随机信号分析题目及答案完整版

合集下载

随机信号分析课后习题答案

随机信号分析课后习题答案

1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。

求随机变量的数学期望和方差。

解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。

解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。

(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。

(完整版)随机信号处理考题答案

(完整版)随机信号处理考题答案

填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。

1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。

3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。

4.冲激响应满足分析线性输出,其均值为_____________________。

5.偶函数的希尔伯特变换是奇函数。

6.窄带随机过程的互相关函数公式为P138。

1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。

随机信号分析(第3版)习题及答案

随机信号分析(第3版)习题及答案

1. 有四批零件,第一批有2000个零件,其中5%是次品。

第二批有500个零件,其中40%是次品。

第三批和第四批各有1000个零件,次品约占10%。

我们随机地选择一个批次,并随机地取出一个零件。

(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。

()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===2. 设随机试验X求X 的概率密度和分布函数,并给出图形。

解:()()()()0.210.520.33f x x x x δδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-3. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。

解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩4.求:(1)X 与的联合分布函数与密度函数;(2)与的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。

(北P181,T3) 解:(1)()()()()()()(),0.07,10.18,0.15,10.081,10.321,0.201,1F x y u x y u x y u x y u x y u x y u x y =+++-+-++-+--()()()()()()(),0.07,10.18,0.15,10.081,10.321,0.201,1f x y x y x y x y x y x y x y δδδδδδ=+++-+-++-+--(2) X 的分布律为()()00.070.180.150.4010.080.320.200.60P X P X ==++===++=Y 的分布律为()()()10.070.080.1500.180.320.5010.150.200.35P Y P Y P Y =-=+===+===+= (3)Z XY =的分布律为()()()()()()()()()()111,10.080001,00.400.320.72111,10.20P Z P XY P X Y P Z P XY P X P X Y P Z P XY P X Y =-==-===-======+===+======== (4)因为()()()00.4010.600.6010.1500.5010.350.20E X E Y =⨯+⨯==-⨯+⨯+⨯=()()10.0800.7210.200.12E XY =-⨯+⨯+⨯=则()()()()ov ,0.120.600.200C X Y E XY E X E Y =-=-⨯=X 与Y 的相关系数0XY ρ=,可见它们无关。

随机信号习题及答案

随机信号习题及答案
Y = 3 X + 1 的分布函数。
3.
⎧0 ⎪ 已知随机变量 X 的分布函数为: FX ( x) = ⎨kx 2 ⎪1 ⎩
x<0 0 ≤ x < 1 ,求:①系数 k;②X 落在区间 x >1
0 < x < +∞,0 < y < +∞ 其它
(0.3,0.7)内的概率;③随机变量 X 的概率密度函数。
4.
⎧e − ( x + y ) 设二维随机变量(X,Y)的概率密度为: f ( x, y ) = ⎨ ⎩0
求:①
分布函数 FXY ( x, y ) ;②(X,Y)落在如图所示的三角形区域内的概率。
y x+y=1
0
x
5. (续上题)求③边缘分布函数 FX ( x) 和 FY ( y ) ;④求边缘概率 f X ( x) 和 fY ( y ) 。 6. ( 续 上 题 ) ⑤ 求 条 件 分 布 函 数 FX ( x y ) 和 FY ( y x) ; ⑥ 求 条 件 概 率 密 度 f X ( x
103
9 若两个随机过程 X (t ) = A(t )cos t 和 Y (t ) = B(t )sin t 都是非平稳过程,其中 A(t ) 和 B (t ) 为相互独立,且 各自平稳的随机过程,它们的均值为 0 ,自相关函数 R A (τ ) = RB (τ ) = R (τ ) 。试证这两个过程之和
和 Y 的相关性及独立性。
11. 已知随机变量 X 的均值 m X = 3 ,方差 σ 2 X = 2 ,且另一随机变量 Y = −6 X + 22 。讨论 X 和 Y 的相关性和正交性。 12. 设随机变量 Y 和 X 之间为线性关系 Y = aX + b ,a、b 为常数,且 a ≠ 0 。已知随机变量 X 为正态分布,即:

《随机信号分析》赵淑清_郑薇哈尔滨工业大学出版社课后答案

《随机信号分析》赵淑清_郑薇哈尔滨工业大学出版社课后答案

⎧Y1 = aX 1 + bX 2 ⎨ ⎩Y2 = cX 1 + dX 2
f Y1Y2 ( y1 , y 2 ) =
1 f X X (a1 y1 + b1 y 2 , c1 y1 + d1 y 2 ) ad − bc 1 2
课后答案网
证:做由 f Y1Y2 ( y1 , y2 ) 到 f X 1 X 2 ( x1 , x 2 ) 的二维变换
1 f X X (a1 y1 + b1 y 2 , c1 y1 + d1 y 2 ) ad − bc 1 2
π
π
π
π
π
2 2
2
2
2
2

= 2A = 1
π
π
π
1 1 12 ( , ) sin( ) sin cos f x y dy = x + y dy = x ydy + cosx sin ydy ∫ XY ∫ 2 2∫ 2∫ −∞ 0 0 0
课后答案网
第一次作业:练习一之 1、2、3 题 1.1 离散随机变量 X 由 0,1,2,3 四个样本组成,相当于四元通信中的四个电平,四 个样本的取值概率顺序为 1/2,1/4,1/8,和 1/8。求随机变量的数学期望和方差。 解: E[ X ] = ∑ xi P ( X = xi ) = 0 ×
2
π 12 π 12 1 1 = − y cos y 2 + ∫ cos ydy + y sin y 2 − ∫ sin ydy 2 2 0 20 0 20 π
=
4
π π
2
(3) D[ X ] = D[Y ] = ∫ ( y −
0
kh da w. co m

随机信号分析课后习题答案

随机信号分析课后习题答案

随机信号分析课后习题答案随机信号分析课后习题答案随机信号分析是现代通信系统设计和信号处理领域中的重要基础知识。

通过对随机信号的分析,我们可以更好地理解和处理噪声、干扰等随机性因素对通信系统性能的影响。

下面是一些关于随机信号分析的课后习题及其答案,希望对大家的学习有所帮助。

1. 什么是随机信号?随机信号是在时间域上具有随机性质的信号。

与确定性信号不同,随机信号的每个样本值都是随机变量,其取值不是确定的。

随机信号可以用统计特性来描述,如均值、方差、功率谱密度等。

2. 什么是平稳随机信号?平稳随机信号是指在统计性质上不随时间变化的随机信号。

具体来说,平稳随机信号的均值和自相关函数不随时间变化。

平稳随机信号在实际应用中较为常见,因为它们具有一些方便的数学性质,可以简化信号处理的分析和设计。

3. 如何计算随机信号的均值?随机信号的均值可以通过对信号样本值的求平均来计算。

对于离散时间随机信号,均值可以表示为:E[x[n]] = (1/N) * Σ(x[n])其中,E[x[n]]表示信号x[n]的均值,N表示信号的样本数,Σ表示求和运算。

4. 如何计算随机信号的方差?随机信号的方差可以用均方差来表示。

对于离散时间随机信号,方差可以表示为:Var[x[n]] = E[(x[n] - E[x[n]])^2]其中,Var[x[n]]表示信号x[n]的方差,E[x[n]]表示信号的均值。

5. 什么是自相关函数?自相关函数是用来描述随机信号与其自身在不同时间延迟下的相似性的函数。

自相关函数可以用来分析信号的周期性、相关性等特性。

对于离散时间随机信号,自相关函数可以表示为:Rxx[m] = E[x[n] * x[n-m]]其中,Rxx[m]表示信号x[n]的自相关函数,E[ ]表示期望运算。

6. 如何计算随机信号的自相关函数?随机信号的自相关函数可以通过对信号样本值的乘积进行求平均来计算。

对于离散时间随机信号,自相关函数可以表示为:Rxx[m] = (1/N) * Σ(x[n] * x[n-m])其中,Rxx[m]表示信号x[n]的自相关函数,N表示信号的样本数,Σ表示求和运算。

(完整word版)随机信号分析习题.(DOC)

(完整word版)随机信号分析习题.(DOC)

随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数.并求下列概率:)1(<ξP ,)21(≤≤ξP 。

2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。

3. 设二维随机变量),(Y X 的联合密度函数为⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。

(1)求Y 的可能取值 (2)确定Y 的分布. (3)求][Y E 。

5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。

(2)X 与Y 统计独立时所有A 值。

6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。

7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f .8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。

随机信号分析(常建平+李海林)习题答案

随机信号分析(常建平+李海林)习题答案

1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。

解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f x dx k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F x f x dx <≤=-=⎰随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。

{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。

设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

随机信号分析题目及答

HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】
1. (10分)随机变量12,X X 彼此独立,且特征函数分别为12(),()v v φφ,求下列随机变量的特征函数:
(1)
122X X X =+ (2)12536X X X =++
解:(1)
()121222()jv X X jvX jv X jvX
X v E e E e E e e φ+⎡⎤⎡⎤⎡⎤===⋅⎣⎦⎣⎦⎣⎦ (2)
()1212536536()jv X X jv X jv X jv X v E e E e e e φ++⎡⎤⎡⎤==⋅⋅⎣⎦⎣⎦
2. (10分)取值()1,1-+,概率[0.4,0.6]的独立()半随机二进制传输信号()X t ,时隙长度为T ,问:
(1) 信号的均值函数()E X t ⎡⎤⎣⎦;
(2) 信号的自相关函数(),X R t t τ+;
(3) 信号的一维概率密度函数();X f x t 。

解:(1)()10.410.60.2E X t =-⨯+⨯=⎡⎤⎣⎦
(2) 当,t t τ+在同一个时隙时:
当,t t τ+不在同一个时隙时:
(3)()()();0.610.41X f x t x x δδ=-++
3. (10分)随机信号0()sin()X t t ω=+Θ,()()0cos Y t t ω=+Θ,其中0
ω为常数,Θ为在
[]-,ππ上均匀分布的随机变量。

(1) 试判断()X t 和()Y t 在同一时刻和不同时刻的独立性、相关性及正交性;
(2) 试判断()X t 和()Y t 是否联合广义平稳。

解:
(1) 由于X (t )和Y(t )包含同一随机变量
θ,因此非独立。

根据题意有12f ()θπ=。

[]001sin()02E[X(t )]E t sin(w t )d π
πωθθπ
-=+Θ=
+=⎰,
由于0XY XY R (t,t )C (t,t )==,X (t )和Y(t )在同一时刻正交、线性无关。

除()012w t t k π-=±外的其他不同时刻12120XY XY R (t ,t )C (t ,t )=≠,所以1X (t )和2Y(t )非正交且线性相关。

(2) 由于0E[X(t )]E[Y(t )]==,X (t )和Y(t )
均值平稳。

同理可得1212Y X R (t ,t )R (t ,t )=,因此X (t )和Y(t )均广义平稳。

由于
121201201122
XY XY R (t ,t )C (t ,t )sin[w (t t )]sin(w )τ==-=,因此X (t )和Y(t )联合广义平稳。

4. (10分)判断下列函数是否能作为实广义平稳随机过程的自相关函数(其中c ω均为常数)?如果不能,请写出理由。

(1)cos() ||4() 0 c c R πωττωτ⎧≤⎪=⎨⎪⎩
其它 (2)cos() ||2() 0 c c R πωττωτ⎧≤⎪=⎨⎪⎩
其它 (3)10cos() ||() 0 c c R πωττωτ⎧≤⎪=⎨⎪⎩
其它 (4)()=cos() ||c R τωττ≤∞ 解:(1)不能,因为零点连续,而4/π点
不连续。

(2)能。

(3)不能,因为20c R()R()π
ω=,而R()τ又
不是2c /πω的周期函数。

(4)能。

5. (10分)线性时不变系统的框图如下图所示。

若输入白噪声的双边功率谱密度0 1 W/Hz 2N =,求系统输出噪声的功率谱密度函数和自相关函数,以及输出噪声总功率。

解:系统的传递函数为
()11R H j R j L j ωωω==++,
则系统输出功率谱密度为
()()()222112121Y X S S H j ωωωωω=⨯==⋅++。

输出噪声的自相关函数为()12
Y R e ττ-= 输出噪声总功率为102
N Y P R ()(W )== 6. (10分)设随机信号
()()()()()sin Z t X t t Y t t ωω=-00cos ,其中ω0为
常数,()()X t Y t 和均为零均值的平稳随机过程,并且相互正交。

问:
(1)
()()X t Y t 和是否联合广义平稳? (2) 假如()()X Y R R ττ=,()Z t 是否为广义平稳的随机信号?
证明:
(1) 由于()()X t Y t 和相互正交,所以(,)(,)0XY YX R t t R t t ττ+=+≡,与t 无关 ,又因为()()X t Y t 和均为零均值的平稳随机过程,所以()()X t Y t 和是联合广义平稳随机信号。

(2) 假如()()X Y R R ττ=,
由于()()X t Y t 和相互正交,所以
()()X Y R R τωττωτ==00cos cos ,与t 无关
所以()Z t 是广义平稳的随机信号。

7. (10分)下列函数中哪些是实广义平稳随机信号功率谱密度的正确表达式?若是,求该信号的平均功率;若不是,请说明原因。

(1) 229()69S ωωωω+++= (2)
2424()109S ωωωω+++=
(3) 210()010S ωωω⎧≤⎪=⎨>⎪⎩ (4)
()()2S ωπδω=
解:
(1) 不可以。

不是偶函数。

(2) 可以。

()()42224111()109219S ωωωωω⎡⎤⎢⎥=-++++⎢⎥⎣⎦
=,所以 3()R e e τττ--+11=412,所以1(0)3
P R =+=11=412 (3) 可以。

10
101120()222P S d d ωωωπππ∞-∞-===⎰⎰
(4) 可以。

11()2()122P S d d ωωπδωωππ∞∞
-∞-∞===⎰⎰
8. (10分)某语音随机信号()X t 满足广义各态历经性,现将该信号经过无线信道进行传输,假设信道噪声为广义各态历经的加性高斯白噪声()N t 。

讨论:
(1) 收到的信号()()()Y t X t N t =+的均值各态历经性;
(2)
()Y t 满足广义各态历经性的条件。

解:
由()X t 满足广义各态历经性,所以()X t 广义平稳且满足:
同理,()N t 广义平稳且满足:
由于()X t 与()N t 是独立的,所以: 所以()Y t 是广义平稳的。

且有: 所以,
由于[][]()()X E Y t A Y t m ==,所以()Y t 是均值各态历经的。

假如[][]()()()()0A X t N t A X t N t ττ+++=,则()Y t 是广义各态历经的。

9. (10分)已知平稳随机信号()X t 的功率
谱密度 24()4X S ωω=+ 。

()X t 通过频率响应为
1()1
H j ωω=+ 的系统后得到()Y t 。

求: (1)
()Y t 的均值、平均功率; (2) 系统的等效噪声带宽;
(3) 信号()Y t 的矩形等效带宽。

解: (1) 2 124()[]4
X R F e ττω--==+
()0X X m R =∞=, (2)
()2
2211()()12
h H r e u τωττω-=→=+ (3)信号()Y t 的矩形等效带宽 10. (10分)
00()()cos(2)()sin(2)N t X t f t Y t f t ππ=-设所表示的零均值平稳窄高斯随机信号的功率谱密度()N S f 如下图示,若0f 为100Hz ,试求:
(1) 随机信号()N t 的一维概率密度函数;
(2) ()()X XY R R ττ和;
(3)
()N t 的两个正交分量的联合概率密度函数。

解:t t Y t t X t N 00sin )(cos )()(ωω-= ()()t Y t X ,也是高斯的
依题 ()()()0E N t E X t E Y t ===⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦
(1)
()⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧⨯-⨯=48exp 341242exp 2421
;22n n t n f N ππ
(2)0f =100Hz ,根据X(t)和Y(t)的性质知
且 )()(00ωωωω-=+N N S S 则可得 0)(=τXY R ,)(f S X 如图 求)(f S X 的傅立叶反变换可得
(3) (
)21;exp 48X x f x t ⎧⎫=-⎨⎬⎩⎭ ()ωN S 关于0ω对称,所以 ()(),X t Y t 在任意时刻正交,不相关,独立.。

相关文档
最新文档