高一数学必修4模块训练6

合集下载

高一数学训练习题参考答案

高一数学训练习题参考答案

数学必修(4)同步练习参考答案§1.1任意角和弧度制一、CDDCBA二、7.{x|x=k•3600+1800, k∈Z}, {x|x=k•1800+450,k∈Z} ; 8.-345°; 9. ;10.第二或第四象限, 第一或第二象限或终边在y轴的正半轴上三、11.{ α|α=k•3600+1200或α=k•3600+3000, k∈Z } -60° 120°12.由7θ=θ+k•360°,得θ=k•60°(k∈Z)∴θ=60°,120°,180°,240°,300°13.∵l=20-2r,∴S= lr= (20-2r)•r=-r2+10r=-(r-5)2+25∴当半径r=5 cm时,扇形的面积最大为25 cm2,此时,α= = =2(rad)14.A点2分钟转过2θ,且π<2θ<π,14分钟后回到原位,∴14θ=2kπ,θ= ,且 <θ< π,∴θ= π或π§1.2.1 任意角的三角函数一、CCDBCD二、7.一、三; 8. 0 ; 9. 或π; 10.二、四三、11.[2kπ, 2kπ,+ ( k∈Z)12.13.∵sinθ= - ,∴角θ终边与单位圆的交点(cosθ,sinθ)=( ,- )又∵P(-2, y)是角θ终边上一点, ∴cosθ<0,∴cosθ= - .14.略.§1.2.2同角三角函数的基本关系式一、BCDBBA二、7. ; 8.0; 9. ; 10.三、11.12.原式= - ==sinx+cosx13.左边=tan2θ-sin2θ= -sin2θ=sin2θ• =sin2θ• =sin2θ•tan2θ=右边14.(1)当m=0时, α=kπ, k∈Z ,cosα=±1, tanα=0(2)当|m|=1时, α=kπ+ , k∈Z ,cosα=0, tanα=0不存在(3)当0<|m|<1时,若α在第一或第四象限,则cosα= tanα= ;若α在第二或第三象限,则cosα=- tanα=- .§1.3 三角函数的诱导公式一、BBCCBC二、7. ; 8.1 ; 9.1 ; 10.三、11. 112. f(θ)= = =cosθ-1∴f( )=cos -1=-13.∵cos(α+β)=1, ∴α+β=2kπ, k∈Z. ∴cos(2α+β)= cos(α+α+β)= cos(π+α)=- cosα= - .14. 由已知条件得:sinα= sinβ①, cos α=- cosβ②,两式推出sinα= ,因为α∈(- , ),所以α= 或- ;回代②,注意到β∈(0,π),均解出β= ,于是存在α= ,β= 或α=- ,β= ,使两等式同时成立。

高一数学必修4同步练习:1-3-2诱导公式五、六

高一数学必修4同步练习:1-3-2诱导公式五、六

1-3-2诱导公式五、六一、选择题1.已知sin(α+π4)=13,则cos(π4-α)的值为( )A.223B .-223C.13 D .-13[答案] C[解析] cos(π4-α)=cos[π2-(π4+α)].=sin(α+π4)=13.2.已知cos(3π2+α)=-35,且α是第四象限角,则cos(-3π+α)( )A.45 B .-45C .±45D.35[答案] B[解析] ∵cos(3π2+α)=-35,∴sin α=-35,∴cos(-3π+α)=-cos α=-1-sin 2α=-45.3.已知sin α=513,则cos(π2+α)等于( )A.513 B.1213 C .-513D .-1213[答案] C[解析] cos(π2+α)=-sin α=-513.4.若sin(3π+α)=-12,则cos(7π2-α)等于( )A .-12B.12C.32 D .-32[答案] A[解析] 由已知,得sin α=12,则cos(7π2-α)=-sin α=-12.5.已知sin10°=k ,则cos620°等于( ) A .k B .-k C .±k D.1-k 2 [答案] B[解析] cos620°=cos(360°+260°) =cos260°=cos(180°+80°)=-cos80° =-cos(90°-10°)=-sin10°=-k .6.已知sin(α+π2)=13,α∈(-π2,0),则tan α等于( )A .-2 2B .2 2C .-24D.24 [答案] A[解析] sin(α+π2)=cos α=13,又α∈(-π2,0),所以sin α=-1-cos 2α=-223,则tan α=sin αcos α=-2 2. 7.若sin α+cos αsin α-cos α2,sin(α-5π)·sin(3π2-α)等于( )A.34 B.310C .±310D .-310[答案] B[解析] sin α+cos αsin α-cos α=tan α+1tan α-1=2,解得tan α=3,则原式=(-sin α)(-cos α)=sin αcos α=sin αcos αsin 2α+cos 2α=tan αtan 2α+1=332+1=310.8.若f (cos x )=cos3x ,那么f (sin30°)的值为( ) A .0 B .1 C .-1 D.32 [答案] C[解析] f (sin30°)=f (cos60°)=cos180°=-1,故选C.9.A 、B 、C 为△ABC 的三个内角,下列关系式中不成立的是( ) ①cos(A +B )=cos C ②cos B +C 2=sin A 2③tan(A +B )=-tan C ④sin(2A +B +C )=sin A A .①② B .③④ C .①④ D .②③ [答案] C[解析] ∵cos(A +B )=cos(π-C )=-cos C ,∴①错,排除B 、D ;cos B +C 2=cos π-A 2=cos ⎝ ⎛⎭⎪⎫π2-A 2=sin A2,∴②正确,排除A ,∴选C.10.tan110°=k ,则sin70°的值为( ) A .-k1+k 2B.k 1+k2C.1+k 2kD .-1+k 2k[答案] A[解析] 解法一:∵k <0,sin70°>0,∴排除C 、B , 又|sin70°|<1,∴排除D ,选A.解法二:k =tan110°=-tan70°,∴tan70°=-k >0,∴cos70°=-1k sin70°代入sin 270°+cos 270°=1中得,sin 270°=k 2k 2+1,∵k <0,sin70°>0, ∴sin70°=-k 1+k2.二、填空题11.已知sin(π2+α)=34,则sin(π2-α)=________.[答案] 34[解析] ∵sin(π2α)=cos α=34,∴sin(π2-α)=cos α=34.12.化简cos (52π-α)cos (-α)sin (32π+α)cos (212π-α)=________.[答案] -1 [解析] 原式=cos[2π+(π2-α)]cos αsin[π+(π2+α)]cos[10π+(π2-α)]=cos (π2-α)cos α-sin (2+α)cos (2-α)=sin αcos α-cos αsin α=-1.13.若cos(π6 -α)=a ,则sin(2π3-α)=________.[答案] a[解析] ∵cos(π6-α)=cos(2π3-α-π2)=cos[π2-(2π3-α)]=sin(2π3-α),∴sin(2π3-α)=a .14.sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°+sin 290°的值为________.[答案] 912[解析] ∵sin 21°+sin 289°=sin 21°+cos 21°=1, sin 22°+sin 288°=sin 22°+cos 22°=1,sin 2x °+sin 2(90°-x °)=sin 2x °+cos 2x °=1,(1≤x ≤44,x ∈N )∴原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 290°+sin 245°=45+⎝ ⎛⎭⎪⎫222=912.三、解答题15.(2011~2012·宜春高一检测)化简: cos (2π-α)sin (3π+α)cos (3π2-α)cos (-π2+α)cos (α-3π)sin (-π-α).[解析] 原式=cos α(-sin α)(-sin α)sin α(-cos α)sin α=-1.16.若sin(180°+α)=-1010,0°<α<90°.求sin (-α)+sin (-90°-α)cos (540°-α)+cos (-270°-α)的值. [解析] 由sin(180°+α)=-1010,α∈(0°,90°),得sin α=1010,cos α=31010,∴原式=-sin α-sin (90°+α)cos (360°+180°-α)+cos (270°+α)=-sin α-cos α-cos α+sin α =-1010-31010-31010+1010=2.17.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,求sin (-α-3π2)sin (3π2-α)tan 3αcos (π2-α)cos (π2+α)的值.[解析] 由已知得sin α=-35.∵α是第三象限角,∴cos α=-1-sin 2α=-45.∴原式=cos α·(-cos α)·(sin αcos α)3sin α·(-sin α)=sin αcos α=34.18.已知sin(α+β)=1,求证:tan(2α+β)+tan β=0. [证明] ∵sin(α+β)=1, ∴α+β=2k π+π2,k ∈Z ,∴α=2k π+π2-β,k ∈Z .∴tan(2α+β)+tan β=tan[2(2k π+π2-β)+β]+tan β=tan(4k π+π-4k π+π-β)+tan β =tan(π-β)+tan β=-tan β+tan β=0. 即tan(2α+β)+tan β=0.。

高中数学 模块综合检测卷 新人教A版必修4-新人教A版高一必修4数学试题

高中数学 模块综合检测卷 新人教A版必修4-新人教A版高一必修4数学试题

模块综合检测卷(测试时间:120分钟 评价分值:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设向量a =(1,0),b =⎝ ⎛⎭⎪⎫12,12,则下列结论中正确的是(C ) A .|a |=|b | B .a·b =22C .a -b 与b 垂直D .a ∥b解析:a -b =⎝ ⎛⎭⎪⎫12,-12,(a -b )·b =0,所以a -b 与b 垂直.故选C.2.点P 从()1,0出发,沿单位圆逆时针方向运动4π3弧长到达Q 点,则Q 点的坐标为(C )A.⎝ ⎛⎭⎪⎫-12,32B.⎝ ⎛⎭⎪⎫-32,-12C.⎝ ⎛⎭⎪⎫-12,-32D.⎝ ⎛⎭⎪⎫-32,12解析:由三角函数的定义知,Q 点的坐标为⎝⎛cos 4π3,⎭⎪⎫sin 4π3=⎝ ⎛⎭⎪⎫-12,-32.故选C.3.函数f (x )=A sin(ωx +φ)(其中A >0,ω>0,|φ|<π2)的图象如图所示,则f (0)=(D )A .1 B.12 C.22 D.32解析:由图象知A =1,T =4⎝⎛⎭⎪⎫7π12-π3=π,∴ω=2,把⎝ ⎛⎭⎪⎫7π12,-1代入函数式中,可得φ=π3,∴f (x )=A sin(ωx +φ)=sin ⎝ ⎛⎭⎪⎫2x +π3,∴f (0)=sin π3=32.故选D. 4.将函数y =sin( 2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为(B )A.3π4 B.π4 C .0 D .-π4解析:利用平移规律求得解析式,验证得出答案.y =sin(2x +φ)――→向左平移π8个单位Y =sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π8+φ=sin ⎝⎛⎭⎪⎫2x +π4+φ. 当φ=3π4时,y =sin(2x +π)=-sin 2x ,为奇函数;当φ=π4时,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x ,为偶函数; 当φ=0时,y =sin ⎝ ⎛⎭⎪⎫2x +π4,为非奇非偶函数; 当φ=-π4时,y =sin 2x ,为奇函数.故选B.5.已知sin(π+α)=45且α是第三象限的角,则cos(2π-α)的值是(B )A .-45B .-35C .±45 D.35解析:sin(π+α)=45⇒sin α=-45,又∵α是第三象限的角,∴cos(2π-α)=cosα=-35.故选B.6.为了得到函数y =sin 3x +cos 3x 的图象,可以将函数y =2sin 3x 的图象(D ) A .向右平移π4个单位 B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位解析:y =sin 3x +cos 3x =2sin ⎝ ⎛⎭⎪⎫3x +π4,故只需将y =2sin 3x 向左平移π12个单位.7.已知向量a ,b ,c 满足|a |=1,|b |=2,c =a +b ,c ⊥a ,则a 与b 的夹角等于(C ) A .30°B .60°C .120°D .90°解析:c ⊥a ,c =a +b ⇒(a +b )·a =a 2+a ·b =0⇒a ·b =-1⇒cosa ,b =a ·b ||a ||b =-12⇒a ,b =120°.故选C. 8.函数f (x )=sin x -12,x ∈(0,2π)的定义域是(B )A.⎣⎢⎡⎦⎥⎤π6,π2B.⎣⎢⎡⎦⎥⎤π6,5π6C.⎣⎢⎡⎦⎥⎤π2,5π6 D.⎣⎢⎡⎦⎥⎤π3,5π3 解析:如下图所示,∵sin x ≥12,∴π6≤x ≤5π6.故选B.9.(2015·新课标全国高考Ⅰ卷)设D 为△ABC 所在平面内一点BC →=3CD →,则(A ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →解析:由题知AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=-13AB →+43AC →,故选A.10.已知α∈⎝ ⎛⎭⎪⎫π,32π,cos α=-45,则tan ⎝ ⎛⎭⎪⎫π4-α等于(B )A .7 B.17 C .-17D .-7解析:因为α∈⎝⎛⎭⎪⎫π,32π,cos α=-45,所以sin α<0,即sin α=-35,tan α=34. 所以tan ⎝ ⎛⎭⎪⎫π4-α=1-tan α1+tan α=1-341+34=17,故选B.11.函数f (x )=sin(x +φ)在区间⎝ ⎛⎭⎪⎫π3,2π3上单调递增,常数φ的值可能是(D )A .0 B.π2 C .π D.3π212.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a ⊗b =(a 1,a 2)⊗(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎝ ⎛⎭⎪⎫12,4,n =⎝ ⎛⎭⎪⎫π6,0,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ⊗OP →+n (其中O 为坐标原点),则y =f (x )在区间⎣⎢⎡⎦⎥⎤π6,π3上的最大值是(D )A .2 2B .2 3C .2D .4二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.解析:因为a 2=9+4-2×3×2×13=9,b 2=9+1-2×3×1×13=8,a ·b =9+2-9×1×1×13=8,所以cos β=83×22=223.考点:向量数量积及夹角 答案:223.14.已知函数f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos 2x -1,x ∈⎣⎢⎡⎦⎥⎤π4,π2,则f (x )的最小值为________.解析:f (x )=2sin 2⎝ ⎛⎭⎪⎫π4+x -3cos 2x -1=1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4+x -3cos 2x -1=-cos ⎝ ⎛⎭⎪⎫π2+2x -3cos 2x =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3,∵π4≤x ≤π2,∴π6≤2x -π3≤2π3, ∴12≤sin ⎝⎛⎭⎪⎫2x -π3≤1.∴1≤2sin ⎝ ⎛⎭⎪⎫2x -π3≤2,∴1≤f (x )≤2, ∴f (x )的最小值为1. 答案:115.若将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________.解析:由题意f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4,将其图象向右平移φ个单位,得2sin ⎣⎢⎡⎦⎥⎤2(x -φ)+π4=2sin ⎣⎢⎡⎦⎥⎤2x -2φ+π4,要使图象关于y 轴对称,则π4-2φ=π2+kπ,解得φ=-π8-k π2,当k =-1时,φ取最小正值3π8.答案:3π816.已知函数f (x )=sin ωx ,g (x )=sin ⎝ ⎛⎭⎪⎫2x +π2,有下列命题: ①当ω=2时,f (x )g (x )的最小正周期是π2;②当ω=1时,f (x )+g (x )的最大值为98;③当ω=2时,将函数f (x )的图象向左平移π2可以得到函数g (x )的图象.其中正确命题的序号是______________(把你认为正确的命题的序号都填上). 解析:①ω=2时,f (x )g (x )=sin 2x ·cos 2x =12sin 4x ,周期T =2π4=π2.故①正确.②ω=1时,f (x )+g (x )=sin x +cos 2x =sin x +1-2sin 2x =-2⎝⎛⎭⎪⎫sin x -142+98,∴当sin x =14时,f (x )+g (x )取最大值98.故②正确.③ω=2时,将函数f (x )的图象向左平移π2得到sin 2⎝⎛⎭⎪⎫x +π2=-sin 2x ,故③不正确.答案:①②三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)在平面直角坐标系中,A (1,-2),B (-3,-4),O 为坐标原点.(1)求OA →·OB →;(2)若点P 在直线AB 上,且OP →⊥AB →,求OP →的坐标. 解析:(1)OA →·OB →=1×(-3)+(-2)×(-4)=5. (2)设P (m ,n ),∵P 在AB 上,∴BA →与PA →共线. BA →=(4,2),PA →=(1-m ,-2-n ),∴4·(-2-n )-2(1-m )=0. 即2n -m +5=0.① 又∵OP →⊥AB →,∴(m ,n )·(-4,-2)=0. ∴2m +n =0.②由①②解得m =1,n =-2,∴OP →=(1,-2). 18.(本小题满分12分)已知tan ⎝ ⎛⎭⎪⎫α+π4=13. (1)求tan α的值;(2)求2sin 2α-sin(π-α)sin ⎝ ⎛⎭⎪⎫π2-α+sin 2⎝ ⎛⎭⎪⎫3π2+α的值.解析:(1)∵tan ⎝ ⎛⎭⎪⎫α+π4=tan α+11-tan α=13,∴tan α=-12.(2)原式=2sin 2α-sin αcos α+cos 2α=2sin 2α-sin αcos α+cos 2αsin 2α+cos 2α=2tan 2α-tan α+1tan 2α+1=2×⎝ ⎛⎭⎪⎫-122-⎝ ⎛⎭⎪⎫-12+1⎝ ⎛⎭⎪⎫-122+1=85. 19.(本小题满分12分)已知函数f (x )=2sin ⎝⎛⎭⎪⎫x +π6-2cos x .(1)求函数f (x )的单调增区间; (2)若f (x )=65,求cos ⎝⎛⎭⎪⎫2x -π3的值.解析:(1)f (x )=2sin ⎝⎛⎭⎪⎫x +π6-2cos x =2sin x cos π6+2cos x sin π6-2cos x=3sin x -cos x =2sin ⎝⎛⎭⎪⎫x -π6.由-π2+2k π≤x -π6≤π2+2k π,k ∈Z ,得-π3+2k π≤x ≤23π+2k π,k ∈Z ,所以f (x )的单调增区间为[-π3+2k π,23π+2k π](k ∈Z).(2)由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6,即sin ⎝⎛⎭⎪⎫x -π6=35.∴cos ⎝ ⎛⎭⎪⎫2x -π3=1-2sin 2⎝⎛⎭⎪⎫x -π6=725.20.(本小题满分12分)已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (a )的值;(2)求函数f (x )的最小正周期及单调递增区间.解析:(1)由0<α<π2,且sin α=22,求出角α的余弦值,再根据函数f (x )=cosx (sin x +cos x )-12,即可求得结论.(2)已知函数f (x )=cos x (sin x +cos x )-12,由正弦与余弦的二倍角公式,以及三角函数的化一公式,将函数f (x )化简,根据三角函数周期的公式即可得结论,根据函数的单调递增区间,通过解不等式即可得到所求的结论.(1)因为0<α<π2,sin α=22,所以cos α=22,所以f (a )=22⎝ ⎛⎭⎪⎫22+22-12=12. (2)因为f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin ⎝⎛⎭⎪⎫2x +π4,所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z.所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z. 21.(本小题满分12分)已知函数f (x )=sin x +a cos x 的图象经过点⎝ ⎛⎭⎪⎫-π3,0.(1)某某数a 的值;(2)设g (x )=[f (x )]2-2,求函数g (x )的最小正周期与单调递增区间.解析:(1)∵函数f (x )=sin x +a cos x 的图象经过点⎝ ⎛⎭⎪⎫-π3,0,∴f ⎝ ⎛⎭⎪⎫-π3=0,即sin ⎝ ⎛⎭⎪⎫-π3+a cos ⎝ ⎛⎭⎪⎫-π3=0.即-32+a2=0.解得a = 3. (2)g (x )=4sin 2(x +π3)-2=2(1-cos(2x +2π3)-2=-2cos(2x +2π3)∴g (x )的最小正周期T =2π2=π.令- π+2k π≤2x +2π3≤2k π,k ∈Z-5π6+k π≤x ≤k π-π3,k ∈Z ∴g (x )的增区间为⎣⎢⎡⎦⎥⎤-5π6+k π,-π3+k π,k ∈Z.22.(本小题满分10分)已知向量m =(sin x ,-cos x ),n =(cos θ,-sin θ),其中0<θ<π.函数f (x )=m·n 在x =π处取最小值.(1)求θ的值;(2)设A ,B ,C 为△ABC 的三个内角,若sin B =2sin A ,f (C )=12,求A .解析:(1)∵f (x )=m ·n =sin x cos θ+cos x sin θ=sin(x +θ),又∵函数f (x )在x =π处取最小值,∴sin(π+θ)=-1, 即sin θ=1.又0<θ<π,∴θ=π2.(2)由(1)得,f (x )=sin ⎝⎛⎭⎪⎫x +π2=cos x .∵f (C )=12,∴cos C =12,∵0<C <π,∴C =π3.∵A +B +C =π,∴B =2π3-A ,代入sin B =2sin A 中,∴sin ⎝ ⎛⎭⎪⎫2π3-A =2sin A ,∴sin 2π3cos A -cos 2π3sin A =2sin A ,∴tan A =33, ∵0<A <π,∴A =π6.。

高一数学必修4模块训练4答案

高一数学必修4模块训练4答案

高一数学必修4模块训练4一.选择题:1、化简8cos 228cos 12+-+的结果是(C )(A )(sin4 (B ) (C )(cos4 (D )2、已知tan α,tan β是方程x 2+33x+4=0的两根,且-2π<α<2π,-2π<β<2π,则 α+β等于( B )(A )3π (B )-32π (C )3π或-32π (D )-3π或-32π 3、函数y=sin(2x+25π)的图象的一条对称轴的方程是( A ) (A )x=-2π (B )x=-4π (C )x=8π (D )x=45π 4、已知sin αcos α=83,且4π<α<2π,则cos α-sin α的值是 ( A ) (A)-21 (B)21 (C)-41 (D) 41 5、下列命题①函数y=sin2x 的单调增区间是[ππππk k ++45,43],(k ∈Z ) ②函数y=tanx 在它的定义域内是增函数③函数y=|cos2x|的周期是π④函数y=sin(x +25π)是偶函数 其中正确的是 ( D )(A)①② (B)②③ (C)①③ (D)①④ 6、已知|a |=5,|b |=4,a 与b 的夹角为60°,则|a -2b |的值是( B ) (A )9 (B )7 (C )129 (D )107、若a =(3,5cosx ),b =(2sinx ,cosx ),则a ·b 的范围是( B )(A )[-6,+∞] (B )[-6,534] (C )[6,+∞] (D )[0,534] 8、若△ABC 是边长为1的等边三角形,向量=c ,=a ,=b ,有下列命题①a ·b =1 ②a +b 与a -b 垂直 ③a 与b 夹角为60° ④a +b =c其中正确命题的个数是 ( B )(A)0个 (B)1个 (C)2个 (D)3个二.填空题:9、函数y=Asin(ωx+φ)( A >0,ω>0,|φ|<π),在同一个周期内,当x=3π时, y 有最大值2,当x=0时,y 有最小值-2,则这个函数的解析式为____________。

高一数学上:必修4答案

高一数学上:必修4答案

高一数学上:必修4答案高中数学新课程讲学练参考答案高一(上):必修4一、数学④§1.1.1 任意角1.D;2.A;3.C;4.A;5.B;6.二;7.1110;8.-π7.π;44 = 56.176.296。

k|kγ360+135≤α≤kγ360+180 orkγ360+315≤α≤kγ360+360.k∈Z}k|kγ360+150≤α≤kγ360+210.k∈Z}α]9.(1) 一或三;(2) 一或二或三;10.β11.(1) α ∈ [β。

β+π);(2) α ∈ (-π。

π],α ≠ β12.(1) {β|β=k·360°。

k∈Z};(2) {β|β=k·360°+180°。

k∈Z};3) {β|β=k·180°。

k∈Z};(4) {β|β=k·90°。

k∈Z}13.(1) -50,(2) 310,(3) 670二、数学④§1.1.2 弧度制1.C;2.C;3.B;4.B;5.C;6.三;7.(2)、(3);8.-π8;9.2kπ-π6.k∈Z;10.{β|β=π+2kπ。

k∈Z};11.(1) β ∈ [0.π) or β ∈ [2kπ-π。

2kπ)。

k∈Z;2) (β+π) ∈ [0.π) or (β+π) ∈ [2kπ-π。

2kπ)。

k∈Z;12.(1) l = 8α/10π/3.when α=2.S_max=1π。

S=50(-);2) S = 4+4α+α2/33π(dm);the total area of the sector is π(dm2)13.XXX XXX:三、数学④§1.2.1 任意角的三角函数1.A;2.C;3.B;4.D;6.7.±π/133.±。

8.-4322;9.{3.-1};10.2kπ+π/3 or 2kπ+2π/15.k∈Z;11.(1) β ∈ (2kπ-π/3.2kπ+π/3);(2) β ∈ (-π/2+2kπ。

高一数学必修4 模块测试卷

高一数学必修4 模块测试卷

高一数学必修4 模块测试卷试卷满分:100分 考试时间:60分钟一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 在0到2π范围内,与角3π-终边相同的角是( )A. 3πB. 23πC. 43πD. 53π2.α是一个任意角,则α的终边与3α+π的终边( )A. 关于坐标原点对称B. 关于x 轴对称C. 关于y 轴对称D. 关于直线y x =对称3. 已知向量(1,2)=-a ,(1,0)=b ,那么向量3-b a 的坐标是( ) A. (4,2)- B. (4,2)-- C. (4,2) D. (4,2)-4. 若向量(13)=,a 与向量(1,)λ=-b 共线,则λ的值为( ) A. 3- B. 3 C. 13-D. 135. 函数()f x 的图象是中心对称图形,如果它的一个对称中心是)0,2(π,那么()f x 的解析式可以是( )A. sin xB. cos xC. sin 1x +D. cos 1x +6. 已知向量(1,=a ,(2,=-b ,则a 与b 的夹角是( )A.6π B. 4π C. 3π D. 2π7. 为了得到函数cos(2)3y x π=-的图象,只需将函数cos 2y x =的图象( )A. 向左平移π6个单位长度 B. 向右平移π6个单位长度 C. 向左平移π3个单位长度 D. 向右平移π3个单位长度8. 函数212cos y x =- 的最小正周期是( ) A. 4π B. 2πC. πD. 2π9. 设角θ的终边经过点(3,4)-,则)4cos(πθ+的值等于( )A.B.C.D. 10. 在矩形ABCD中,AB =1BC =,E 是CD 上一点,且1AE AB ⋅=,则AE AC ⋅ 的值为( )A .3B .2 C.2 D.3二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11. sin34π=______. 12. 若1cos , (0,)2αα=-∈π,则α=______.13. 已知向量(1,3)=-a ,(3,)x =-b ,且⊥a b ,则x =_____. 14.已知sin cos αα-=,则sin 2α=______.15. 函数2cos y x =在区间[,]33π2π-上的最大值为______,最小值为______. 16. 已知函数()sin f x x x =,对于ππ[]22-,上的任意12x x ,,有如下条件:①2212x x >;②12x x >;③12x x >,且1202x x +>.其中能使12()()f x f x >恒成立的条件序号是_______.(写出所有满足条件的序号) 三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知2απ<<π,4cos 5α=-. (Ⅰ)求tan α的值; (Ⅱ)求sin 2cos2αα+的值.18.(本小题满分12分)已知函数2()sin 12xf x x =+. (Ⅰ)求()3f π的值;(Ⅱ)求()f x 的单调递增区间;(Ⅲ)作出()f x 在一个周期内的图象.19.(本小题满分12分)如图,点P 是以AB 为直径的圆O 上动点,P '是点P 关于AB 的对称点,2(0)AB a a =>.(Ⅰ)当点P 是弧 上靠近B 的三等分点时,求AP AB ⋅的值;(Ⅱ)求AP OP '⋅的最大值和最小值.参考答案及评分标准一、选择题:本大题共10小题,每小题4分,共40分.1.D;2.A;3.D;4.A;5.B;6.C;7.B;8.C;9.C; 10.B.二、填空题:本大题共6小题,每小题4分,共24分.11. 2-; 12.32π; 13. 1-; 14. 1-; 15. 2,1-; 16. ①③. 注:一题两空的试题每空2分;16题,选出一个正确的序号得2分,错选得0分. 三、解答题:本大题共3小题,共36分.17.解:(Ⅰ)因为4cos 5α=-,2απ<<π,所以3sin 5α=, …………………3分 所以sin 3tan cos 4ααα==-. …………………5分(Ⅱ)24sin 22sin cos 25ααα==-, …………………8分27cos 22cos 125αα=-=, …………………11分 所以24717sin 2cos 2252525αα+=-+=-. …………………12分18.解:(Ⅰ)由已知2()sin 1363f πππ=+ …………………2分1122=+=. …………………4分(Ⅱ)()cos )sin 1f x x x =-+ …………………6分sin 1x x =-+2sin()13x π=-+. …………………7分函数sin y x =的单调递增区间为[2,2]()22k k k πππ-π+∈Z , …………………8分 由 22232k x k ππππ-≤-≤π+,得2266k x k π5ππ-≤≤π+.所以()f x 的单调递增区间为[2,2]()66k k k π5ππ-π+∈Z . …………………9分(Ⅲ)()f x 在[,]33π7π上的图象如图所示. …………………12分19.解:(Ⅰ)以直径AB 所在直线为x 轴,以O 为坐标原点建立平面直角坐标系.因为P 是弧AB 靠近点B 的三等分点, 连接OP ,则3BOP π∠=, …………………1分 点P 坐标为1(,)22a a . …………………2分又点A 坐标是(,0)a -,点B 坐标是(,0)a ,所以3()2AP a = ,(2,0)AB a =, …………………3分 所以23AP AB a ⋅=. …………………4分 (Ⅱ)设POB θ∠=,[0,2)θπ∈,则(cos ,sin )P a a θθ,(cos ,sin )P a a θθ'-所以(cos ,sin )AP a a a θθ=+,(cos ,sin )OP a a θθ'=-. …………所以22222cos cos sin AP OP a a a θθθ'⋅=+- 22(2cos cos 1)a θθ=+- (222119)2(cos cos )2168a a θθ=++- 222192(cos )48a a θ=+-. …………当1cos 4θ=-时,AP OP '⋅ 有最小值298a -当cos 1θ=时,AP OP '⋅ 有最大值22a . …………………12分。

最新精编高中人教版必修4高中数学模块训练6和答案

最新精编高中人教版必修4高中数学模块训练6和答案

高一数学必修4模块训练6一.选择题:1、等于则x x x 2cos 1,0tan sin +<⋅ ( ))(A x cos 2 )(B x s i n 2 )(C x s i n 2- )(D x c o s 2-2、函数sin y x =的一条对称轴方程是( )A .12x π=B .14x π= C .0=x D. π=x 3、 下列各组向量中,共线的是 ( )A .a =(-1,2),b =(4,2)B .a =(-3,2),b =(6,-4)C .a =(23,-1),b =(15,10) D .a =(0,-1),b =(3,1) 4、函数22cos 2sin 2y x x =-的最小正周期是( )A.π2B. π4C.4π D.2π 5、已知向量()1,3=→a ,()3,-=→x b ,且→→⊥b a ,则实数x 的值为( )A. 1B. 3C. 1-D. 3-6、把函数sin(2)5y x π=-的图象上的所有点向右平移5π个单位,再把所有点的横坐标缩短到原来的一半,而把所有点的纵坐标伸长到原来的4倍,所得图象的表达式是 ( )A .4sin 4y x =B . 24sin(4)5y x π=-C .4sin(4)5y x π=+D . )534sin(4π-=x y 7、若()414tan ,52tan =⎪⎭⎫ ⎝⎛-=+πββα,那么⎪⎭⎫ ⎝⎛+4tan πα的值是 ( ) (A ) 1813 (B ) 223 (C ) 1213 (D ) 61 8、函数)23sin(x y -=π的单调递减区间是( ) )(A ;32,6Z k k k ∈⎥⎦⎤⎢⎣⎡+-+-ππππ )(B ;1252,122Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ)(C ;125,12Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ)(D ;3,6Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二.填空题:11、已知点(1,1),(1,5)A B -,若12AC AB =,则点C 的坐标为 .13、如右图是()sin y A x ωϕ=+的图象,,2||,0,0πϕϖ<>>A 其中则其解析式是 ;三.解答题:11、已知角α的终边与单位圆交于点P (45,35).(I )写出sin α、cos α、tan α值;(II )求sin()2sin()22cos()ππααπα++--的值.12、已知4||=a ,2||=b ,且a 与b 夹角为120°求 ⑴)()2(b a b a +∙-; ⑵|2|b a -; ⑶a 与b a +的夹角。

高一数学必修4模块训练1答案

高一数学必修4模块训练1答案

高一数学必修4模块训练1一.选择题:1.-215°是 ( B )(A )第一象限角 (B )第二象限角(C )第三象限角 (D )第四象限角2.角α的终边过点P (4,-3),则αcos 的值为 ( C )(A )4 (B )-3 (C )54(D )53-3.若0cos sin <αα,则角α的终边在 ( C )(A )第二象限 (B )第四象限 (C )第二、四象限 (D )第三、四象限4.函数x x y 22sin cos -=的最小正周期是 ( A )(A )π (B )2π(C )4π(D )π25.给出下面四个命题:① =+;②=+B ;③=-; ④00=⋅AB 。

其中正确的个数为 ( B )(A )1个 (B )2个 (C )3个 (D )4个6.向量)2,1(-=a ,)1,2(=b ,则 ( B )(A )a ∥ (B )⊥(C )a 与b 的夹角为60° (D )a 与b 的夹角为30°7. 在下面给出的四个函数中,既是区间)2,0(π上的增函数,又是以π为周期的偶函数的是(D ) (A )x y 2cos = (B )x y 2sin = (C )|cos |x y = (D )|sin |x y =8.若=(2,1),=(3,4),则向量在向量方向上的投影为( B )(A )52 (B )2 (C )5 (D )10二.填空题:9.已知点A (2,-4),B (-6,2),则AB 的中点M 的坐标为 (-2,-1) ;10.若21tan =α,则ααααcos 3sin 2cos sin -+= -3 ;三.解答题:11.求值:(1))623tan(π-; (2)︒75sin解:(1)336tan )64tan()623tan(==+-=-ππππ(2)原式=︒︒+︒︒=︒+︒30sin 45cos 30cos 45sin )3045sin(=42621222322+=⨯+⨯12.设)1,3(=OA ,)2,1(-=OB ,OB OC ⊥,BC ∥OA ,试求满足OC OA OD =+的OD 的坐标(O 为坐标原点)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修4模块训练6
一.选择题:
1、等于则x x x 2cos 1,0tan sin +<⋅ ( )
)(A x cos 2 )(B x sin 2 )(C x sin 2- )(D x cos 2-
2、函数sin y x =的一条对称轴方程是( )
A .12x π=
B .14
x π= C .0=x D. π=x 3、 下列各组向量中,共线的是 ( )
A .a =(-1,2),b =(4,2)
B .a =(-3,2),b =(6,-4)
C .a =(2
3,-1),b =(15,10) D .a =(0,-1),b =(3,1) 4、函数22cos 2sin 2y x x =-的最小正周期是( )
A.π2
B. π4
C.
4π D.2
π 5、已知向量()1,3=→a ,()3,-=→x b ,且→→⊥b a ,则实数x 的值为( )
A. 1
B. 3
C. 1-
D. 3-
6、把函数sin(2)5y x π
=-的图象上的所有点向右平移5
π个单位,再把所有点的横坐标缩短到原来的一半,而把所有点的纵坐标伸长到原来的4倍,所得图象的表达式是 ( )
A .4sin 4y x =
B . 24sin(4)5y x π=-
C .4sin(4)5y x π=+
D . )534sin(4π-=x y 7、若()414tan ,52tan =⎪⎭⎫ ⎝⎛-=+πββα,那么⎪⎭⎫ ⎝
⎛+4tan πα的值是 ( ) (A ) 1813 (B ) 223 (C ) 1213 (D ) 6
1 8、函数)23sin(x y -=π的单调递减区间是( )
)(A ;32,6Z k k k ∈⎥⎦⎤⎢⎣⎡+-+-ππππ )(B ;1252,122Z k k k ∈⎥⎦
⎤⎢⎣⎡+-ππππ )(C ;125,12Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ
)(D ;3,6Z k k k ∈⎥⎦
⎤⎢⎣⎡+-ππππ 二.填空题:
11、已知点(1,1),(1,5)A B -,若12
AC AB =
,则点C 的坐标为 .
13、如右图是()sin y A x ωϕ=+的图象,,2||,0,0πϕϖ<
>>A 其中
则其解析式是 ;
三.解答题:
11、已知角α的终边与单位圆交于点P (45,35
). (I )写出sin α、cos α、tan α值;
(II )求
sin()2sin(
)22cos()ππααπα++--的值.
12、已知4||=,2||=,且a 与b 夹角为120°求 ⑴)()2(b a b a +•-; ⑵|2|b a -; ⑶a 与b a +的夹角。

关于数学名言警句大全
1、数学家本质上是个着迷者,不迷就没有数学。

——努瓦列斯
2、不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上。

——罗巴切夫斯基
3、宁可少些,但要好些。

——高斯
4、在数学中最令我欣喜的,是那些能够被证明的东西。

——罗素
5、获得智慧,科学可改善物质生活,但数学能给予以上的一切。

——克莱因
6、给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。

——高斯
7、当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐。

——柯普宁
8、没有哪门学科能比数学更为清晰地阐明自然界的和谐性。

——卡罗斯
9、第一是数学,第二是数学,第三是数学。

——伦琴
10、数学的本质在於它的自由。

——康扥尔
11、在数学里,分辨何是重要,何事不重要,知所选择是很重要的。

——广中平佑
12、新的数学方法和概念,常常比解决数学问题本身更重要。

——华罗庚
13、宁可少些,但要好些,二分之一个证明等于0。

——高斯
14、从最简单的做起。

——波利亚
15、在数学中,我们发现真理的主要工具是归纳和模拟。

——拉普拉斯
16、每一个目标,我都要它停留在我的眼前,从第一到曙光初现开始,一直保留,慢慢展开,直到整个大地光明为止。

——牛顿
17、下棋要找高手…。

只有不怕在能者面前暴露自己的弱点,才能不断进步,自学,不怕起点低,就怕不到底。

——华罗庚
18、我总是尽我的精力和才能来摆脱那种繁重而单调的计算。

——纳皮尔
19、一个国家只有数学蓬勃的发展,才能展现它国立的强大。

数学的发展和至善和国家繁荣昌盛密切相关。

——拿破仑
20、每当我的头脑没有问题思考时,我就喜欢将已经知道的定理重新验证一番。

这样做并没有什么目的,只是让自己有个机会充分享受一下专心思考的愉快。

——爱因斯坦
21、思维自疑问和惊奇开始。

——亚里士多德
22、历史使人聪明,诗歌使人机智,数学使人精细。

——培根
23、用一,从无,可生万物。

——莱布尼兹
24、数学主要的目标是公众的利益和自然现象的解释。

——傅立叶
25、如果我能够看的更远,那是因为我站在巨人的肩上。

——牛顿
26、数学对观察自然做出重要的贡献,它解释了规律结构中简单的`原始元素,而天体就是用这些原始元素建立起来的。

——开普勒
27、数学是最宝贵的研究精神之一。

——华罗庚
28、现代高能物理到了量子物理以后,有很多根本无法做实验,在家用纸笔来算,这跟数学家想样的差不了多远,所以说数学在物理上有着不可思议的力量。

——邱成桐
29、当我听别人讲解某些数学问题时,常觉得很难理解,甚至不可能理解。

这时便想,
是否可以将问题化简些呢﹖往往,在终于弄清楚之后,实际上,它只是一个更简单的问题。

——希尔伯特
30、数缺形时少直观,形缺数时难入微,又说要打好数学基础有两个必经过程:先学习、接受“由薄到厚”;再消化、提炼“由厚到薄”。

——华罗庚
31、学习数学要多做习题,边做边思索。

先知其然,然后知其所以然。

——苏步青
32、数学是规律和理论的裁判和主宰者。

——本杰明
33、数学方法渗透并支配着一切自然科学的理论分支。

它愈来愈成为衡量科学成就的主要标志了。

——冯纽曼
34、我的成功归功于精细的思考,只有不断地思考,才能到达发现的彼岸。

35、历史使人贤明,诗造成气质高雅的人,数学使人高尚,自然哲学使人深沉,道德使人稳重,而伦理学和修辞学则使人善于争论。

——培根。

相关文档
最新文档