随机信号分析课后习题答案
随机信号分析与处理习题解答罗鹏飞.pdf

P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n
n
∑ 所以 X = Xi 服从参数为 n,p 的二项分布。 i =1
且有 E( Xi ) = 1⋅ P{Xi = 1}+ 0 ⋅ P{Xi = 0} = p ,
E
(
X
2 i
)
= 12
⋅
P{ X i
= 1}+
P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n , 0 < p < 1
求 X 的均值和方差。 解法一:直接按照定义计算
n
n
∑ ∑ E( X ) = mP{X = m} = mCnm pm (1− p)n−m
m=0
m=0
∑n
=m
n!
pm (1− p)n−m
第 1 章 随机变量基础
1.1 设有两个随机变量 X 和 Y,证明
fY|X ( y | x) =
f (x, y) f X (x)
,
f X |Y
(x
|
y)
=
f (x, y) fY (y)
y x+Δx
∫ ∫ f (x, y)dxdy
提示:首先证明 F ( y | x < X ≤ x + Δx) = −∞ x
02
⋅
P{ X i
=
0}
=
p
,
D(Xi )
=
E
(
X
2 i
)
−
E2(Xi)
=
p
−
p2
=
p(1 −
p)
n
随机信号分析 第三版 第一章 习题答案

1. 2. 3. 4. 5.6. 有四批零件,第一批有2000个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少? (2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
()()()()123414P B P B P B P B ==== ()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===7. 8.9. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x x δδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-10.11. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰()0()2xxxf x dx ae dx a e dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a = (2)()1()2x xtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩12.13.14. 若随机变量X 与Y 的联合分布律为求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
随机信号分析报告(常建平李海林)习题问题详解解析汇报

1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)的概率 ③随机变量X 的分布函数 解:第①问 ()112f x dx k ∞-∞==⎰ 第②问 {}()()()211221x x P x X x F x F x f x dx <≤=-=⎰随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
随机信号分析(常建平-李林海)课后习题答案第四章习题讲解

4-4设有限时间积分器的单位冲激响应h(t)=U(t)-U(t -0.5) 它的输入是功率谱密度为 210V Hz 的白噪声,试求系统输出的总平均功率、交流平均功率和输入输出互相关函数()()()()()22221:()2[()][()]0Y Y Y Y XY X P E Y t G d D Y t E Y t m E Y R R R h ωωπτττ∞-∞⎡⎤==⎣⎦⎡⎤=-==⎣⎦=*⎰思路()()()10()()10()10[()(0.5)]()()10[()(0.5)]XY X YX XY R R h h h U U R R U U τττδτττττττττ=*=*==--=-=----解:输入输出互相关函数00020.025()0()10()10()0()()()()10(()00[()(0.)()10()()()10()()10101100.55[()5)]](0)X X X Y X Y X Y Y X t m G R m m h d R U R h h h h h h d R h h d d d E Y t R U ωτττττττττλτλδτλλλλλλλμ∞∞∞∞==⇔====**-=*-=+=+=-=-=⋅=⨯==⎰⎰⎰⎰⎰时域法平均功是白噪声,,,率面积法:225[()][()]5Y Y D Y t E Y t m ==-=P 交流:平均功率()Y R τ()()()2141224222Y2(P1313711()2415()()()102424115112522242j j j Y X Y U t U t Sa e H e Sa G G H e Sa Sa G d Sa S d a d ωτωωωτττωωωωωωωωωωωππωωπ---∞∞∞-∞∞--∞⎛⎫--⎡⎤ ⎪⎣⎦⎝⎭-⎛⎫⇒= ⎪⎝⎭⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭⎛⎫===⎛⎫= ⎪ ⎭⎪⎭⎝⎝⎰⎰⎰P 矩形脉冲A 的频谱等于A 信号与线性系统书式域法)频()()2220000[()][()][()]5Y X Y Y m m H H D Y t E Y t m E Y t =⋅=⋅⇒=-===P 交直流分量为平均功率:流4-5 已知系统的单位冲激响应()(1)[()(1)]h t t U t U t =---,其输入平稳信号的自相关函数为()2()9X R τδτ=+,求系统输出的直流功率和输出信号的自相关函数?分析:直流功率=直流分量的平方解: 输入平稳输出的直流分量 输出的直流功率()2300X X m R σ==±==()()()10332Y X m m h t h t ττ=*=*=⎰=31-d 294Y m =()Y X m m h t =*4-7 已知如图4.21 所示的线性系统,系统输入信号是物理谱密度为0N 的白噪声,求:①系统的传递函数()H ω?②输出()Z t 的均方值?其中2222[sin()][()]2ax dx a ax dx axSa π∞∞==⎰⎰()()()()()()()112122121212()()()()()()()()()()()F ()(1)()()11()()()()()()()(()j T Y t X t X t T h t t t T t h t d U t Y X H Y H X H H H H H H e H j H h H t h t H ωωωωωωωωωωωωωωωπδωωωωδδωλδλω-∞-∆∆=--=--⇒=⋅==⇒⇒=-=+=⋅=⋅⋅=⎡⎤⎣⎦⎰Z Z 可以分别求冲激响应,输入为冲激函数:输入为冲激函数、,冲激响应=1(1)()1)[()](1)()j Tj T j T e e e j j ωωωπδωπδωωω----=-+=-+()2222222220022022102(2)(1)(1)2()(1cos )2sin sin 2sin ((0)()()()21sin 21sin (0)2)()()()[()]j T j T Z X j Z Z Z Z Z Z e e H T j j T TN T G G H H N T N e d T R G R R F G R N ωωωτωωωωωωωωωωωωωωωωωπωωπωωττω+∞-∞----=⋅=-⋅=⇒⋅=⋅⋅=⋅-⋅⇒⋅==⋅⎰===求输出Z t 的均方值即,所以有2200000sin 2222j e d N TN N T d T τωωπωπωπ∞-∞∞=⋅⋅=⋅⋅=⎰⎰4-11 已知系统的输入为单位谱密度的白噪声,输出的功率谱密度为2424()109Y G ωωωω+=++求此稳定系统的单位冲激响应()h t ?解:()()()()()()()()()()()()()()()()()()()()()()242223211242()41092243311()()12231311112()0231921Y t Y X X t G s s s s s s G H G H s H s H s s j H s H s s j j h t F H F e e U t j j s s j s H G s ωωωωωωωωωωωωωωωωω----⋅==⇒=-=++=⇒=++++⎛⎫ ⎪+=++-+-+====+ ⎪++ ⎪⎝⎭-+-+-+==系统稳定,则零头、极点都+在左半平面带入4-12 已知系统输入信号的功率谱密度为223()8X G ωωω+=+ 设计一稳定的线性系统()H ω,使得系统的输出为单位谱密度的白噪声?解:()()()()()221()11()Y X X G G H s s H s G s H s H ωωωω=⇒⋅=⇒==⇒==即4-14 功率谱密度为02N 的白噪声作用于(0)2H =的低通网络上,等效噪声带宽为XH MHz 。
随机信号分析(第3版)习题及答案

1. 2. 3. 4. 5.6.有四批零件,第一批有2000个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少?解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===7. 8.9. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x xδδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-10.11. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩12.13.14.X Y求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
电子科技大学随机信号分析CH2习题及答案

2.1 掷一枚硬币定义一个随机过程:cos ()2t X t tπ⎧=⎨⎩出现正面出现反面 设“出现正面”和“出现反面”的概率相等。
试求:(1)()X t 的一维分布函数(,12)X F x ,(,1)X F x ;(2)()X t 的二维分布函数12(,;12,1)X F x x ;(3)画出上述分布函数的图形。
2.3 解:(1)一维分布为: ()()(;0.5)0.50.51X F x u x u x =+-()()(;1)0.510.52X F x u x u x =++-(2) cos ()2t X t t π⎧=⎨⎩出现正面出现反面{}{}(0.5)0,(1)1,0.5(0.5)1,(1)2,0.5X X X X ==-==依概率发生依概率发生 二维分布函数为()()121212(,;0.5,1)0.5,10.51,2F x x u x x u x x =++--2.2 假定二进制数据序列{B(n), n=1, 2, 3,….}是伯努利随机序列,其每一位数据对应随机变量B(n),并有概率P[B(n)=0]=0.2和 P[B(n)=1]=0.8。
试问,(1)连续4位构成的串为{1011}的概率是多少?(2)连续4位构成的串的平均串是什么?(3)连续4位构成的串中,概率最大的是什么?(4)该序列是可预测的吗?如果见到10111后,下一位可能是什么?2.4解:解:(1){}()()()()101111021310.80.20.80.80.1024P P B n P B n P B n P B n ⎡⎤⎣⎦==⋅+=⋅+=⋅+=⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦=⨯⨯⨯=(2)设连续4位数据构成的串为B(n),B(n+1),B(n+2),B(n+3),n=1, 2, 3,…. 其中B(n)为离散随机变量,由题意可知,它们是相互独立,而且同分布的。
所以有:串(4bit 数据)为:∑=+=30)(2)(k k k n B n X ,其矩特性为:因为随机变量)(n B 的矩为:均值:8.08.012.00)]([=⨯+⨯=n B E方差:[]()(){}222222()00.210.80.80.80.80.16Var B n B n B n ⎡⎤=E -E ⎡⎤⎣⎦⎣⎦=⨯+⨯-=-=所以随机变量)(n X 的矩为:均值:[]303300[()]2()2()20.812k k k kk k E X n E B n k E B n k ===⎡⎤=+⎢⎥⎣⎦=+=⨯=∑∑∑方差:()[]3033200[()]2()2()40.1613.6k k k k k k D X n D B n k D B n k ===⎡⎤=+⎢⎥⎣⎦=+=⨯=∑∑∑如果将4bit 串看作是一个随机向量,则随机向量的均值和方差为:串平均:()()()(){}{},1,2,30.8,0.8,0.8,0.8B n B n B n B n ⎡⎤E +++=⎣⎦串方差:()()()(){}{},1,2,30.16,0.16,0.16,0.16Var B n B n B n B n ⎡⎤+++⎣⎦= (3)概率达到最大的串为{}1,1,1,1(4)该序列是不可预测的,因为此数据序列各个数据之间相互独立,下一位数据是0或1,与前面的序列没有任何关系。
随机信号分析答案(赵淑清版)7

第七次作业:练习二之11、12、13、14、15题2.11 对于两个零均值联合平稳随机过程)(t X 和)(t Y ,已知10,522==Y X σσ,说明下列函数是否可能为他们的自相关函数,并说明原因。
ττττττττ33)(5)()5(46)()3()6cos()()1(2---=+=-=e u R e R e R X Y Y τττττττ-===eR R R X X Y 5)()6()5sin(5)()4(]3)3sin([5)()2(2解:(a )自相关函数是偶函数,仅有(1)、(2)、(3)、(6)满足; (b ))()0(τX X R R ≥,(a )中仅有(2)、(3)、(6)满足;(c )对于非周期平稳过程有)()0(2∞-=X X X R R σ,(b )中仅有(6)满足。
因此,(6)是自相关函数。
2.12 求随机相位正弦信号)cos()(0Φt t X +=ω的功率谱密度,Φ为在[π2,0]内均匀分布的随机变量,0ω是常数。
解:τωτωωττ000cos 21}])(cos{)[cos()]()([),(=+++=+=+Φt Φt E t X t X E t t R X)]()([2cos 21)()(000ωωδωωδπττωττωωτωτ-++===-∞∞--∞∞-⎰⎰d e d e R S j j X X2.13 已知随机过程∑==ni i i t X a t X 1)()(,式中i a 是常数,)(t X i 是平稳过程,并且相互之间是正交的,若)(ωXi S 表示)(t X i 的功率普密度,证明)(t X 功率谱密度为)()(12ωωXi ni i X S a S ∑==证:因)(t X i 是平稳过程,并且相互之间是正交的,j i R ij ≠=,0)(τ。
])()([)]()([)(11∑∑==+=+=ni i i n i i i X t X a t X a E t X t X E R τττ)()]()([1212ττXi ni i i i n i i R a t X t X E a ∑∑===+=)()()()(1212ωττττωωτωτXi ni i j Xini ij X X S a d eRa d eR S ∑⎰∑⎰=-∞∞-=-∞∞-===2.14 由)(t X 和)(t Y 联合平稳过程定义了一个随机过程t t Y t t X t V 00sin )(cos )()(ωω+= (1))(t X 和)(t Y 的数学期望和自相关函数满足那些条件可使)(t V 是平稳过程。
随机信号分析(常建平,李林海)课后习题答案第二章习题讲解

A与 B独立 , f AB (a, b) f A (a) fB (b)
X (t) A Bt Y(t) A
A Y(t) X (t) Y (t)
B t
01 J1 1 1
t tt
1
xy 1
xy
f XY (x, y; t ) J f AB (a,b) t f AB ( y, t ) t f A ( y) f B ( t )
E X (t) E A cost XH cost EA XH
D X (t) E X 2 (t ) E2 X (t )
方法 2:
D X (t)
D Acost XH D Acost cos2 t DA cos2 t
12
D XH
公式: D aX+ bY a2 D X b2 D Y 2abC XY
RX (t1, t2 )=E Acost1 XH A cost2 XH
f X (x1;0)
1
x12 e 2,
2Байду номын сангаас
A
1
X (t)
~ N (0, )
t 30
2
4
f X ( x2; 3
)=
0
2 2
e
2
x2
2
,
X (t) t
=0,
f ( x3;2
)
0
20
( x3)
(离散型随机变量分布律 )
2-2 如图 2.23 所示,已知随机过程 X (t) 仅由四条样本函数组
成,出现的概率为
数 RX (t1, t2 ) ?②若已知随机变量相 A, B 互独立,
它们的概率密度分别为 f A (a) 和 f B (b) ,求 X (t) 的一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
所以,)(x F 是连续随机变量的概率分布函数。
求得,⎪⎩⎪⎨⎧<≥==-0021)()(2x x edx x dF x f x(2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F 在A>0时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数;欲使1)(0≤≤x F 和)()(x F x F =+成立,必须使A=1。
所以,在A=1时,)(x F 是连续随机变量的概率分布函数。
同理,⎩⎨⎧<≥>==00012)()(x x Ax dx x dF x f 欲满足1)(=⎰∞∞-dx x f ,也必须使A=1。
所以,⎩⎨⎧<≥>==0012)(x x x x f(3)0)]()([)(>--=a a x u x u axx F 上式可改写为000)]()([)(>⎪⎩⎪⎨⎧<≤--=a ax a x u x u axx F 其他对于12x a x >>,)()(12x F x F ≥不成立。
所以,)(x F 不是连续随机变量的概率分布函数。
(4)0)()()(>---=a a x u a xa x u a x x F 0)()]()([>---+=a a x u a x u x u ax30120100>⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-<≤<=a x a x aa x x ax 当x a <时,不满足1)(0≤≤x F ,所以)(x F 不是连续随机变量的概率分布函数。
第二次作业:练习一之4、5、6、7题1.4 随机变量X 在[α,β]上均匀分布,求它的数学期望和方差。
解:因X 在[α,β]上均匀分布⎪⎩⎪⎨⎧β≤≤αα-β=其他下01)(x f⎰⎰βα∞∞β+α=α-β==2d d )(]E[-x x x x xf X )2(31d d )(]E[222-22β+β+α=α-β==⎰⎰βα∞∞x x x x f x X222-2)(121])X [E (]X [E d )(])X [E (]D[α-β=-=-=⎰∞∞x x f x X1.5 设随机变量X 的概率密度为⎩⎨⎧<≤=其他101)(x x f X ,求Y =5X +1的概率密度函数。
解:反函数X = h (y ) = (Y -1)/5h ′(y ) = 1/5 1≤y ≤6f Y (y ) = f X (h (y ))|h ′(y )∣= 1 ×1/5 = 1/5于是有 ⎩⎨⎧≤≤=其他0615/1)(y y f Y1.6 设随机变量]b ,a [,,,21在n X X X ⋅⋅⋅上均匀分布,且互相独立。
若∑==n1i i X Y ,求(1)n=2时,随机变量Y 的概率密度。
(2)n=3时,随机变量Y 的概率密度。
解:n i bx a a b x f i i ,,2,101)(⋅⋅⋅=⎪⎪⎩⎪⎪⎨⎧≤≤-=其它4n=2时,)()()(21y f y f y f X X Y *=111)()()(21dx x y f x fy f X X Y ⎰∞∞--=⎰-⋅-=badx a b a b 111 ab -=1同理,n=3时,)(y f Y ab -=11.7 设随机变量X 的数学期望和方差分别为m 和σ,求随机变量23--=X Y 的数学期望、方差及X 和Y 的相关矩。
解:数学期望:23][--=m Y E方差: σ=-σ-=90)3(][2Y D]23[)]23([][2X X E X X E XY E R XY --=--== 222])[(][][m X E X D X E +σ=+=相关矩: m m R XY 2332---=σ 第三次作业:练习一之9、10、11题1.9随机变量X 和Y 分别在[0,a ]和[0,2π]上均匀分布,且互相独立。
对于a b <,证明:a bY b x P π2)cos (=<证:rv . X 和Y 分别在[0,a ]和[0,2π]上均匀分布 有⎪⎪⎩⎪⎪⎨⎧≤≤=其它001)(ax a X f 和⎪⎪⎩⎪⎪⎨⎧≤≤=其它0202)(ππy Y f⎪⎩⎪⎨⎧≤≤<≤⇒⎭⎬⎫<≤<20cos 0cos cos πy y b x a b y b Y b x Y b x cos <)20,cos 0()cos (π≤≤<≤=<y y b x p y b x p⎰⎰=2/0cos 0),(πyb dxdy y x f dy5⎰⎰=2/0cos 0)()(πyb dxdy y f x f dy 因为rv . X 和Y 相互独立⎰⎰⋅=2/0cos 021ππyb dxdy a dy⎰⋅=2/0cos 2ππydy a bab π2=命题得证1.10 已知二维随机变量(21,X X )的联合概率密度为),(2121x x f X X ,随机变量(21,X X )与随机变量(21,Y Y )的关系由下式唯一确定⎩⎨⎧+=+=2111221111Y d Y c X Y b Y a X ⎩⎨⎧+=+=212211dX cX Y bX aX Y 证明:(21,Y Y )的联合概率密度为),(1),(21112111212121y d y c y b y a f bc ad y y f X X Y Y ++-=证:做由),(2121y y f Y Y 到),(2121x x f X X 的二维变换),(2121x x f X X =J ),(2121y y f Y Y),(2121y y f Y Y =J1),(2121x x f X X bc ad d c b a x y x y x y x y J -==∂∂∂∂∂∂∂∂=22122111 ),(1),(21112111212121y d y c y b y a f bcad y y f X X Y Y ++-=1.11 随机变量X,Y 的联合概率密度为2,0)sin(),(π≤≤+=y x y x A y x f XY 求:(1)系数A ;(2)X,Y 的数学期望;(3)X,Y 的方差;(4)X,Y 的相关矩及相关系数。
解:6(1)⎰⎰⎰⎰⎰⎰⎰⎰+=+=∞∞-∞∞-2222202sin cos cos sin )sin(),(ππππππydy xdx A ydy xdx A dxdy y x A dxdy y x f XY12==A21=A (2)ydy x ydy x dy y x dy y x f x f XY X sin cos 21cos sin 21)sin(21),()(22020⎰⎰⎰⎰+=+==∞∞-πππ)cos (sin 21x x +=同理 )cos (sin 21)(y y x f Y +=⎰⎰⎰⎰⎰+-=+=+==202020202sin 21cos 21cos 21sin 21)cos (sin 21πππππy yd y yd ydy y ydy y dy y y y m m Y X⎰⎰-++-=2020sin 2102sin 21cos 2102cos 21ππππydy y y ydy y y4π= (3)⎰⎰+--=+-==202022)4cos()4(22)cos (sin 21)4(][][πππππy d y dy y y y Y D X D dy y y y y ⎰+-++--=202)4cos()4(22202)4cos()4(22ππππππ⎰+-+=22)4sin()4(216ππππy d yy d y y y ⎰+-+-+=22)4sin(202)4sin()4(216ππππππ22162-+=ππ(4)相关矩⎰⎰⎰⎰-=+===202202012)sin(21),(][πππππdxdy y x xy dxdy y x xyf XY E R XY XY协方差1162][][2--=-=ππY E X E R C XY XY相关系数32816822-++--==ππππσσY X XY XYC r7第四次作业:练习一之12、13、14、15题1.12 求随机变量X 的特征函数,已知随机变量X 的概率密度02)(≥=-x e x f x X α解: ⎰∞∞-=dx ex f Φxj X X ωω)()(⎰∞∞--=dx e e t u x j x ωα)(2利用傅氏变换:ωααj e t u t +-1~)(ωαωj ΦX -=2)(1.13 已知随机变量X 服从柯西分布221)(xx f X +=ααπ,求他的特征函数。