 由②③可解得 0cos cos 2-θθθ
-•=l
g & 上式可化为dt d l
g
=⨯-•θθθ0cos cos 2-
两边同时积分可得θθθθθθθθd g l d g l t ⎰⎰---
=--
=0
2
02
2
200
2
sin 12
sin 1001
2cos cos 12
进一步化简可得θθθθd g l t ⎰-=
0002
222sin sin 1
2
1 由于上面算的过程只占整个周期的1/4故
⎰-==0
2
2
2
sin 2
sin 12
4T θθθ
θd g l t
由ϕθθsin 2
sin /2sin 0=
两边分别对θϕ微分可得ϕϕθ
θθd d cos 2
sin 2cos 0=
ϕθθ
20
2
sin 2
sin 12
cos
-=
故ϕϕ
θϕ
θθd d 20
2
sin 2
sin 1cos 2
sin
2
-= 由于00θθ≤≤故对应的2

ϕ≤≤
故ϕϕ
θ
ϕ
θϕθθ
θθπ
θd g l d g l T ⎰⎰-=-=20
20
2
2
cos 2
sin
sin 2
sin 1/cos 2
sin
4
2
sin
2
sin 2
故⎰-=2
022sin 14πϕϕK d g l T 其中2
sin
022θ=K 通过进一步计算可得
g
l π
2T =])2642)12(531()4231()21(1[224222ΛΛΛΛ+⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯++n K n n K K
1.5
z
p点
y
x
解:
如图,在半径是R的时候,由万有引力公式,
对表面的一点的万有引力为
, ①
M为地球的质量;
可知,地球表面的重力加速度g , x为取地心到无限远的广义坐标,
,②
联立①,②可得:
,M为地球的质量;③
当半径增加,R2=R+,此时总质量不变,仍为M,
此时表面的重力加速度可求:

B
e e
ө
y
由④得:

则,半径变化后的g 的变化为

对⑥式进行通分、整理后得:

对⑦式整理,略去二阶量,同时远小于R ,得

则当半径改变 时,表面的重力加速度的变化为:。

1.6
解:由题意可建立如图所示的平面极坐标系 则由牛顿第二定律可知, 质点的运动方程为
⎪⎩
⎪⎨⎧=+-=-θθθθθsin )2(cos )(2mg r r m mg F r r m &&&&&&&
其中,
X
Vt
L r L r V r -==-=,,0&
1.8
设质点在平面内运动的加速度的切向分量和法向分量都是常数,证明质点的轨道为对数螺线。

解:设,质点的加速度的切向分量大小为,法向分量大小为。

(其中、为常数)则有
其中为曲率半径。


式得
其中是
初始位置,
是初始速度大小。

把式代入式得
由式

式积分则得
其中
是初始角大小。

我们把
式转化为时间关于角的函数

式代入
式,于是得质点的轨道方程
当我们取一定的初始条件
时,令。

方程可以简化为

11 即质点的轨迹为对数螺线。

1.9
解:(1)从A 点到原长位置,此时间内为自由落体运动。

根据能量守恒:212
1
mV mgl =
, 所以在原长位置时:112gl V =。

相关文档
最新文档