2021高考数学一轮复习:专项突破 新高考·新题型专练

2021高考数学一轮复习:专项突破 新高考·新题型专练
2021高考数学一轮复习:专项突破 新高考·新题型专练

专项突破 新高考·新题型专练

一、多项选择题:在每小题给出的选项中,有多项符合题目要求. 1.已知集合M ={0,1,2},N ={x ||x - 1|≤1},则 ( ) A.M =N B.N ?M C.M ∩N =M D.(?R M )∪N =R 2.已知i 为虚数单位,则下列结论正确的是 ( )

A .复数z =1+2i 1-i

的虚部为3

2

B .复数z =

2+5i -i

的共轭复数z -

= - 5 - 2i

C .复数z =1

2 ? 1

2i 在复平面内对应的点位于第二象限 D .若复数z 满足1

z ∈R ,则z ∈R

3.采购经理指数(简称PMI )是国际上通行的宏观经济监测指标体系之一,对国家经济活动的监测和预测具有重要作用.制造业PMI 在50%以上,通常反映制造业总体扩张,低于50%,通常反映制造业总体衰退.如图1 - 1是2018年10月到2019年10月我国制造业PMI 的统计图,下列说法正确的是

( )

图1 - 1

A.大部分月份制造业总体衰退

B.2019年3月制造业总体扩张最大

C.2018年11月到2019年10月中有3个月的PMI 比上月增长

D.2019年10月的PMI 为49.3%,比上月下降0.5个百分点 4.已知函数f (x )={x 2,x ≤0,

-x 2,x >0,则下列结论中正确的是

( )

A.f ( - 2)=4

B.若f (m )=9,则m =±3

C.f (x )是偶函数

D.f (x )在R 上单调递减

5.已知(ax 2+√

x )n (a >0)的展开式中第5项与第7项的二项式系数相等,且展开式中各项系数之和

为1 024,则下列说法正确的是

( )

A.展开式中奇数项的二项式系数之和为256

B.展开式中第6项的系数最大

C.展开式中存在常数项

D.展开式中含x 15项的系数为45

6.已知向量a =(1,2),b =(m ,1)(m <0),且满足b ·(a +b )=3,则 ( )

A.|b |=√2

B.(2a +b )∥(a +2b )

C.向量2a - b 与a - 2b 的夹角为π

4 D.向量a 在b 方向上的投影为√5

5

7.已知函数f (x )=sin (2x - π

6),下列结论正确的是 ( )

A.f (x )的最小正周期是π

B.f (x )=1

2

是x =π

2

的充分不必要条件

C.函数f (x )在区间(π3,5π

6

)上单调递增

D.函数y =|f (x )|的图象向左平移π12个单位长度后所得图象的对称轴方程为x =k

4π(k ∈Z ) 8.同时抛掷两个质地均匀的四面分别标有1,2,3,4的正四面体一次,记事件A ={第一个四面体向下的一面出现偶数},事件B ={第二个四面体向下的一面出现奇数},事件C ={两个四面体向下的一面同时出现奇数,或者同时出现偶数}.则下列说法正确的是 ( )

A.P (A )=P (B )=P (C )

B.P (AB )=P (AC )=P (BC )

C.P (ABC )=1

8 D.P (A )P (B )P (C )=1

8

9.已知函数f (x )是定义在R 上的奇函数,且x >0时,f (x )=(x - 2)e x ,则下列结论正确的是 ( ) A .f (x )>0的解集为( - 2,0)∪(2,+∞) B .当x <0时,f (x )=(x +2)e - x C .f (x )有且只有两个零点

D .?x 1,x 2∈[1,2],|f (x 1) - f (x 2)|≤e

10.设圆A :x 2+y 2 - 2x - 3=0,则下列说法正确的是 ( ) A.圆A 的半径为2

B.圆A 截y 轴所得的弦长为2√3

C.圆A 上的点到直线3x - 4y +12=0的最小距离为1

D.圆A 与圆B :x 2+y 2 - 8x - 8y +23=0相离

11.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,C 为钝角,且c - b =2b cos A ,则下列结论中正确的是

( )

A.a 2=b (b +c )

B.A =2B

C.0

2

D.0

2

12.设f ' (x )是函数f (x )的导函数,若f ' (x )>0,且?x 1,x 2∈R (x 1≠x 2),f (x 1)+f (x 2)<2f (

x 1+x 22

),则下

列各项中正确的是 ( )

A.f (2)

B.f ' (π)

C.f ' (2)

D.f ' (3)

13.已知数列{a n }是各项均为正数的等比数列,{b n }是公差不为0的等差数列,且a 2=b 2,a 8=b 8,则

( )

A.a 5=b 5

B.a 5

C.a 4

D.a 6>b 6 14.[2020山东省统考]如图1 - 2,正方体ABCD - A 1B 1C 1D 1的棱长为1,E ,F ,G 分别为BC ,CC 1,BB 1

的中点,则

( )

图1 - 2

A .直线D 1D 与直线AF 垂直

B .直线A 1G 与平面AEF 平行

C .平面AEF 截正方体所得的截面面积为9

8 D .点C 与点G 到平面AEF 的距离相等

15.已知矩形ABCD ,AB =1,BC =√3,将△ADC 沿对角线AC 进行翻折,得到三棱锥D - ABC ,则在翻折的过程中,下列结论正确的是 ( )

A.三棱锥D - ABC 的体积的最大值为1

3

B.三棱锥D - ABC 的外接球的体积不变

C.三棱锥D - ABC 的体积最大时,二面角D - AC - B 的大小是60°

D.异面直线AB 与CD 所成角的最大值为90°

16.已知椭圆x 2

3

+y 2

6

=1上有A ,B ,C 三点,其中B (1,2),C ( - 1, - 2),tan ∠BAC =9

2

,则下列说法正确的是

( )

A.直线BC 的方程为2x - y =0

B.k AC =1

2或4

C.点A 的坐标为( - 19,22

9) D.点A 到直线BC 的距离为

4√59

17.在数列{a n }中,a 1=1,a 2=2,a 3=3,a n +3+( - 1)n a n +1=1(n ∈N *),数列{a n }的前n 项和为S n ,则下列结论正确的是

( )

A.数列{a n }为等差数列

B.a 18=10

C.a 17=3 D .S 31=146

18.过抛物线y 2=3x 的焦点f 的直线与抛物线交于A (x 1,y 1)(y 1>0),B (x 2,y 2)两点,点A ,B 在抛物线准线上的射影分别为A 1,B 1,直线AO 交准线于点M (O 为坐标原点),则下列说法正确的是

( )

A.OA ????? ·OB ????? =0

B.∠A 1F B 1=90°

C.直线MB ∥x 轴

D.|AF |·|BF |的最小值是9

4

二、双空题.

19.已知函数g (x )=2sin [ω(x +π

12)](ω>0)的图象是由函数f (x )的图象先向左平移π

6个单位长度,再将所得图象上所有点的纵坐标变为原来的2倍(横坐标不变)得到的.若f (x )的最小正周期为π,则f (x )= ;若函数f (x )在区间[0,π

6

]上单调递增,在区间[π6,π

3

]上单调递减,则实数ω的

值为 .

20.如图1 - 3,在平面四边形ABCD 中,E ,F 分别为边CD ,AD 上的点,△DEf 为等边三角形,CE =Ef ,且∠ABC =π

3,AE =√13,AF =3,则AC = ,△ABC 面积的最大值为 .

图1 - 3

21.[2020长春市第一次质量监测]已知数列{a n }的前n 项和为S n ,满足a 1= - 1

2

,且

a n +a n +1=2

n 2+2n (n ∈N *),则S 2n = , a n = .

22.[2019北京市顺义区第二次统考]已知抛物线

y 2=2px (p >0)的焦点和双曲线

x 2 - y 23

=1

的右焦

点F 2重合,则抛物线的方程为 ;P 为抛物线和双曲线的一个公共点,则点P 与双曲线左焦点F 1之间的距离为 .

23.设函数f (x )(x ∈R )的导函数为f ' (x ),f (0)=2 020,且f ' (x )=f (x ) - 2,则f (x )= ,f (x )+4 034>2f ' (x )的解集是 .

24.如图1 - 4,在棱长均为3的正四棱锥P - ABCD 中,E ,F ,G ,H 分别是PA ,PB ,PC ,PD 上异于端点的点,且平面EF GH 与平面ABCD 平行,S 为AC 和BD 的交点,当四棱锥S - EFGH 的体积最大时,PE

PA = ,此时四棱锥S - EFGH 外接球的表面积为 .

图1 - 4

答案及解析

1.CD由|x - 1|≤1得0≤x≤2,即N=[0,2],又M={0,1,2},所以M∩N=M,M?N,(?R M)∪N=R,故选CD.

2.ABD对于A,z=1+2i

1-i =(1+2i)(1+i)

(1-i)(1+i)

= - 1

2

+3

2

i,其虚部为3

2

,故A正确;

对于B,z=2+5i

-i

=(2+5i)i= - 5+2i,故z= - 5 - 2i,故B正确;

对于C,z=1

2 ? 1

2

i在复平面内对应的点的坐标为(1

2

,-1

2

),位于第四象限,故C不正确;

对于D,设z=a+b i(a,b∈R),则1

z =1

a+bi

=a-bi

a2+b2

,又1

z

∈R,则b=0,所以z=a∈R,故D正确.

故选ABD.

3.ABD根据折线图可知,大部分月份制造业总体衰退,A正确;2019年3月制造业总体扩张最大,B正确;2018年11月到2019年10月中有4个月的PMI比上月增长,C错误;2019年10月的PMI为49.3%,比上月下降0.5个百分点,D正确.故选ABD.

4.AD由于- 2<0,所以f ( - 2)=( - 2)2=4,故A选项正确;由f (m)=9>0知m≤0,且m2=9,因此m= - 3,故B选项错误;由f (x)的图象(图略)可知f (x)是奇函数,且在R上单调递减,故C选项错误,D选项正确.故选AD.

5.BCD因为(ax2+

)n(a>0)的展开式中第5项与第7项的二项式系数相等,所以C n4=C n6,解得n=10.因为展开式中各项系数之和为1 024,所以令x=1,得(a+1)10=1 024,解得a=1.故给定的二项

式为(x2+

√)10,其展开式中奇数项的二项式系数之和为1

2

×210=512,故A不正确.由n=10可知二

项式系数最大的项是展开式的第6项,而(x2+

√x

)10的展开式的系数与对应的二项式系数相等,

故B 正确.展开式的通项公式为T k +1=C 10k (x 2)10 - k ·(√)k =C 10k x 20 -

5k 2

(k =0,1,2,…,10),令20 - 5k

2

=0,解得

k =8,即常数项为第9项,故C 正确.令20 - 5k

2

=15,得k =2,故展开式中含x 15项的系数为C 102=45,故

D 正确.故选BCD .

6.AC 将a =(1,2),b =(m ,1)代入b ·(a +b )=3,得(m ,1)·(1+m ,3)=3,即m 2+m =0,解得m = - 1或m =0(舍去),所以b =( - 1,1),所以|b |=√(-1)2+12=√2,故A 正确;因为2a +b =(1,5),a +2b =( - 1,4),1×4 - ( - 1)×5=9≠0,所以2a +b 与a +2b 不平行,故B 错误;设向量2a - b 与a - 2b 的夹角为θ,易知2a -

b =(3,3),a - 2b =(3,0),所以cos θ=(2a -b)·(a -2b)|2a -b||a -2b|=

√2

2

,所以θ=π

4

,故C 正确;向量a 在b 方向上的投影为

a ·

b |b |

=

=√2

2

,故D 错误.故选AC.

7.AD 对于A ,由最小正周期T =2πω

=2π2

=π知A 正确;

对于B ,由f (x )=1

2得2x - π

6=2k π+π

6(k ∈Z )或2x - π

6=2k π+5π

6(k ∈Z ),即x =k π+π

6(k ∈Z )或x =k π+π

2(k ∈Z ),可知f (x )=1

2

是x =π2

的必要不充分条件,B 不正确;

对于C ,由π3

2)上单调递减,故C 不正确;

对于D ,y =|f (x )|的图象向左平移π

12个单位长度得y =|sin [2(x +π

12) - π

6]|=|sin 2x |的图象,由y =|sin x |的图象的对称轴为直线x =kπ

2(k ∈Z )得y =|sin 2x |的图象的对称轴为直线x =kπ

4(k ∈Z ),D 正确.故选AD .

8.ABD 由古典概型的概率计算公式,得P (A )=P (B )=2

4

=1

2,P (C )=

84×4

=12

,所以P (A )=P (B )=P (C )=1

2

,A

正确;P (A )P (B )P (C )=1

8,D 正确;

而事件A ,B ,C 不可能同时发生,故P (ABC )=0,所以C 不正确;又P (AB )=2×2

4×4=1

4,P (AC )=2×2

4×4=

14

,P (BC )=

2×24×4

=1

4

,所以P (AB )=P (AC )=P (BC ),B 正确.故选ABD .

9.ABD 当x >0时,f (x )<0的解集为(0,2),f (x )>0的解集为(2,+∞),由f (x )为奇函数可知选项A 正确;当x <0时,f (x )= - f ( - x )= - ( - x - 2)e - x =(x +2)e - x ,选项B 正确;当x >0时,x =2为f (x )的零点,又f (x )是定义在R 上的奇函数,所以f (0)=0,f ( - 2)=0,故f (x )有且只有三个零点,选项C 错误;当x >0时,f ' (x )=(x - 1)e x ,故f (x )在[1,2]上单调递增,所以f (x )min =f (1)= - e ,f (x )max =f (2)=0,所以|f (x 1) - f

(x2)|≤f (x)max - f (x)min=e,选项D正确.故选ABD.

10.ABC把圆A的方程x2+y2 - 2x - 3=0化成标准方程,为(x - 1)2+y2=4,所以圆A的圆心坐标为(1,0),半径为2,A正确;圆A截y轴所得的弦长为2×√4-1=2√3,B正确;圆心(1,0)到直线3x-

4y+12=0的距离为3,故圆A上的点到直线3x- 4y+12=0的最小距离为3 - 2=1,C正确;易知圆B:x2+y2 - 8x - 8y+23=0的圆心为(4,4),半径为3,根据√(4-1)2+42=5可知,圆A与圆B相切,D错误.故选ABC.

11.ABD因为c - b=2b cos A,所以由余弦定理得c - b=2b·b2+c2-a2

2bc

,所以c(c - b)=b2+c2 - a2,整理得a2=b(b+c),故A选项正确;因为c- b=2b cos A,所以由正弦定理得sin C- sin B=2sin B cos A,即sin(A+B) - sin B=2sin B cos A,所以sin A cos B - sin B cos A=sin B,即sin(A - B)=sin B,由于C是钝角,

所以A- B=B,即A=2B,故B选项正确;由于A=2B,且C>90°,所以0°

2

A<1,0

2

,故C选项错误,D选项正确.故选ABD.

12.ABD由f ' (x)>0知,f (x)在R上单调递增,则f (2)

恒有f (x1)+f (x2)<2f (x1+x2

2),即f(x1)+f(x2)

2

2

),所以y=f (x)的图象是向上凸起的,如图D 1 - 1所

示,

图D 1 - 1

由导数的几何意义知,随着x的增加,f (x)的图象越来越平缓,即切线斜率越来越小,所以 f ' (π)

3-2

=f (3)–

f (2),所以由图易知f ' (3)

13.BC解法一设{a n}的公比为q(q>0),{b n}的公差为d(d≠0).a5=√a2a8=√b2b8,b5=b2+b8

2

,由基

本不等式得√b2b8≤b2+b8

2

,当且仅当b2=b8时等号成立,易知数列{b n}不是常数列,故B正确,A错误.

因为a2q6=a8=b8=b2+6d=a2+6d,所以d=a2(q6-1)

6,所以a4 - b4=a2q2 - a2 - 2d=a2(q2 - 1 - q6-1

3

)=a2

3

(3q2 - q6

- 2)=a2

3(q2 - q6+2q2 - 2)=a2

3

(1 - q2)(q4+q2 - 2)= - a2

3

(1 - q2)2(q2+2)<0,a6 - b6=a2q4 - a2 - 4d=a2

3

(3q4 - 1 -

2q6)= - a2

3

(1 - q2)2(2q2+1)<0,所以a4

解法二设{a n}的公比为q(q>0),{b n}的公差为d(d≠0).a n=a1q n - 1=a1

q

·q n,b n=b1+(n- 1)d=b1- d+nd,

将其分别理解成关于n的指数函数乘以正数a1

q

(指数函数的图象为下凹曲线)和一次函数(一次函数的图象为直线),则两函数图象分别在n=2,n=8处相交,故当3≤n≤7时,a n

14.BC假设D1D⊥AF,易知DD1⊥AE,所以D1D⊥平面AEF,又D1D⊥平面ABCD,所以平面AEF∥平面ABCD,显然不正确,故选项A不正确;连接AD1,D1F,易知EF∥AD1,所以平面AEF即平面AEFD1,又A1G∥D1F,所以A1G∥平面AEFD1,所以选项B正确;平面AEF截正方体所得的截面为

梯形AEFD1,EF=√2

2,AD1=√2,梯形的高为√

2

4

=3√2

4

,所以其面积为√2+√22

2

×3√2

4

=9

8

,故选

项C正确;连接CG交EF于点H,显然H不是CG的中点,所以C,G到平面AEF的距离不相等,故选项D不正确.故选BC.

15.BD对于A,三棱锥D- ABC的体积V D- ABC=1

3

S△ABC·h(h为点D到平面ABC的距

离),S△ABC=1

2×1×√3=√3

2

,所以当h最大时,三棱锥D - ABC的体积取得最大值,又当平面ADC⊥

平面ABC时,h最大,为√3

2,此时V D- ABC=1

3

×√3

2

×√3

2

=1

4

,故A错误;对于B,设AC的中点为O,连接

OB,OD,则OA=OB=OC=OD,所以O为三棱锥D - ABC的外接球的球心,则外接球的半径为1

2

AC=1,

所以外接球的体积为4

3

π,翻折的过程中,三棱锥D - ABC的外接球的体积不变,故B正确;对于C,三棱锥D - ABC的体积最大时,平面ADC⊥平面ABC,所以此时二面角D - AC - B的大小是90°,故C错误;对于D,当△ADC沿对角线AC翻折到点D与点B的距离为√2,即BD=√2时,在△BCD 中,BC2=BD2+CD2,所以CD⊥BD,又CD⊥AD,BD∩AD=D,所以CD⊥平面ABD,所以CD⊥AB,即异面直线AB与CD所成角的最大值为90°,故D正确.故选BD.

16.AD设A(x A,y A),直线AB,AC的倾斜角分别为θ1,θ2,不妨记θ1>θ2,由tan∠BAC=9

2

>0,知

∠BAC <π2,则数形结合易知当θ1 - θ2=∠BAC 时,才能满足题意,故tan (θ1 - θ2)=92,即k

AB

-k AC

1+k

AB ·k AC

=9

2,又

k AB ·k AC =y A -2x A

-1·y A +2

x A

+1=y A

2-4

x A

2-1

=6-2x A 2-4

x A 2-1

= - 2,所以k AB - k AC = - 9

2,结合k AB ·k AC = - 2,解得{

k AC =4,

k AB =-12

{k AC =12,k AB =-4.而当{k AC =12,k AB =-4时,数形结合易知∠BAC ≠θ1 - θ2,且∠BAC >π

2,故舍去.当{

k AC =4,k AB =-12

时,直线AC 、直线AB 的方程分别为y +2=4(x +1),y - 2= - 12

(x - 1),可得A (19,22

9

).由椭圆的对称性可知:当

θ1<θ2时,同理可得{k AC =-1

2,k AB =4,A ( - 19, - 22

9

),故B ,C 错误.易得直线BC 的方程为2x - y =0,故当点A

为(19,22

9)时,点A 到直线BC 的距离为

|29-22

9

|√5

=

4√59

,当点A 为( - 19, - 22

9)时,点A 到直线BC 的距离也为

4√59

.故A ,D 正确,选AD .

17.BD 依题意得,当n 是奇数时,a n +3 - a n +1=1,即数列{a n }中的偶数项构成以a 2=2为首项、1为公差的等差数列,所以a 18=2+(9 - 1)×1=10.当n 是偶数时,a n +3+a n +1=1,所以a n +5+a n +3=1,两式相减,得a n +5=a n +1,即数列{a n }中的奇数项从a 3开始,每间隔一项的两项相等,即数列{a n }的奇数项呈周期变化,所以a 17=a 4×3+5=a 5.在a n +3+a n +1=1中,令n =2,得a 5+a 3=1,因为a 3=3,所以a 5= - 2,所以a 17= - 2.在数列{a n }中,a 3+a 5=1,a 7+a 9=1,…,

a 27+a 29=1,a 31=a 4×7+3=a 3=3,偶数项构成以a 2=2为首项、1为公差的等差数列,所以S 31=1+7+3+15×2+

15×(15-1)

2

=146.故选BD.

18.BCD 由题意可知,抛物线y 2=3x 的焦点F 的坐标为(34

,0),准线方程为x = - 34

.易知直线AB 的斜率不为0,设直线AB 的方程为x =my +34,代入y 2=3x ,得y 2 - 3my - 9

4=0,易知Δ>0,所以y 1+y 2=3m ,

y 1y 2= - 94,则x 1x 2=(my 1+34)(my 2+34)=916,所以OA ????? ·OB ????? =(x 1,y 1)·(x 2,y 2)= x 1x 2+ y 1y 2=916 ? 94= - 27

16≠0,所以A

不正确;因为A (y 123

,y 1),O (0,0), M ( - 34

,y M )三点共线,所以y

1

y 123

=

y M -3

4

,所以y 1y M = - 94

,又y 1y 2= - 9

4

,所以

y M =y 2,所以直线MB ∥x 轴,所以C 正确;易知A 1,B 1的坐标分别为( - 3

4,y 1),( - 3

4,y 2),所以

FA 1??????? ·FB 1??????? =( - 34 ? 34,y 1)·

( - 34 ? 34,y 2)=94+ y 1 y 2=94 ? 9

4=0,所以∠A 1FB 1=90°,所以B 正确;设直线AB 的倾斜角为θ(θ≠0) ,则|AF |=3

21-cosθ,|BF |=321+cosθ,所以|AF |·|BF |=321-cosθ·32

1+cosθ=94

sin 2θ≥9

4

,当且仅当AB ⊥x 轴时取等号,所以D 正确.故选BCD .

19. sin(2x - π

6)6因为函数g(x)=2sin[ω(x+π

12

)](ω>0)的图象是由函数f (x)的图象先向左平移π

6

个单位长度,再将所得图象上所有点的纵坐标变为原来的2倍(横坐标不变)得到的,所以 f

(x)=sin[ω(x - π

12)].①若f (x)的最小正周期为π,则f (x)=sin(2x - π

6

).②若函数f (x)在区间[0,π

6

]上

单调递增,在区间[π

6,π

3

]上单调递减,则有f (π

6

)=sinωπ

12

=1,且2π

ω

≥π

3

,结合ω>0,得ω=6.

20.2√33√3在△AEF中,易知∠AFE=2π

3

,又AF=3,AE=√13,由余弦定理得(√13)2=32+EF2-

2×3×EF×cos 2π

3

,可得EF=1.所以CE=DE=DF=

EF=1,AD=4,CD=2.又∠ADC=π

3,所以在△ACD中,由余弦定理得AC2=42+22- 2×4×2×cos π

3

=12,得

AC=2√3.

解法一设∠ACB=θ,则∠BAC=π - π

3- θ=2π

3

- θ,所以在△ABC中,由正弦定理得AB

sin∠ACB

=

BC sin∠BAC =AC

sin∠ABC

=4,所以AB=4sin θ,BC=4sin(2π

3

- θ),于是△ABC的面积S△ABC=1

2

AB·BC sin π

3

=4√3sin

θsin(2π

3- θ)=4√3sin θ(√3

2

cos θ+1

2

sin θ)=2√3(√3

2

sin 2θ- 1

2

cos 2θ+1

2

)=2√3sin(2θ- π

6

)+√3,则当2θ -

π6=π

2

,即θ=π

3

时,S△ABC取得最大值,为3√3.

解法二在△ABC中,cos∠ABC=BC2+AB2-AC2

2BC·AB ,结合基本不等式,得1

2

=BC2+AB2-12

2BC·AB

≥2BC·AB-12

2BC·AB

,化简得

BC·AB≤12(当且仅当AB=BC时取等号),所以△ABC的面积S△ABC=1

2BC·AB·sin∠ABC≤1

2

×12×

√3

2

=3√3,即△ABC面积的最大值为3√3.

21.2n

2n+1( - 1)n+1

n(n+1)

因为a n+a n+1=2

n2+2n

=1

n

? 1

n+2

,所以S2n=a1+a2+a3+a4+…+a2n - 1+a2n=1 - 1

3

+

1 3 ? 1

5

+…+1

2n-1

? 1

2n+1

=1 - 1

2n+1

=2n

2n+1

.

因为a n+a n+1=2

n2+2n ,所以a n+1=2

n2+2n

- a n.又a1= - 1

2

=1

1×2

- 1,所以a2=2

3

+1

2

=7

6

=1

2×3

+1,a3=2

2×4

? 7

6

=

- 11

12=1

3×4

- 1,a4=2

3×5

+11

12

=21

20

=1

4×5

+1,…,归纳可得,a n=( - 1)n+1

n(n+1)

.

22.y2=8x7易知双曲线x2 - y2

3

=1的右焦点F2的坐标为(2,0),左焦点F1的坐标为( - 2,0),则抛

物线y2=2px(p>0)的焦点坐标为(2,0),则p

2

=2,解得p=4,所以抛物线的方程为y2=8x.

设点P 的坐标为(x 0,y 0),易知x 0>0,由{y 2=8x,

x 2-y 23

=1

得3x 2 - 8x - 3=0,解得x 0=3,则P (3,2√6)或P (3, -

2√6),则点P 与双曲线左焦点F 1( - 2,0)之间的距离为√[3-(-2)]2+(0±2√6)2=7. 23.2+2 018e x

( - ∞,ln 2) 令h (x )=

f(x)-2e x

,则h' (x )=

f '(x)e x -[f(x)-2]e x (e x )=

f '(x)-f(x)+2

e x

, 又f ' (x )=f (x ) -

2,∴h' (x )=0,故h (x )为常数函数.设h (x )=c ,则f(x)-2e x

=c ,∴f (x )=2+c e x .∵f (0)=2 020,∴f (0)=2+c =2

020,∴c =2 018,故f (x )=2+2 018e x ,f ' (x )=2 018e x .由f (x )+4 034>2f ' (x ),得4 036+ 2 018e x >2×2 018e x ,故e x <2,故x

24.2

3

25π2

因为平面EFGH 与平面ABCD 平行,易知四边形EFGH 与四边形ABCD 相似,所以四

边形EFGH 是正方形.设PE

PA =x (0

S

正方形ABCD

=x 2,易知四棱锥S - EFGH 与四棱锥P - ABCD 的高

的比值为1 - x ,设V 四棱锥P - ABCD =V 0,则V 四棱锥S - EFGH =x 2(1 - x )V 0.设f (x )=x 2(1 - x )(0

3

时,f ' (x )>0,函数f (x )单调递增,当2

3

x =23,即PE PA =2

3时,f (x )取得最大值,此时V 四棱锥S - EFGH 取得最大值.

此时,连接PS ,FH ,EG ,设FH 与EG 交于点M ,易知点M 在PS 上,且EF =2,SM =√2

2,HM =√2.设四棱锥S - EFGH 的外接球的球心为O ,半径为R ,易知点O 在直线PS 上,连接OH ,易知点O 在四棱锥S - EFGH 的外部,则(R - √22

)2+(

√2)2=R 2,解得R =

5√24

,所以四棱锥S - EFGH 的外接球的表面积为

4πR 2=

25π2

.

【高考宝典】高考数学解答题常考公式及答题模板

高考数学解答题常考公式及答题模板 题型一:解三角形 1、正弦定理: R C c B b A a 2sin sin sin === (R 是AB C ?外接圆的半径) 变式①:?????===C R c B R b A R a sin 2sin 2sin 2 变式②:?? ?? ? ???? == = R c C R b B R a A 2sin 2sin 2sin 变式③: C B A c b a sin :sin :sin ::= 2、余弦定理:???????-+=-+==+=C ab b a c B ac c a b A bc c b a cos 2cos 2cos 22222 22222 变式:???? ? ??????-+= -+=-+= ab c b a C ac b c a B bc a c b A 2cos 2cos 2cos 2 22222222 3、面积公式:A bc B ac C ab S ABC sin 2 1 sin 21sin 21=== ? 4、射影定理:?? ? ??+=+=+=A b B a c A c C a b B c C b a cos cos cos cos cos cos (少用,可以不记哦^o^) 5、三角形的内角和等于 180,即π=++C B A 6、诱导公式:奇变偶不变,符号看象限 利用以上关系和诱导公式可得公式:??? ??=+=+=+A C B B C A C B A sin )sin(sin )sin(sin )sin( 和 ??? ??-=+-=+-=+A C B B C A C B A cos )cos(cos )cos(cos )cos( 7、平方关系和商的关系:①1cos sin 22=+θθ ②θ θ θcos sin tan = 奇: 2 π 的奇数倍 偶: 2 π 的偶数倍

高考数学难点突破_难点41__应用问题

难点41 应用性问题 数学应用题是指利用数学知识解决其他领域中的问题.高考对应用题的考查已逐步成熟,大体是三道左右的小题和一道大题,注重问题及方法的新颖性,提高了适应陌生情境的能力要求. ●难点磁场 1.(★★★★★)一只小船以10 m/s 的速度由 南向北匀速驶过湖面,在离湖面高20米的桥上, 一辆汽车由西向东以20 m/s 的速度前进(如图), 现在小船在水平P 点以南的40米处,汽车在桥上 以西Q 点30米处(其中PQ ⊥水面),则小船与汽车间的最短距离为 .(不考虑汽车与小船本 身的大小). 2.(★★★★★)小宁中午放学回家自己煮面条吃,有下面几道工序:(1)洗锅盛水2分钟;(2)洗菜6分钟;(3)准备面条及佐料2分钟;(4)用锅把水烧开10分钟;(5)煮面条和菜共3分钟.以上各道工序除(4)之外,一次只能进行一道工序,小宁要将面条煮好,最少用分钟. 3.(★★★★★)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )满足 R (x )=???>≤≤-+-)5( 2.10)50( 8.02.44.02x x x x .假定该产品销售平衡,那么根据上述统计规律. (1)要使工厂有盈利,产品x 应控制在什么范围? (2)工厂生产多少台产品时赢利最大?并求此时每台产品的售价为多少? ●案例探究 [例1]为处理含有某种杂质的污水,要制造一个底宽为2 米的无盖长方体沉淀箱(如图),污水从A 孔流入,经沉淀后从 B 孔流出,设箱体的长度为a 米,高度为b 米,已知流出的水 中该杂质的质量分数与a 、b 的乘积ab 成反比,现有制箱材料 60平方米,问当a 、b 各为多少米时,经沉淀后流出的水中该 杂质的质量分数最小(A 、B 孔的面积忽略不计)? 命题意图:本题考查建立函数关系、不等式性质、最值求法等基本知识及综合应用数学知识、思想与方法解决实际问题能力,属★★★★级题目. 知识依托:重要不等式、导数的应用、建立函数关系式. 错解分析:不能理解题意而导致关系式列不出来,或a 与b 间的等量关系找不到. 技巧与方法:关键在于如何求出函数最小值,条件最值可应用重要不等式或利用导数解决. 解法一:设经沉淀后流出的水中该杂质的质量分数为y ,则由条件y = ab k (k >0为比例系数)其中a 、b 满足2a +4b +2ab =60 ① 要求y 的最小值,只须求ab 的最大值. 由①(a +2)(b +1)=32(a >0,b >0)且ab =30–(a +2b )

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五) 对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。对重难点要了如指掌,能做到有的放矢。同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。 必修五主要包括三大部分内容:解三角形、数列、不等式。高考具体要考查那些内容呢?这是我们师生共同研究的问题。虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。下面具体对必修五常考的型作一分解: 解三角形 解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。 知识点:正弦定理、余弦定理和三角形的面积的公式。 正弦定理: R C c B b A a 2sin sin sin ===(R 为AB C ?的外接圆半径) 余弦定理:C ab c b a cos 22 2 2 =-+,B ac b c a cos 22 2 2 =-+,A bc a c b cos 22 2 2 =-+ (变形后) C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cb a b c cos 22 22=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 2 1 sin 21sin 21===?。 知识点分解: (1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。 (2)两角一边,求另外一角和两边,肯定是正弦定理。 (3)等式两边都有边或通过转化等式两边都有边,用正弦定理。 (4)知道三边的关系用余弦定理。

高考数学大题经典习题

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

高考数学常用公式及结论200条(一)【天利】

高考数学常用公式及结论200条(一) 湖北省黄石二中 杨志明 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B == . 3.包含关系 A B A A B B =?= U U A B C B C A ???? U A C B ?=Φ U C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+ . 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11()f x N M N > --. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}m i n m a x m a x ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(), ()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈- =,则{}m i n () m i n ( ),() f x f p f q = ,若

高考数学难点突破_难点34__导数的运算法则及基本公式应用

难点34 导数的运算法则及基本公式应用 导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式.四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导. ●难点磁场 (★★★★★)已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标. ●案例探究 [例1]求函数的导数: )1()3( )sin ()2( cos )1(1)1(2322+=-=+-= x f y x b ax y x x x y ω 命题意图:本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法.这是导数中比较典型的求导类型,属于★★★★级题目. 知识依托:解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数. 错解分析:本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错. 技巧与方法:先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导.

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x y 2222222222 22222222222cos )1(sin )1)(1(cos )12(cos )1(]sin )1(cos 2)[1(cos )1(cos )1(] ))(cos 1(cos )1)[(1(cos )1(cos )1(]cos )1)[(1(cos )1()1(:)1(++-+--=++---+-=+'++'+--+-=-+' +--+'-='解 (2)解:y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γ γ=ωx y ′=(μ3)′=3μ2·μ′=3μ2(av -by )′ =3μ2(av ′-by ′)=3μ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx ) (3)解法一:设y =f (μ),μ=v ,v =x 2+1,则 y ′x =y ′μμ′v ·v ′x =f ′(μ)·21 v -21·2x =f ′(12+x )·211 1 2+x ·2x =),1(122+'+x f x x 解法二:y ′=[f (12+x )]′=f ′(12+x )·(12+x )′ =f ′(12+x )·21(x 2+1)21- ·(x 2+1)′

高考数学必考题型整理

高考数学必考题型整理 知己知彼,百战不殆,想要在高考中数学大放光彩就必须了解高考数学题型,掌握高考数学的方向,才能在高考取的好成绩,下面小编就总结一下高考数学必考的几大题型,供参考。 高考数学必考题型之函数与导数 考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。 函数与导数单调性 ⑴若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。需代入驻点左右两边的数值求导数正负判断单调性。 ⑵若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。 高考数学必考题型之几何 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内 公理2:过不在同一条直线上的三点,有且只有一个平面 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 公理4:平行于同一条直线的两条直线互相平行 定理:空间中如果一个角的两边与另一个角的两边分别平

行,那么这两个角相等或互补 判定定理: 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行“线面平行” 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行“面面平行” 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直“线面垂直” 如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直“面面垂直” 高考数学必考题型之不等式 ①对称性 ②传递性 ③加法单调性,即同向不等式可加性 ④乘法单调性 ⑤同向正值不等式可乘性 ⑥正值不等式可乘方 ⑦正值不等式可开方 ⑧倒数法则 高考数学必考题型之数列 (1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

高考数学公式大全

高考数学公式大全 一、集合 1.集合的运算符号:交集“I ”,并集“Y ”补集“C ”子集“?” 2.非空集合的子集个数:n 2(n 是指该集合元素的个数) 3.空集的符号为? 二、函数 1.定义域(整式型:R x ∈;分式型:分母0≠;零次幂型:底数0≠;对数型:真数0>;根式型:被开方数0≥) 2.偶函数:)()(x f x f -= 奇函数:0)()(=-+x f x f 在计算时:偶函数常用:)1()1(-=f f 奇函数常用:0)0(=f 或0)1()1(=-+f f 3.单调增函数:当在x 递增,y 也递增;当x 在递减,y 也递减 单调减函数:与增函数相反 4.指数函数计算:n m n m a a a +=?;n m n m a a a -=÷;n m n m a a ?=)(;m n m n a a =;10=a 指数函数的性质:x a y =;当1>a 时,x a y =为增函数; 当10<a 时, x a y log =为增函数 对数函数必过定点)0,1( 6.幂函数:a x y = 7.函数的零点:①)(x f y =的零点指0)(=x f ②)(x f y =在),(b a 内有零点;则0)()(

高考数学难点突破 难点22 轨迹方程的求法

难点22 轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. ●难点磁场 (★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线. ●案例探究 [例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程. 错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题. 技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |=22)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,241+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. [例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招) 命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系. 错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论. 技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系. 解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有

高考必考数学重点公式

高考必考数学重点公式 高中数学基本公式大全 有了此书,高分无忧!!! 一、基本公式(必考公式) 1、抛物线:y = ax *+ bx + c (1)就是y等于ax 的平方加上 bx再加上 c (2)a > 0时开口向上,a < 0时开口向下,c = 0时抛物线经过原点,b = 0时抛物线对称轴为y轴。 (3)还有顶点式y = a(x+h)* + k (4)就是y等于a乘以(x+h)的平方+k (5)-h是顶点坐标的x ,k是顶点坐标的y (6)一般用于求最大值与最小值 (7)抛物线标准方程:y^2=2px ,它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 (9)由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 2、圆:体积=4/3(pi)(r^3) (1)面积=(pi)(r^2) (2)周长=2(pi)r (3)圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 (4)圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 3、椭圆周长计算公式

(1)椭圆周长公式:L=2πb+4(a-b) (2)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (3)椭圆面积计算公式: 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 4、三角函数: (1)两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) (2)倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π* (n-1)/n]=0

高考数学难点突破__函数中的综合问题含答案

高考数学难点突破 函数中的综合问题 函数综合问题是历年高考的热点和重点内容之一,一般难度较大,考查内容和形式灵活多样.本节课主要帮助考生在掌握有关函数知识的基础上进一步深化综合运用知识的能力,掌握基本解题技巧和方法,并培养考生的思维和创新能力. ●难点磁场 (★★★★★)设函数f (x )的定义域为R ,对任意实数x 、y 都有f (x +y )=f (x )+f (y ),当x >0时f (x )<0且f (3)=-4. (1)求证:f (x )为奇函数; (2)在区间[-9,9]上,求f (x )的最值. ●案例探究 [例1]设f (x )是定义在R 上的偶函数,其图象关于直线x =1对称,对任意x 1、x 2∈[0,2 1 ],都有f (x 1+x 2)=f (x 1)·f (x 2),且f (1)=a >0. (1)求f ( 21)、f (4 1); (2)证明f (x )是周期函数; (3)记a n =f (n +n 21 ),求).(ln lim n n a ∞→ 命题意图:本题主要考查函数概念,图象函数的奇偶性和周期性以及数列极限等知识,还考查运算能力和逻辑思维能力. 知识依托:认真分析处理好各知识的相互联系,抓住条件f (x 1+x 2)=f (x 1)·f (x 2)找到问题的突破口. 错解分析:不会利用f (x 1+x 2)=f (x 1)·f (x 2)进行合理变形. 技巧与方法:由f (x 1+x 2)=f (x 1)·f (x 2)变形为) 2 ()2()2()22()(x f x f x f x x f x f ??=+=是解决问题的关键. (1) 解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2)=f (x 1)·f (x 2),所以f (x )=)2 ()22(x f x x f =+≥ 0, x ∈[0,1] 又因为f (1)=f (21+21)=f (21)·f (21)=[f (2 1 )]2 f (21)=f (41+41)=f (41)·f (41)=[f (41)]2 又f (1)=a >0 ∴f (21)=a 21 ,f (4 1)=a 41 (2)证明:依题意设y =f (x )关于直线x =1对称,故f (x )=f (1+1-x ),即f (x )=f (2-x ),x ∈R . 又由f (x )是偶函数知f (-x )=f (x ),x ∈R ∴f (-x )=f (2-x ),x ∈R .

高考数学常见题型汇总(经典资料)

一、函数 1、求定义域(使函数有意义) 分母 ≠0 偶次根号≥0 对数log a x x>0,a>0且a ≠1 三角形中 060,最小角<60 2、求值域 判别式法 V ≥0 不等式法 222321111 33y x x x x x x x x =+ =++≥??= 导数法 特殊函数法 换元法 题型: 题型一: 1y x x =+ 法一: 111 (,222同号)或y x x x x x x y y =+ =+≥∴≥≤- 法二:图像法(对(0) b y ax ab x =+>有效 2 -2 -1 1

题型二: ()1 (1,9) y x x x =-∈ ()/ 2(1)(9)110 1 80,,0,9导数法:函数单调递增 即y x y x x y f f y =+>∴=-?? ∴∈∈ ? ?? 题型三: 2sin 1 1sin 1sin ,1, 2112化简变形又sin 解不等式,求出,就是要求的答案y y y y y y θθ θθ-= ++=≤-+∴ ≤- 题型四: 22 2 2sin 11cos 2sin 1(1cos ),2sin cos 114sin()1,sin()41sin()11 4化简变形得即又由知解不等式,求出,就是要求的答案 y y y y y y x y x y y x y y θθ θθθθθθθ-= +-=+-=++++=++= +++≤≤+ 题型五

222233 3(3),(3)30(3)430化简变形得由判别式解出x x y x x x y x x y x y y y y += -+=-+-+==--?≥V 反函数 1、反函数的定义域是原函数的值域 2、反函数的值域是原函数的定义域 3、原函数的图像与原函数关于直线y=x 对称 题型 1 ()(2)32,2322,2已知求解:直接令,解出就是答案 x x f f x x x x --=+-=+ 周期性 ()()()(2)()()(2)0 0(2,函数 -)式相减) 是一个周期是2t 的周期函数 x x t x t x t x x x t f f f f f f f +++++=+== 对称

高考数学大题题型解答技巧

高考数学大题题型解答技巧 六月,有一份期待,年轻绘就畅想的星海,思想的热血随考卷涌动,灵魂的脉搏应分 数澎湃,扶犁黑土地上耕耘,总希冀有一眼金黄黄的未来。下面就是小编给大家带来 的高考数学大题题型解答技巧,希望大家喜欢! 高考数学大题必考题型(一) 排列组合篇 1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。 2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。 3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单 的应用问题。 4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。 5.了解随机事件的发生存在着规律性和随机事件概率的意义。 6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件 的概率。 7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事 件的概率乘法公式计算一些事件的概率。 8.会计算事件在n次独立重复试验中恰好发生k次的概率. 立体几何篇 高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的 课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从 历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是 常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺 少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握

高考数学难点突破 难点38 分类讨论思想

难点38 分类讨论思想 分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论.” ●难点磁场 1.(★★★★★)若函数514121)1(31)(23+-+-= x ax x a x f 在其定义域内有极值点,则a 的取值为 . 2.(★★★★★)设函数f (x )=x 2+|x –a |+1,x ∈R . (1)判断函数f (x )的奇偶性; (2)求函数f (x )的最小值. ●案例探究 [例1]已知{a n }是首项为2,公比为 21的等比数列,S n 为它的前n 项和. (1)用S n 表示S n +1; (2)是否存在自然数c 和k ,使得21>--+c S c S k k 成立. 命题意图:本题主要考查等比数列、不等式知识以及探索和论证存在性问题的能力,属★★★★★级题目. 知识依托:解决本题依据不等式的分析法转化,放缩、解简单的分式不等式;数列的基本性质. 错解分析:第2问中不等式的等价转化为学生的易错点,不能确定出k k S c S <<-22 3. 技巧与方法:本题属于探索性题型,是高考试题的热点题型.在探讨第2问的解法时,采取优化结论的策略,并灵活运用分类讨论的思想:即对双参数k ,c 轮流分类讨论,从而获得答案. 解:(1)由S n =4(1–n 21),得 221)2 11(411+=-=++n n n S S ,(n ∈N *) (2)要使21>--+c S c S k k ,只要0)223(<---k k S c S c 因为4)211(4<-=k k S 所以0212)223(>- =--k k k S S S ,(k ∈N *) 故只要2 3S k –2<c <S k ,(k ∈N *)

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

高考数学大题必考公式(简单版)

高考数学大题公式(必记版) 17题(1)数列: 1.数列的同项公式与前n 项的和的关系 11,1,2 n n n s n a s s n -=?=?-≥?(数列{}n a 的前n 项的和为12=+++L n n s a a a ).2.等差数列的通项公式 1(1)()=+-=+-n m a a n d a n m d ; 3.等差数列的前n 项和公式为 1()2n n n a a s +=1(1)2 n n na d -=+.4.等比数列的通项公式 11--==n n m n m a a q a q ; 5.等比数列的前n 项的和公式为 11(1)11--==--n n n a a q a q s q q 17题(2)解三角形:6.正弦定理 2sin sin sin a b c R A B C ===.7.余弦定理 2222cos a b c bc A =+-; 2222cos b c a ca B =+-; 2222cos c a b ab C =+-.8.三角形面积公式 C ab B ac A bc S ABC sin 2 1sin 21sin 21====?18题概率统计: 9.期望定义式:n n X p x p x p x E ...2211++=19题立体几何: 10.求二面角、线面角、异面直线所成的角:→→ → →??=m n m n θcos

20题圆锥曲线11.椭圆22 221(0)x y a b a b +=>> 离心率)01c e e a ==<<222,,c b a c b a +=的关系:(椭圆中a 最大)12.双曲线22 221(0,0)-=>>x y a b a b 离心率)1==>c e e a 222,,b a c c b a +=的关系:(双曲线中c 最大) 13.抛物线() 022>=p px y 焦点 ,02p F ?? ???准线方程2 p x =-

高考数学题型归纳完整版

第一章集合与常用逻辑用语 第一节集合 题型1-1 集合的基本概念 题型1-2 集合间的基本关系 题型1-3 集合的运算 第二节命题及其关系、充分条件与必要条件 题型1-4 四种命题及关系 题型1-5 充分条件、必要条件、充要条件的判断与证明 题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围 第三节简单的逻辑联结词、全称量词与存在量词 题型1-7 判断命题的真假 题型1-8 含有一个量词的命题的否定 题型1-9 结合命题真假求参数的取值范围 第二章函数 第一节映射与函数 题型2-1 映射与函数的概念 题型2-2 同一函数的判断 题型2-3 函数解析式的求法 第二节函数的定义域与值域(最值) 题型2-4 函数定义域的求解 题型2-5 函数定义域的应用 题型2-6 函数值域的求解 第三节函数的性质——奇偶性、单调性、周期性题型2-7 函数奇偶性的判断 题型2-8 函数单调性(区间)的判 断 题型2-9 函数周期性的判断 题型2-10 函数性质的综合应用 第四节二次函数 题型2-11 二次函数、一元二次方程、 二次不等式的关系 题型2-12 二次方程的实根分布及 条件 题型2-13 二次函数“动轴定区间” “定轴动区间”问题 第五节指数与指数函数 题型2-14 指数运算及指数方程、指 数不等式 题型2-15 指数函数的图象及性质 题型2-16 指数函数中恒成立问题 第六节对数与对数函数 题型2-17 对数运算及对数方程、对 数不等式 题型2-18 对数函数的图象与性质 题型2-19 对数函数中恒成立问题 第七节幂函数 题型2-20 求幂函数的定义域 题型2-21 幂函数性质的综合应用 第八节函数的图象 题型2-22 判断函数的图象 题型2-23 函数图象的应用 第九节函数与方程 题型2-24 求函数的零点或零点所 在区间 题型2-25 利用函数的零点确定参 数的取值范围 题型2-26 方程根的个数与函数零 点的存在性问题 第十节函数综合 题型2-27 函数与数列的综合 题型2-28 函数与不等式的综合 题型2-29 函数中的信息题 第三章导数与定积分 第一节导数的概念与运算 题型3-1 导数的定义 题型3-2 求函数的导数 第二节导数的应用 题型3-3 利用原函数与导函数的关 系判断图像 题型3-4 利用导数求函数的单调性 和单调区间 题型3-5 函数的极值与最值的求解 题型3-6 已知函数在区间上单调或 不单调,求参数的取值范围 题型3-7 讨论含参函数的单调区间 题型3-8 利用导数研究函数图象的

高考数学典型例题详解

高考数学典型例题详解 奇偶性与单调性 函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识. ●难点磁场 (★★★★★)已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0. ●案例探究 [例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目. 知识依托:主要依据函数的性质去解决问题. 错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域. 技巧与方法:借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值. 解:由? ??<<-<

∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2f (0)对所有θ∈[0, 2 π ]都成立? 若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由. 命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目. 知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题. 错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法. 技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题. 解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ), 即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0. 设t =cos θ,则问题等价地转化为函数g (t ) =t 2-mt +2m -2=(t - 2 m )2 -4 2 m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正. ∴当 2 m <0,即m <0时,g (0)=2m -2>0?m >1与m <0不符; 当0≤2 m ≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0 ?4-221,即m >2时,g (1)=m -1>0?m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.

相关文档
最新文档