两点间的距离公式PPT课件

合集下载

两点间的距离公式 PPT

两点间的距离公式 PPT
P2
| P1P2 | (x2 x1)2 ( y2 y1)2
M
o
P1
x
思考5:当直线P1P2与坐标轴垂直时,上述结论是否成立?
P2
y
P1
P2
o
x
P1
平面内两点之间的距离公式:若P1(x1 ,y1)和P2(x2 ,y2),

| P1P2 | (x2 x1)2 ( y2 y1)2
例1:在直线2x-y=0上求一点P,使它到点M(5,8)的距离为 5,并求直线PM的方程。
两点间的距离公式
思考1:在x轴上,已知点P1(x1,0)和P2(x2,0),那么点P1和P2的 距离为多少?
y
|P1P2|=|x1-x2|
P2 (x2,0) o
P1 (x1,0) x
思考2:在y轴上,已知点P1(0,y1)和P2(0,y2),那么点P1和P2的
距离为多少?
|P1P2|=|y1-y2|
P(2,4)或P (32 , 64) 55
PM:4x-3y+4=0 或24x-7y-64=0
例2:证明平行四边形四条边的平方和等于两条对角线的平方和.
y D (b, c) C (a+b, c)
A(0,0) B(a,0) x
用“坐标法”(解析法)解决有关几何问题的基本步骤:
第一步;建立坐标系, 用坐标系表示有关的量
y
P2 (0,y2)
o
x
P1 (0,y1)
思考3:已知x轴上一点P1(x0,0)和y轴上一点P2(0,y0),那么点P1
和P2的距离为多少?
y
P2
| P1P2 | x02 y02
o
P1
x
思考4:一般地,已知平面上两点P1(x1,y1)和P2(x2,y2),利用 上述方法求点P1和P2的距离可得什么结论? y

2.3.2两点间的距离公式(教学课件)-高中数学人教A版(2019)选择性必修第一册

2.3.2两点间的距离公式(教学课件)-高中数学人教A版(2019)选择性必修第一册
为AC,另一条小路过点D,问:是否在BC上存在一点M,使得
两条小路AC与DM相互垂直?若存在,求出小路DM的长.
解:以B 为坐标原点,BC,BA 所在直线分别为 x 轴 、y 轴建立如图所示的 平面直角坐标系.
因为 |AD|=5 m,|AB|=3 m,所 以C(5,0),D(5,3),A(0,3). 设点M 的坐标为(x,0),
解得
5.光线从点A(-3,4)射到x轴上,经反射后经过点B(4,10),则反 射光线所在直线的方程为 2x-y+2=0 ,光线从A到B的路线长 度为7√5 解析:由题意知,反射光线过(-3,-4)和(4,10)两点,故斜率为
所以反射光线为 y+4=2(x+3),整理得2x-y+2=0,
光线从A到 B 的路线长度,即为(-3,-4)与(4,10)间的距离,所
[例2] 已知点A(3,6), 在x轴上的点P与点A的距离等于 10,则点P的坐标为(-5,0)或(11,0) 解析:设点P 的坐标为(x,0),
由 |PA|=10得
解得x=11 或x=-5. 所以点P 的坐标为(-5,0)或(11,0).
解 :法一 因 为
所以|AB|=|AC|,且 |AB|²+|AC|²=|BC|²,所以△ABC是等腰直角三角形.
法二 因 为 所以kAc ·kAB=-1.所以AC⊥AB.
所以|AC|=|AB|.所以△ABC是等腰直角三角形.
方法 总 结
利用两点间距离公式判断三角形形状的方法 已知三个顶点的坐标判断三角形的形状时,利用两点间的距离公式 求三边长,从边长间的关系入手,如果边长相等,则可能是等腰或等 边三角形;如果满足勾股定理,则是直角三角形.
C.直角三角形 D.以上都不是

2.3.2 两点间的距离公式 (共25张PPT)

2.3.2 两点间的距离公式 (共25张PPT)
求证:|AB|2=|AD|2+|BD|·|DC|.
思路分析:建立适当的直角坐标系,设出各顶点的坐标,应用两点间的距离公式证明.
证明:如图,以BC的中点为原点O,BC所在的直线为x轴,建立直角坐标系.
设A(0,a),B(-b,0),C(b,0),D(m,0)(-b<m<b).
则|AB|2=(-b-0)2+(0-a)2=a2+b2,
)
解析:|AB|=|AC|= 17,|BC|= 18,故△ABC 为等腰三角形.
答案:B
5.已知点A(3,6),在x轴上的点P与点A的距离等于10,则点P的坐标为
________.
[解析] 设点 P 的坐标为(x,0),由 d(P,A)=10 得 (x-3)2+(0-6)2=10,
解得 x=11 或 x=-5.
人教2019 A版 选择性必修 一
第二章
直线和圆的方程
2.3.2 两点间的距离公式
学习目标
1.掌握平面上两点间的距离公式
2.会运用坐标法证明简单的平面几何问题
情境导学
在一条笔直的公路同侧有
两个大型小区,现在计划在公路
上某处建一个公交站点C,以方
便居住在两个小区住户的出行.
如何选址能使站点到两个,
∴B

-2,0
,C

,0
2
|PA|2+|PB|2+|PC|2
,A 0, 3a .设 P(x,y),由两点间的距离公式,得
2
2 2
2 2
=x +
x+2 +y + x-2 +y
52
2
2
=3x +3y - 3ay+ 4

两点间的距离公式》课件(北师大版必修

两点间的距离公式》课件(北师大版必修
y1)^2+(z2z1)^2)
椭圆面上的两点 间的距离公式:
d=sqrt((x2x1)^2+(y2y1)^2+(z2-
z1)^2)
双曲面面上的两 点间的距离公式:
d=sqrt((x2x1)^2+(y2y1)^2+(z2-
z1)^2)
抛物面上的两点 间的距离公式:
d=sqrt((x2x1)^2+(y2y1)^2+(z2-
两点间的距离公 式
,
汇报人:
添加目录标题
两点间的距离 公式
两点间的距离 公式在几何中 的应用
两点间的距离 公式在解析几 何中的应用
两点间的距离 公式的扩展应 用
添加章节标题
两点间的距离公式
公式推导
● 两点间的距离公式:d=sqrt((x2-x1)^2+(y2-y1)^2)
● 推导过程: a. 假设有两个点A(x1,y1)和B(x2,y2) b. 连接AB,并设AB的长度为d c. 根据勾股定理, AB的平方等于x2-x1的平方加上y2-y1的平方 d. 因此,两点间的距离公式为d=sqrt((x2x1)^2+(y2-y1)^2)
应用:在几何中,垂直平分线常用于证明线段相等、三角形全等等
公式:两点间的距离公式为d=sqrt((x2-x1)^2+(y2-y1)^2),其中(x1,y1)和(x2,y2)为两点 的坐标。
两点间线段的斜率
斜率定义:斜率是描述直线或曲线在某一点的倾斜程度的量
斜率公式:斜率等于两点间的纵坐标差除以横坐标差
● a. 假设有两个点A(x1,y1)和B(x2,y2) ● b. 连接AB,并设AB的长度为d ● c. 根据勾股定理,AB的平方等于x2-x1的平方加上y2-y1的平方 ● d. 因此,两点间的距离公式为d=sqrt((x2-x1)^2+(y2-y1)^2)

两点间的距离公式(上课课件)

两点间的距离公式(上课课件)

人A数学选择性必修第一册
返回导航 上页 下页
2.已知点A(-3,4)和B(0,b),且|AB|=5,则b=( A )
A.0或8
B.0或-8
C.0或6
D.0或-6
3 . 已 知 点 A(1 , - 5) , B( - 3 , - 1) , 线 段 AB 的 中 点 M , 则 |OM| = _____1_0____.
D(-b,h).由两点间的距离公式,得 |AC|= -a-b2+0-h2= a+b2+h2, |BD|= [a--b]2+0-h2= a+b2+h2, 所以|AC|=|BD|.
人A数学选择性必修第一册
对称问题(2) 1.直线关于点的对称问题 直线l关于点P对称的直线l′满足:
返回导航 上页 下页
(1)直线l′与直线l平行;
由距离公式,得
|AE|=
2c+a2+ 23c-02= a2+ac+c2,
|CD|=
c+2a2+0- 23a2= a2+ac+c2,
所以|AE|=|CD|.
人A数学选择性必修第一册
返回导航 上页 下页
2.已知等腰梯形ABCD,建立适当的坐标系,证明:对角线|AC|=|BD|. 证明:如图,以等腰梯形ABCD的下底AB所在直线为x轴,以AB的中点 O为坐标原点建立平面直角坐标系,设梯形下底|AB|=2a,上底|CD|= 2b,高为h,则A(-a,0),B(a,0),C(b,h),
人A数学选择性必修第一册
返回导航 上页 下页
[例3] 已知点A(2,-3),直线l:x-y+1=0.求: (1)直线l关于点A的对称直线l1的方程; (2)直线2x-y-3=0关于直线l的对称直线l2的方程.
人A数学选择性必修第一册

人教版数学 空间两点间的距离公式 (共16张PPT)教育课件

人教版数学 空间两点间的距离公式 (共16张PPT)教育课件

学习目标
1.了解空间两点间的距离公式的推导过程,初步建 立将空间问题向平面问题转化的意识。 2.掌握空间两点间距离公式及其简单的应用.
新知自学:公式形成与推导:
借助课本P137图4.3-6
探究(一) 空间中的点与坐标原点的距离公式 问题 1:在空间直角坐标系中,坐标轴上的点 A(x,0,0),B(0,y,0), C(0,0,z),与坐标原点 O 的距离分别是什么? 问题 2: 在空间直角坐标系中,坐标平面上的点 A(x,y,0),B(0,y,z), C(x,0,z),与坐标原点 O 的距离分别是什么? 问题 3:在空间直角坐标系中,设点 P(x,y,z)在 xOy 平面上的射影为 B, 则点 B 的坐标是什么?|PB|,|OB|的值分别是什么? 问题 4:基于上述分析,你能得到空间任意点 P(x,y,z)与坐标原点 O 的 距离公式吗?
之前有个网友说自己现在紧张得不得了 ,获得 了一个 大公司 的面试 机会, 很不想 失去这 个机会 ,一天 只吃一 顿饭在 恶补基 础知识 。不禁 要问, 之前做 什么去 了?机 会当真 就那么 少?在 我看来 到处都 是机会 ,关键 看你是 否能抓 住。运 气并非 偶然, 运气都 是留给 那些时 刻准备 着的人 的。只 有不断 的积累 知识, 不断的 进步。 当机会 真的到 来的时 候,一 把抓住 。相信 学习真 的可以 改变一 个人的 运气。 在当今社会,大家都生活得匆匆忙忙, 比房子 、比车 子、比 票子、 比小孩 的教育 、比工 作,往 往被压 得喘不 过气来 。而另 外总有 一些人 会运用 自己的 心智去 分辨哪 些快乐 或者幸 福是必 须建立 在比较 的基础 上的, 而哪些 快乐和 幸福是 无需比 较同样 可以获 得的, 然后把 时间花 在寻找 甚至制 造那些 无需比 较就可 以获得 的幸福 和快乐 ,然后 无怨无 悔地生 活,尽 情欢乐 。一位 清洁阿 姨感觉 到快乐 和幸福 ,因为 她刚刚 通过自 己的双 手还给 路人一 条清洁 的街道 ;一位 幼儿园 老师感 觉到快 乐和幸 福,因 为他刚 给一群 孩子讲 清楚了 吃饭前 要洗手 的道理 ;一位 外科医 生感觉 到幸福 和快乐 ,因为 他刚刚 从死神 手里抢 回了一 条人命 ;一位 母亲感 觉到幸 福和快 乐,因 为他正 坐在孩 子的床 边,孩 子睡梦 中的脸 庞是那 么的安 静美丽 ,那么 令人爱 怜。。 。。。 。

2.3.2两点间的距离公式课件(人教版)

2.3.2两点间的距离公式课件(人教版)

1.求下列两点间的距离 :
(1) A(6, 0), B( 2, 0);
(2)C (0, 4), D(0, 1);
(3) P (6, 0), Q(0, 2);
(4) M (2,1), N (5, 1).
(1) AB ( 2 6) (0 0) 8;
2
2
(2) CD (0 0)2 ( 1 4) 2 3;
段的长度?
追问2 如何求向量1 2 的模长?
1 2 =
2 − 1
2
+ 2 − 1
2
, , , 两点间的距离公式
1 2 =
2 − 1
2
+ 2 − 1
2
特别地,原点O(0,0)与任一点 , 间的距离
=
2 + 2.
上式利用向量法证明!
(3) PQ (0 6) ( 2 0) 2 10;
2
ቤተ መጻሕፍቲ ባይዱ
2
(4) MN (5 2) ( 1 1) 13.
2
2
2.已知点A(a, 5)与B(0,10)间的距离是17, 求a的值.
解: AB (0 a ) (10 5) 17,
2
解得a 8.
=
=
+



+ −

+ −
+ + ,
=

=
− + .
由 = ,得
+ + = − + .
解得 =1.
所以,所求点为P(1,0),且
=
+

2025版新教材高中数学第2章两点间的距离公式pptx课件新人教A版选择性必修第一册

2025版新教材高中数学第2章两点间的距离公式pptx课件新人教A版选择性必修第一册
2.通过学习两点间的距离,培养逻辑推理和直观想象的数学素养.
必备知识•探新知
知识点 1 两条直线的交点
1.两直线的交点 已知直线l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0.点A(a,b). (1)若点A在直线l1:A1x+B1y+C1=0上,则有_A__1a_+__B_1_b_+__C_1_=__0____.
对点训练❷ (1)若不论m取何实数,直线l:mx+y-1+2m= 0恒过一定点,则该定点的坐标是_____(-__2_,_1_)_____.
(2)直线l过直线x+y-2=0和直线x-y+4=0的交点,且与直线3x- 2y+4=0平行,求直线l的方程.
[解析] (1)直线 l:mx+y-1+2m=0 可化为 m(x+2)+(y-1)=0,
一组
无数组
直线 l1 与 l2 的公共点的个数 直线 l1 与 l2 的位置关系
一个 __相__交___
__无__数__个___ 重合
__无__解___
零个 __平__行___
做一做:直线x+y=5与直线x-y=3交点坐标是( B )
A.(1,2)
B.(4,1)
C.(3,2)
D.(2,1)
[解析] 解方程组xx-+yy==35,, 得xy= =41, , 因此交点坐标为(4,1),故
两点间距离公式的应用
3.已知△ABC三个顶点的坐标分别为A(-3,1),B(3,-3), C(1,7),试判断△ABC的形状.
[分析] 可求出三条边的长,根据所求长度判断三角形的形状.
[解析] 方法一:∵|AB|= 3+32+-3-12= 52, |AC|= 1+32+7-12= 52, |BC|= 1-32+7+32= 104, ∴|AB|=|AC|,且|AB|2+|AC|2=|BC|2. ∴△ABC 是等腰直角三角形. 方法二:∵kAC=1-7--13=32,kAB=3--3- -13=-23,∴kAC·kAB=-1. ∴AC⊥AB. 又|AC|= 1+32+7-12= 52, |AB|= 3+32+-3-12= 52, ∴|AC|=|AB|.∴△ABC 是等腰直角三角形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

O A(x1,y1)
x C(x2,y1)
例2、已知∆ABC的三个顶点是A(-1,0),B (1,0), ,试判断∆ABC的形状。
解:因为
A(-1,0) O
y
B(1,0) x

所以, ∆ABC是直角三角形。 点拔:判断三角形的形状,先求出三角形 的各边长,再根据边的关系判断。
例3、∆ABC中,D是BC边上任意一点(D与B,C 不重合),且 。求证: ∆ABC为等腰三角形。 y A(a,0) 解:作AO⊥BC,垂足为O,以BC所在 直线为x轴,以OA所在直线为y轴,建 C(c,0) 立直角坐标系,如图 B(b,0) O D(d,0) x 设A(a,0),B(b,0),C(c,0),D(d,0). 因为 所以由距离公式可得 b2+a2=d2+a2+(d-b)(c-d) 即 -(d-b)(b+d)=(d-b)(c-d) 又 d-b≠0,故 -b-d=c=d,即 -b=c 所以, ∆ABC为等腰三角形。
(2)平面直角坐标系中,A(x1,y1),B(x2,y2) 两点间的距离公式 四、作业 P94 11、12、13、
-2 O
x C y
y=-2 O A B 3 x
B
x
C
表示两点间的距 。
4、右图中,点B,C间的距离是 2 。
B C O
求法:

y 3 1
x
5、右图中,点A,C间的距离是 8 ;点B,C y 6 间的距离是 ;A,B间的距离是 10 。 B(3,4)
6、若A,B两点的坐标分别是 A(x1,y1),B(x2,y2),则A,B两点 间的距离是多少?
解:直线L的斜率k= ,所以与L垂直的直线L1的斜 率为 。于是,过点P且与直线L垂直的直线L1的 方程是 y-5= (x+3)
可得 ,
思考与交流:如何求一个点到一条直线的距离?
如求点P(x0,y0)到直线Ax+By+C=0的距 离,怎求? 三、小结 (1)x轴上A,B两点间距离公式
注:根据图形的特点,建立适当直角坐标系, 利用坐标解决有关问题,这种方法叫坐标的方法 也称为解析法。
思考与交流:上例中,若以B为坐标原点, 以BC所在直线为x轴,建立直角坐标系,结论 如何证?若以BC所在直线为x 轴,以BC的中垂 线为y轴呢?
例4、求过点P(-3,5),且与直线L: 3x-4y-5=0垂直的直线L1的方程。若直线 L1与L的交点是H,求P,H间的距离。
一、问题探求 1、右图中,直线L1:x=3与直线L2:y=-2y 有什么 X=3 位置关系? 答案:L ⊥L 。 1 2
O
2、若直线L1与L2相交于点C,点 B,A分别是L1,L2上的点,则线 段AB,AC,BC间有何关系? 答案:AB2=AC2+BC2。 3、右图,数轴上A,B两点间的距 A 离是 5 。 平面上任给两点A,B,用 离。上图中,
O A(-5,-2) y B(x2,y2) A1 O A(x1,y1) B1 x C(x2,y1) x C(3,-2)
二、两点间的距离公式 若两点A,B的坐标分别为A(x1,y1),B(x2,y2), 则有两点A,B的距离公式
y B(x2,y2)
例1、已知点A(x,3),B(7,-1)的距离为 5,求点A的坐标。 解: 即 (7-x)2+(-4)2=52, 所以有(x-7)2=9 所以x-7=3或x-7=-3,因此x=10或x=4. 所以,点A的坐标是(10,3)或(4,3)。
相关文档
最新文档