2019年秋季九年级数学期中数学试卷(含答案)
2019秋九数期中卷参考答案

九年级数学期中试卷答案及评分说明一、选择题 1-4 CDAA 5-8BBCA 二、填空题9.1310.85 11.140 12.13 13.8 14.4 15. 1331 16.6π 三、解答题17.(1) ∵a =2,b =3,c =-5,∴b 2-4ac=8-4×2×(-5)=49 ……………2分∴x =242b b ac a -±-=34922-±⨯,……………3分解得x 1=1,x 1=-52; ……………4分(只求得一解给3分,不要配方法求解不给分) (2) t 2+4t -5=0,t 2+4t +4=5+4,(t +2)2=9, ……………6分t +2=3或t +2=-3, ……………7分解得t 1=1,t 2=-5.……………8分(其他正确解法参照给分)18.24811()2x x x x +÷--=24(2)(x 2)(2)x x x x x +--÷-=24(2)(x 2)2x x x +-⨯=2(2)(x 2)x x+-………3分 ∵x 满足方程x 2-2x -4=0,∴x 2-4=2x ,∴原式=22(4)x x -=22xx⨯=4.………5分19. (1)这5天的日最高气温和日最低气温的平均数分别是:24,18;……………………………………2分方差分别是:0.8,8.8,……………………………………4分∴,∴该市这5天的日最低气温波动大;……………………………………6分(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.……………………………………7分20.(1)从布袋中任意摸出1个球,摸出是红球的概率=24=12;故答案为:12;…………………2分 (2)画树状图为:,……………………………………5分由列出的表格或画出的树状图得:共有12种等可能的结果数,其中两次摸到红球的结果数为2,……………………………………7分 所以两次摸到红球的概率=212=16.……………………………………8分 21.(1)如图,△ABC 即为求作的等边三角形……………………………………4分aBCO AD(2) 设正三角形的中心为点O ,内切圆的半径为r ,则外接圆的半径为2r ,则r 2+(53)2=(2r)2,……6分 解得r=5,即正三角形的内切圆的半径为5cm.……………………………………8分22.(1)b 2-4ac=(-m)2-4×2×n ,∵m-n=4,∴m=n+3,∴b 2-4ac =(n+3)2-8n=n 2-2n+9=(n-1)2+8,∵(n-1)2≥0,∴b 2-4ac >0,∴方程有两个不相等的实数根;……………………………………4分 (2)根据题意得b 2-4ac=(-m)2-4×2×n=0,当n=8时,m 2-64=0,解得m=8或m=-8,………6分当m=8时,方程变形为2x 2-8x+8=0,解得x 1=x 2=2;当m=-8时,方程变形为2x 2+8x+8=0,解得x 1=x 2=-2.………………………………8分23. (1)∵半径OA ⊥弦BC ,∴弧AC=弧AE ,∴∠AEC=∠AEB ,……………………………2分 ∵∠AOB=2∠AEC=50°,∴∠AOB=50°;……………………………………4分(2)∵BE 是⊙O 的直径,∴∠ECB=90°.……………………………5分∵OA=OE ,∴∠EAO=∠BEA ,∵∠EAO=∠B ,∴∠BEA=∠B ,∴∠B=∠AEB=∠AEC=30°,…………8分 ∵EC=4,∴EB=2EC=8,∴⊙O 的半径为4.…………………………………10分(其他正确解法参照给分)24. (1)连接OP .∵ PA 、PC 分别与⊙O 相切于点A ,C ,∴PA=PC ,OA ⊥PA ,………………………1分∵ OA=OC ,OP=OP ,∴△OPA ≌△OPC ,∴∠AOP=∠POC ,…………………3分∵ EP ⊥PA ,∴EP ∥BA ,∴∠EPO=∠AOP ,∴∠EOP=∠EPO ,∴OE=PE ;…5分(2)设OA=r .∵OB=OC ,∴∠OBC=∠OCB ,∵OB ∥ED ,∴∠EDC=∠B ,∵∠OCB=∠ECD ,∴∠ECD=∠EDC ,∴EC=QD=6,……………………7分∵EO=EP ,∴OC=DP=r ,∵ PC 是⊙O 的切线,∴OC ⊥PC ,∴∠OCP=∠PCE=90°,在Rt △PCE 中,∵PE 2=PC 2+EC 2,∴(9+r )2=92+(2r )2,r=6或0(舍去),……………9分 ∴ PE=9+r=15.(其他正确解法参照给分)25.(1)连接OM ,∵OM=OB ,∴∠OMB=∠OBM ,∵BM 平分∠ABD ,∴∠OBM=∠MBF ,∴∠OMB=∠MBF ,∴OM ∥BF ,∵MF ⊥BD ,∴OM ⊥MF ,即∠OMF=90°,∴MF 是⊙O 的切线;………………………3分 (2)过点M 作MP ⊥AB 于点P ,∵BM 平分∠ABD ,∴MP=MD=4,∴Rt △MCB ≌Rt △MPB ,∴BP=BC=2.……4分 设⊙O 的半径为R ,在Rt △MPO 中,MO 2=MP 2+OP 2,则R 2=42+(R-2)2,解得R=5,…………………………6分P B COMEPA B C D O∴2R=10,即⊙O 的直径为10;……………………………………7分(3)连接ON.∵且弧AN=弧BN ,∴∠AON=∠BON=90°,∴l 弧AN=905180⨯π=52π,BN=22ON OB +=2255+=52,∴阴影部分的周长为52π+10+52…………………10分 (其他正确解法参照给分)25. (1)设租金提高10x 元,则每日可租出(50-2x)辆,……………………………………1分 依题意,得:(200+10x)(50-2x)=10120,……………………………………3分整理,得:x 2-5x+6=0,解得:x 1=2,x 2=3.答:当租金提高20元或30元时,公司的每日收益可达到10120元;……………………………………5分(2)假设能实现,依题意,得:(200+10x)(50﹣2x)=10160,整理,得:x 2﹣5x+8=0,∵ b 2-4ac=(-5)2﹣4×1×8=﹣7<0,∴该一元二次方程无解,∴ 日收益不能达到10200元.……8分 (3)依题意,得:(200+10x)(50-2x)-100(50﹣2x)﹣50×2x=5500,整理,得:x 2﹣10x+25=0,解得:x 1=x 2=5,∴200+10x=250.……………………………………11分答:当租金为250元时,公司的利润恰好为5500元.……………………………………12分 27.(1)45;……………………………………2分(2)当PC=CD 时,OD=OP=3,EP=5﹣3=2,即t=2,当PC=PD 时,此时P 与O 重合,即P(0,0)EP=5,即t=5;当DC=PD 时,PE=8﹣3,t=8﹣3,故答案为:2,5,8﹣3;……………………………4分 (3)①如图1,当PC ⊥DC 时,⊙P 与DC 相切,∵∠CDO=45°,∴∠CPD=45°,CP=CD ,∵CO=3,∴PO=3,∴EP=EO ﹣PO=5﹣3=2,∵点P 从点E(﹣5,0)出发,沿x 轴向右以每秒1个单位的速度运动,∴t=2(秒);如图2,当PC ⊥CD 时,⊙P 与CD 相切,∵EP=5,点P 从点E(﹣5,0)出发,沿x 轴向右以每秒1个单位的速度运动,∴t=5÷1=5(秒);如图3,当PA ⊥AB 时,⊙P 与AB 相切,设PA=r ,∵OA=5,OC=3,∴OP 2+OC 2=PC 2,即(5﹣r)2+32=r 2,解得:r=175 ,∴EP=5+5﹣175 =335 ,∵点P 从点E(﹣5,0)出发,沿x 轴向右以每秒1个单位的速度运动,∴t=335, 综上所述t 1=1秒,t 2=5秒,t 3=335秒.……………………………………10分②由图1,图2,得:2<t ≤5时,⊙P 与与CD 有两个交点,当P 位于BC 的垂直平分线上时,⊙P 与过B 、C 点,即P(,0),EP=5+=,t=,综上所述:t=152或2<t ≤5时,⊙P 与四边形ABCD 的交点有两个.……………………………12分5<t <152时,⊙P 与四边形ABCD 的交点有三个……………………………………14分备用题如图所示,扇形OAB 从图①无滑动旋转到图②,再由图②到图③,∠O=60°,OA=1.则O 点走过路径与直线L 围成的面积为 ▲ .56π正△ABC 的边长为4,⊙A 的半径为2,D 是⊙A 上动点,E 为CD 中点,则BE 的最大值为23 +1.如图,Rt △OAB 中,∠OAB=90°,OA=8cm ,AB=6cm ,以O 为圆心,4cm 为半径作⊙O ,点C 为⊙O 上一个动点,连接BC ,D 是BC 的中点,连接AD ,则线段AD 的最大值是7cm .11. 若半径为8cm 的圆中,一段弧长为6πcm ,则这段弧所对的圆心角度数为 ▲ .11.135°13.3<r <513. 如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是 ▲ .。
人教版九年级期中数学试卷及答案

2019年秋季学期期中考试九年级数学试卷注意事项:1.本试卷共二大题24小题,卷面满分120分,考试时间120分钟;2.本试卷分试题卷和答题卡两部分,请将各题答案答在答题卡上每题对应的答题区域内,答在试题卷上无效;考试结束,只上交答题卡.一、选择题.(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每小题3分,计45分) 1.一元二次方程3x 2-2x-1=0的二次项系数、一次项系数、常数项分别为() A.3,2,1 B. -3,2,1 C. 3,-2,-1 D.-3,-2,-12.二次函数y=2(x+3)2-1的图象的顶点所在象限是( )A.第一象限B. 第二象限C. 第三象限D. 第四象限3.下列一元二次方程中,没有实数根的是( )A. 4x 2-5x+2=0B. x 2-6x+9=0C. 5x 2-4x-1=0D. 3x 2-4x+1=04. 如图,将△ABC 绕着点C 顺时针旋转50°后得到△A ′B ′C .若∠A =40°.∠B ′=110°,则∠BCA ′的度数是( )A .110°B .80°C .40°D .30°5.若x 1,x 2是一元二次方程x 2-3x-4=0的两个根,则x 1+x 2等于( ) A. -3 B. 3 C. 1 D.46.将二次函数y=x 2+1的图象向上平移2个单位,再向右平移1个单位后的函数解析式为( ) A.y=(x-1)2-1 B. y=(x+1)2-1 C. y=(x+1)2+3 D. y=(x-1)2+37.一元二次方程x 2-8x-1=0配方后可变形为( )A.(x+4)2=17B. (x+4)2=15C. (x-4)2=17D. (x-4)2=15 8.抛物线y=3x 2,y= -3x 2,y=x 2+3共有的性质是( )A.开口向上B. 对称轴是y 轴C. 都有最高点D.y 随x 的增大而增大 9.已知x 2+y 2-4x+6y+13=0,则代数式x+y 的值为( ) A.-1 B. 1 C. 5 D.3610.对二次函数y= -(x+2)2-3,描述错误的是( )A.图象开口向下B. 关于直线x=2对称C. 函数有最大值为-3D.图象与x 轴无交点 11.学校要组织足球比赛,赛制为单循环形式(每两队之间赛一场),计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,下面所列方程正确的是( )A.221x = B. (1)212x x -= C.2212x = D.(1)21x x -=12. 股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是( )2211101110.(1).(1).12.12109109A xB xC xD x +=+=+=+=13. 下列四个函数图象中,当x>0时,y 随x 的增大而减小的是( )第14题C A第4题xyxyxyxyA B C DOOOO14. 在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象是()xyxyxyxyA B C DOOOO15.如图,在Rt△ABC中,∠ACB=90º,∠A=30º,BC=2,将△ABC绕点C按顺时针方向旋转n度后,得到△EDC,此时,点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A. 30,2B. 60,2C. 60,23D. 60,3二、解答题(本大题共9小题,共75分)16.(6分)解方程:(3)3x x x-=-+17.(6分)如图,不用量角器,在方格纸中画出△ABC绕点B顺时针方向旋转90°后得到的△A1BC1.第15题yxO52-12118.(7分)已知一个二次函数y=ax 2+bx+c 的图象如图所示,请求出这个二次函数的解析式。
2019届九年级上学期期中联考数学试题(附答案)

九年级数学期中测试(试卷总分150分 测试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 下列手机手势解锁图案中,是中心对称图形的是( )A B C D 2.下列方程中是关于x 的一元二次方程的是( )A .210x x+= B . 20ax bx c ++= C .(1)(2)0x x --=D .222322(1)x x x +=+-3.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( ) A .50° B .80° C .90° D .100°4.如图1,将△AOB 绕点O 按逆时针方向旋转48°后得到△A ′OB ′,若∠AOB=18°,则∠AOB ′的度数是( )A .24°B .30°C .38°D .48°5.如图2,在方格纸中,△ABC 经过变换得到△DEF ,正确的变换是( ) A .把△ABC 绕点C 逆时针方向旋转90°,再向下平移2格图1 图图2 图OCBAB.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移4格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°6.关于方程285(2)95x-=的两根,则下列叙述正确的是()A.一根小于1,另一根大于3 B.一根小于-2,另一根大于2C.两根都小于0 D.两根都大于27. 已知(-1,y1),(-2,y2),(-4,y3)是抛物线y=-2x2-8x+m上的点,则( ) A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y18.已知⊙O的半径为1,点P到圆心O的距离为d,若抛物线22=-+与x轴有两个不y x x d同的交点,则点P().A.在⊙O的内部B.在⊙O的外部C.在⊙O上D.无法确定9.在同一坐标系中一次函数y=ax﹣b和二次函数y=ax2+bx的图象可能为()A.B.C.D.10.如图所示,已知二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,则下列结论:①2a+b+c>0;②a﹣b+c<0;③x(ax+b)≤a+b;④a<﹣1.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)11.平面直角坐标系中,点A(-3,5)关于原点对称点的坐标为_______12 已知一个多边形的每一个内角都等于144°,则这个多边形的边数是_______13. 设m,n是一元二次方程x2+2x-7=0的两个根,则m2+3m+n=_______.14.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径是______15. 已知函数2-2-3y x x =,当-1x a ≤≤时,函数的最小值是-4,则实数a 的取值范围是 . 16.如图,⊙O 的直径AB 长为10,弦AC 的长为6,∠ACB 的角平分线交⊙O 于D ,则CD 长为 .17.如图,等边三角形OAB 的边长为2,P 是线段OA 上任意一点(不含端点O ,A ),过O 、P 两点的抛物线和过A ,P 两点的抛物线的顶点分别在OB ,AB 上,则这两个二次函数的最大值之和等于 .18.二次函数y=x 2的图象如图所示,自原点开始依次向上作内角为60度、120度的菱形(其中两个顶点在抛物线上另两个顶点在y 轴上,相邻的菱形在y 轴上有一个公共点),则第2018个菱形的周长= . 三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.解方程(10分)(1)22)52()2(+=-x x (2) x x 7322=+ (用配方法解)20.(9分) 已知:△ABC 在坐标平面内,三个顶点的坐标分别为A (0,3),B (3,4),C (2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC 向下平移4个单位,再向左平移1个单位得到的△A 1B 1C 1,并直接写出C 1点的坐标;(2)画出△ABC 绕点A 顺时针方向旋转90°后得到的△A 2B 2C 2,并直接写出C 2点的坐标. (3)请求出(2)中△ABC 旋转过程中 所扫过的面积为_______21.(8分)已知关于x 的一元二次方程x 2-2(m +1)x +m 2+5=0有两个不相等的实数根. (1)求m 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且满足x 21+x 22=|x 1|+|x 2|+2x 1x 2,求m 的值.22.(8分)如图,在平面直角坐标系xOy 中,边长为2的正方形OABC 的顶点A 、C 分别在x 轴的正半轴和y 轴的负半轴上,二次函数223y x bx c =++的图象经过B 、C 两点.(1)求该二次函数的解析式;(2)结合函数的图象探索:当y>0时,x 的取值范围.23. (8分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,AM 是△ACD 的外角∠DAF 的平分线. (1)求证:AM 是⊙O 的切线;(2)若∠D=60°,AD=2,射线CO 与AM 交于N 点,求ON 的长.24. (10分)在Rt △ABC 中,∠ACB=90°,AC=BC=D 是斜边AB 上一动点(点D 与点A 、B 不重合),连接CD ,将CD 绕点C 顺时针旋转90°得到CE ,连接AE ,DE . (1)求△ADE 的周长的最小值; (2)若CD=4,求AE 的长度.25. (10分) 如图,AB 是⊙O 的直径,弧ED=弧BD ,连接ED 、BD ,延长AE 交BD 的延长线于点M ,过点D 作⊙O 的切线交AB 的延长线于点C. (1)若OA =CD =22,求阴影部分的面积; (2)求证:DE =DM.26.(10分)某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x 元,每个月的销售量为y 件.(1)求y 与x 的函数关系式并直接写出自变量x 的取值范围; (2)设每月的销售利润为W ,请直接写出W 与x 的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?27.(10分)对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为1d ,到y 轴的距离为2d ,若12d d ≤,则称1d 为点P 的“引力值”;若12d d >,则称2d 为点P 的“引力值”.特别地,若点P 在坐标轴上,则点P 的“引力值”为0.例如,点P (2-,3)到x 轴的距离为3,到y 轴的距离为2,因为23<,所以点P 的“引力值”为2.(1)①点A (1,4-)的“引力值”为________;②若点B (a ,3)的“引力值”为2,则a 的值为_ (2)若点C 在直线24y x =-+上,且点C 的“引力值”为2,求点C 的坐标;(3)已知点M 是以D (3,4)为圆心,半径为2的圆上的一个动点,那么点M 的“引力值”d 的取值范围是______.28.(13分)如图1,抛物线y=ax 2+bx+c 经过点A (-4,0),B (1,0),C (0,3),点P 在抛物线y=ax 2+bx+c 上,且在x 轴的上方,点P 的横坐标记为t . (1)求抛物线的解析式;(2)如图2,过点P 作y 轴的平行线交直线AC 于点M ,交x 轴于点N ,若MC 平分∠PMO ,求t 的值;(3)点D 在直线AC 上,点E 在y 轴上,且位于点C 的上方,那么在抛物线上是否存在点P ,使得以点C ,D ,E ,P 为顶点的四边形是菱形?若存在,请求出该菱形的面积;若不存在,请说明理由.图1图2备用图九年级数学期中考试参考答案一、选择题:1.B2.C3.D4.B5.B6.A7.C8.A9.C 10.A 二、填空题:11.(3,-5) 12. 10 13. 5 14. 4315. a ≥116. 717. . 18. 8072三、解答题: 19.(5+5)(1)-1 , -7 (2)12,3 20. 解:(本题9分)(1)(1+2分)如图所示,△A 1B 1C 1即为所求;由图可知,点C 1点的坐标为(1,﹣2);(2)(1+2分)如图所示,△A 2B 2C 2即为所求,其中C 2(﹣1,1). (3) (3分)5522π+ 21. 解:(本题8分)(1)Δ=8m -16>0,得m >2.(3分)(2)x 1+x 2=2(m +1),x 1·x 2=m 2+5.∵m >2,∴x 1+x 2>0,x 1·x 2>0,∴x 1>0,x 2>0.∵x 21+x 22=(x 1+x 2)2-2x 1·x 2=|x 1|+|x 2|+2x 1x 2,∴4(m +1)2-2(m 2+5)=2(m +1)+2(m2+5),即6m -18=0,解得m =3.(5分)22. (本题8分)解:(1)由题意得B (2,−2),C (0,−2) 代入223y x bx c =++得 82232b c c ⎧++=-⎪⎨⎪=-⎩,解得432b c ⎧=-⎪⎨⎪=-⎩∴二次函数的解析式为224233y x x =--;(4分)(2)令y=0,得2242033x x --=,解得x 1=−1,x 2=3, 结合图象可知:当x <−1或x >3时,y >0. (8分)23. (本题8分) 解:(1)∵AB 是⊙O 的直径,弦CD ⊥AB 于点E , ∴AB 垂直平分CD , ∴AC =AD ,∴∠BAD =∠CAD ,∵AM 是△ACD 的外角∠DAF 的平分线,∴∠DAM =∠F AD ,∴∠BAM =(∠CAD +∠F AD )=90°, ∴AB ⊥AM ,∴AM 是⊙O 的切线;(4分) (2)∵AC =AD ,∠D =60°, ∴△ACD 是等边三角形,∴CD =AD =2,∴CG =DG =1,∴OC =OA =,∵∠3=∠4=30°,∴ON =2OA =.(4分)24.(本小题10分)解:(1)证明△ACE ≌△BCD (过程略) ∴AE =BD过点C 作CF ⊥AB 于点F在Rt △CDF 中,DF当CD ⊥AB 时,CD 最短,等于3,此时DE=∴△ADE 的周长的最小值是6+ (5分)(2)点D 在CF 的右侧,AE =BD=点D 在CF 的左侧,AE =BD(5分) 25. (本题10分)(1)解:连接OD∵CD 是⊙O 切线∴OD ⊥CD ∵OA =CD =22 OA =OD ∴OD =CD =22∴△OCD 为等腰直角三角形 ∠DOC =∠C =45°ABCDEFS阴影=S△OCD-S扇OBDx#k#b#1π-=4(5分)(2)方法一证明:连接AD.∵AB是⊙O直径∴∠ADB=∠ADM= 90°又∵ED=BD∴ED=BD ∠MAD=∠BAD∴△AMD≌△ABD∴DM=BD∴DE=DM.方法二证明:连接BE.∵AB是⊙O直径∴∠AEB=90°∴∠MEB=90°∴∠DEM+∠BED=90°∠M+∠MBE=90°又∵ED=BD∴∠DBE=∠BED∴∠DEM=∠M∴DE=DM. (5分)26.解:(本题10分)(2分)(1)当50≤x≤80时,y=210﹣(x﹣50),即y=260﹣x,当80<x<140时,y=210﹣(80﹣50)﹣3(x﹣80),即y=420﹣3x.则,(2)(4分)由利润=(售价﹣成本)×销售量可以列出函数关系式w=﹣x2+300x﹣10400(50≤x≤80)w=﹣3x2+540x﹣16800(80<x<140),(3)(4分)当50≤x≤80时,w=﹣x2+300x﹣10400,⌒⌒⌒⌒()36022452222212⨯-⨯⨯=π当x=80有最大值,最大值为7200,当80<x<140时,w=﹣3x2+540x﹣16800,当x=90时,有最大值,最大值为7500,故售价定为90元.利润最大为7500元.27.(本题10分)(1)(1+2分) ①1, ②2±; (2)解:设点C 的坐标为(x ,y ).由于点C 的“引力值”为2,则2x =或2y =,即2x =±,或2y =±. 当2x =时,240y x =-+=,此时点C 的“引力值”为0,舍去; 当2x =-时,248y x =-+=,此时C 点坐标为(-2,8);当2y =时,242x -+=,解得1x =,此时点C 的“引力值”为1,舍去; 当2y =-时,242x -+=-,3x =,此时C 点坐标为(3,-2); 综上所述,点C 的坐标为(2-,8)或(3,2-) (4分) (3)712d ≤≤……………(3分) 注:答对一边给2分;两端数值正确,少等号给2分;一端数值正确且少等号给1分.28.(本小题满分13分) (1)一般式:239344y x x =--+ 、交点式3(4)(1)4y x x =-+- 都可以…………4分 (2) ∵MC 平分∠ PMO ∴∠PMC =∠CMO ∵PN ∥OC ∴∠PMC =∠MCO ∴∠CMO =∠MCO ∴OM =OC …………6分 直线AC 的解析式334y x =+ 点M 的坐标为(t ,334t +) …………7分在Rt △MNO 中,t 2+(334t +)2=32,解这个方程得 t= 7225- …9分(3)两种情况,图2第一种情况以CE 为边,此时CD =DP ,求出t =73-,PD =3512,菱形的面积24536…11分第二种情况以CE 为对角线,点P 与点D 关于y 轴对称,P (t ,239344t t --+),则点D 的坐标(—t ,239344t t --+)代入解析式y =334x +,t =-2,菱形的面积6. …13分备用图图1。
2019年秋季学期人教版九年级上册数学期中试卷(含答案)

第 1 页 共 12 页2019年秋季学期人教版九年级上册数学期中试卷本试卷满分为 120 分。
考试时间为 120 分钟。
第 卷 选择题(共 30 分)一、选择题:(1~10 题,每小题 3 分,共 30 分,每题只有一个正确答案) 1.-2 的倒数是().1(A) 2(B)21(C) -2(D) -22.下列算式中,正确的是().(A) 2a+3b=5ab (B)(-a 3b)2=a 6b 2(C) –(-a)3=-a 3(D)(a-1)2=a 2-1 3.下列图形中,中心对称图形有()个.(A)4(B) 3(C) 2(D)14 直线 y=﹣3x +9 与 x 轴的夹角α(0°<α<90°) 的正切值为( ).(A )9(B )3(C )19 (D )135.如图,AB 、BC 为⊙O 的两条弦,连接 OA 、OB, ∠ABC=130° 则∠AOC 的度数为( ).(A)120° (B)100° (C) 160°(D)150°6.方程1=2的解为( ).x (A)121−2x(B)-12 (C)14 (D) −147.如图,利用标杆 BE 测量建筑物 CD 的高度,如果 BE 垂直地面, BE=1.2m ,测得 AB=1.6m ,BC=12.4m ,则建筑物 CD 的高度为 ( ).(A) 11.5m(B)10m (C)11m(D) 10.5m第 2 页 共 12 页8.把直线 y=2x 向左平移 1 个单位后得到的直线解析式为( ).(A) y=2x+2(B) y=2x+1(C)y=2x-2(D)y=2x-19.在△ABC 中,AC ≠BC ,∠ACB=90°,CD ⊥AB 垂足为 D ,则下列比值中不等于 sinA 的是( ). (A) CD AC(B) BD CB(C) CBAB(D) CDCB10.如图,在△ABC 中,AD 、BE 分别为边 BC 、AC 上的高,AD 与 BE 交于 F ,连接 DE ,则下列结论 :① △AEF ∽△BDF ;②△DEF ∽△BAF ; ③∠DEC=∠ABC ;④.BD •DC=DF •DA ,其中正确的有( )个. (A)4 (B)3 (C) 2(D)1第II 卷 非选择题(共 90 分)二、填空题(11~20 题,每小题 3 分,共计 30 分) 11. 将数 7000000 用科学记数法表示为.3x12.函数 y =x - 2中,自变量 x 的取值范围是.13.把多项式 a 3-a 分解因式的结果是 . 14.不等式 3-2x ≤5 的负整数解是 .15.计算 3 2cos45°-tan45°的结果是 .16.如图,在△ABC 中,∠ACB=90°,CD 为斜边 AB 上的高, 若 AC=6,BD=5,则 sin ∠B 的值为.17.如图,在△ABC 中,∠ABC=90°,把△ABC 绕点 B 逆时针旋转至△EBD ,使点 C 落在 AC 边上点 D 处,若∠BAC=34°,则 ∠ADE 的度数为.18. 在半径为 1 的⊙O 中,弦 AB 的长为 2,则弦 AB 所对的圆周角的度数为.19.如图,在⊙O 中,AB 为⊙O 一条弦,半径 OD ⊥AB ,点 E。
2019年九年级数学下学期期中考试卷

2019年九年级数学下学期期中考试卷数学参考答案一.选择题(共10小题,满分30分,每小题3分)1、C.2、D.3、D.4、A、5、D6、B.7、C8、A.9、C. 10、A.二.填空题(共8小题,满分24分,每小题3分)11.x1=0,x2=1 . 12.﹣1 . 13. 5 倍. 14.﹣10 .15. m= 3 . 16.2:3 . 17.8﹣8 cm 18.(2,).三.解答题(共8小题,满分66分)19.(6分)解:2(x﹣3)=3x(x﹣3),移项得:2(x﹣3)﹣3x(x﹣3)=0,整理得:(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3或x2=.20.(8分)解:(1)由题意得,a=1,b=2m,c=m2﹣1,∵△=b2﹣4ac=(2m)2﹣4×1×(m2﹣1)=4>0,∴方程x2+2mx+m2﹣1=0有两个不相等的实数根;(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2.21.(8分)解:(1)因为反比例函数y=的图象经过点A(﹣3,﹣2),把x=﹣3,y=﹣2代入解析式可得:k=6,所以解析式为:y=;(2)∵k=6>0,∴图象在一、三象限,y随x的增大而减小,又∵0<1<3,∴B(1,m)、C(3,n)两个点在第一象限,∴m>n.22.(8分)解:设小路的宽为xm,依题意有(40﹣x)(32﹣x)=1140,整理,得x2﹣72x+140=0.解得x1=2,x2=70(不合题意,舍去).答:小路的宽应是2m.23.(8分)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴=,=,∴=,即CF2=GF•EF.24.(8分)(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)解:∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.25.(8分)解:过C点作CG⊥AB于点G,∴GC=BD=3米,GB=CD=2米.∵∠NMF=∠AGC=90°,NF∥AC,∴∠NFM=∠ACG,∴△NMF∽△AGC,∴,∴AG===6,∴AB=AG+GB=6+2=8(米),故电线杆子的高为8米.26.(12分)解:(1)∵∠ACB=90°,AC=3,BC=4,∴AB==5,∵CD⊥AB,∴×CA×CB=×AB×CD,解得,CD=,∴BD==,∵∠DCE=∠ABC,∴Rt△CDE∽Rt△BDC,∴=,即=,解得,DE=,∴BE=BD﹣DE=;(2)∵∠CED>∠A>∠B=∠DCE,∴当△CDE是等腰三角形时,只有∠CED=∠CDE,∴∠BDC=∠BCD,∴BD=BC=4,∴AD=AB﹣BD=1;(3)作CH⊥AB于H,则CH=,AH=,CD2=DH2+CH2=(x﹣)2+()2=x2﹣x+9,∵∠DCE=∠ABC,∠CDE=∠CDE,∴△CDE∽△BDC,∴=,即CD2=DE•BD=(5﹣x﹣y)(5﹣x)=x2+xy﹣5y﹣10x+25,则x2﹣x+9=x2+xy﹣5y﹣10x+25,整理得,y=(0<x<).。
内蒙古2019届九年级下学期期中考试数学试卷【含答案及解析】

内蒙古2019届九年级下学期期中考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. ﹣2的相反数是()A. 2B. ﹣2C.D.2. 下列图形中,可以看作是中心对称图形的是()A. B. C. D.3. 如图所示,a与b的大小关系是()A. a<bB. a>bC. a=bD. b=2a4. 若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为()A. 6,3B. 6,3C. 3,3D. 6,35. 九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A. 平均数和众数B. 众数和极差C. 众数和方差D. 中位数和极差6. 下列运算正确的是()A. a2+a3=a5B. (﹣2a2)3÷()2=﹣16a4C. 3a﹣1=D. (2a2﹣a)2÷3a2=4a2﹣4a+1二、选择题7. 在□ABCD中,AB=10,BC=14,E、F分别为边BC、AD上的点,若四边形AECF为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或8三、单选题8. 如图的坐标平面上,有一条通过点(﹣3,﹣2)的直线L.若四点(﹣2,a)、(0,b)、(c,0)、(d,﹣1)在L上,则下列数值的判断,何者正确()A. a=3B. b>﹣2C. c<﹣3D. d=29. 以下四个命题中,真命题的个数为()(1)已知等腰△ABC中,AB=AC,顶角∠A=36°,一腰AB的垂直平分线交AC于点E,AB为点D,连接BE,则∠EBC的度数为36°;(2)经过一点有且只有一条直线与这条直线平行;(3)长度相等的弧是等弧;(4)顺次连接菱形各边得到的四边形是矩形.A. 1个B. 2个C. 3个D. 4个10. 定义新运算:a⊕b=,例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A. B. C. D.四、填空题11. 神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为__公里.12. 不等式2x﹣7<5﹣2x的非负整数解的个数为__个.13. 如果直线y=mx与双曲线y=的一个交点A的坐标为(3,2),则它们的另一个交点B的坐标为_____.14. 一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是.15. 因式分解a3﹣4a的结果是.16. 如图所示,当以实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下,求小球下落到第三层B位置的概率__.五、解答题17. 计算(1)()﹣2+|2﹣6|﹣;(2)解方程组:.18. 已知关于x的一元二次方程x2﹣3x+m﹣3=0,若此方程的两根的倒数和为1,求m的值.19. 某市从今年元月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年7月份的水费则是30元,已知小丽家今年7月的用水量比去年12月份的用水量多5立方米,求该市今年居民用水的价格.20. 近几年来全国各省市市政府民生实事之一的公共自行车建设工作已基本完成,网上资料显示呼和浩特市某部门对14年4月份中的7天进行了公共自行车日租车辆的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)该市共租车多少万车次;(3)资料显示,呼市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年该市租车费收入占总投入的百分率(精确到0.1%).21. 如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.22. 已知在平面直角坐标系中,一次函数y=x+3的图象与y轴交于点A,点M在正比例函数y=x的图象x>0的那部分上,且MO=MA(O为坐标原点).(1)求线段AM的长;(2)若反比例函数y=的图象经过点M关于y轴的对称点M′,求反比例函数解析式,并直接写出当x>0时, x+3与的大小关系.23. 如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.24. 已知二次函数y=x2﹣(2k+1)x+k2+k(k>0)(1)当k=时,将这个二次函数的解析式写成顶点式;(2)求证:关于x的一元二次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】。
人教版2019学年九年级数学下册期中试卷有答案(共10套)

人教版2019学年九年级数学下期期中试卷(一)九 年 级 数 学 试 题本试卷共24小题,满分120分,考试时间120分钟.注意事项:本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,答在试题卷上无效.考试结束,请将本试题卷和答题卡一并上交.一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置将符合要求的选项前面的字母代号涂黑. 本大题共15小题,每题3分,计45分)1.这四个图案中既是(A) (B)(D) 2.若x 与2互为相反数,则x(A )-2 (B )2 (C )-12(D )12 3(A ) (B ) (C ) (D )4.嫦娥三号从飞天到落月,飞行距离超过1 000 000千米,数据1 000 000用科学记数法表示为 (B)1×105 (C)1×106 (D)10×107 5.某种袋装大米合格品的质量标准是“50±0.25 (A)甲 乙 (C)丙 (D)丁6. 若直线a ∥b ,a 的距离是5cm ,到直线b 的距离是3cm ,那么直线a , b cm .(A)2 (B)8 (C)2或8 (D)47 (A) x +x =2x 2 (B) x 3•x 2 (C)(x 4)2 =x 8 (D)(-2x )2 =-4x 28. 如图是扫雷游戏的示意图.点击中间的按钮,若出现的数字是2,表明数字2的8个位置有2颗地雷,现任意点击这8个按钮中的一个,则出现地雷的概率.49.8050.5149.7050.30丁丙乙甲编号质量/kg(A) 34 (B) 14 (C) 18 (D) 19 9.若代数式1x -5 有意义,则x(A) x>0 (B) x >5 (C) x <5 (D) x ≥5 第8题图10.22,20,25,23,则测试成绩最(A )甲 (B )乙 (C )丙 (D )丁11. 如图,在四边形ABCD ∥CD ,再添加下列条件之一,能使四边形ABCD(A)∠DAC =∠BCA (B)∠ABC =180° (C)∠ABD =∠BDC (D)∠BAC =∠ACD12. 如图,已知商场自动扶梯的长10米,自动扶梯与地面所成的角为30°,则该自动扶梯到达的高度h(A )10 (B )7.5 5 (D )2.5 13. 如图,在Rt △ABC 中,∠ABC =90=BC =2,以A 为顶点,AB 为半径画弧,交AC 于D(A )4-π (B )2-π (C )2-π(-π14. 如图,A ,B ,C 是⊙O 上的三点,AB 为直径,且∠A =35°,则∠B(A )35°(B )55° (C )65° D .70°15.直线y 1=x +12=-x 2+3的图象如图所示,当y 1>y 2时,x (A )x <-2 x >1(C )-2<x <1 (D )x <-2或x >1 二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分) 16.(6分)解不等式:7-x ≤1-4(x -3),并把解集在所给数轴上表示出来.第16题图17.(6分)先化简,再求值:(m +2m 2-2m - 1m -2 )÷ 2m 2-4 ,其中m =-12 .18.(7分)如图,在ABCD 中,2 + 3hl30°第12题图第11题图 第13题图 第14题图(1)作出BC 边的中点E ,连结DE 并延长,交AB 的延长线于F 点;(要求用尺规作图,不写作法,保留作图痕迹)(2)证明:AB =BF .第18题图19.(7分)托盘秤是日常生活中一种常见的称重仪器(如图).小华同学发现刻度盘上的顺时针指针偏离0刻度的角度与托盘上物体重量符合一次函数关系,并制作了下表.请你帮助小华同学解决下列问题:(1)在有阴影的单元格中填上适当数或代数式:(2)利用上表发现的规律计算: 第19题图①当托盘上的物体的重量是7.5 kg 时,指针顺时针偏离0刻度多少度? ②当指针从0刻度顺时针旋转306度时,托盘上物体的重量是多少?20.(8分)2013年,某家电商场对四类商品(彩电、冰箱、洗衣机、手机)的销售情况年终统计,并绘制了如下统计图.已知彩电的销售量是洗衣机的销售量的3倍,根据图中信息解答下列问题:(1)请计算该商场2013年彩电、冰箱、洗衣机销售量分别是多少? (2)请补全条形统计图.第20题图洗衣机彩电冰箱20%手机40%品种2000彩电冰箱洗衣机手机21.(8分)如图,在平面直角坐标系中,A(0,6),C(8,0),点M是AC的中点,点P从点A出发,沿着AO→OC的折线运动到C点停止.当以点A,M,P 为顶点的三角形是等腰三角形时,直接写出点P的坐标,并写出相应的tan∠APM 的值.22.(10分)2013年某园林绿化公司购回一批桂花树,全部售出后利润率为20%.(1)求2013年每棵树的售价与成本的比值.(2)2014年,该公司购入桂花树数量增加的百分数与每棵树成本降低的百分数均为m.经测算,若每棵桂花树售价不变,则总成本将比2013年的总成本减少8万元;若每棵树售价提高百分数也为m,则销售这批树的利润率将达到4m.求m的值及相应的2014年这批桂花树总成本.(利润率= 售价-成本成本×100%)23.(11分)如图23-1,已知矩形ABCD,E为AD边上一动点,过A,B,E三点作⊙O,P为AB的中点,连接OP,(1)求证:BE是⊙O 的直径且OP⊥AB;(2)若AB=BC=8,AE=6,试判断直线DC与⊙O的位置关系,并说明理由;(3)如图23-2,若AB=10,BC=8,⊙O与DC边相交于H,I两点,连结BH,当∠ABE=∠CBH时,求△ABE的面积.图23-1 图23 -224. (12分)如图,已知点A(0,1),点B(1,0).点P(t,m)是线段AB上一动点,且0<t<12,经过点P的双曲线y =kx与线段AB相交于另一点Q,并且点Q是抛物线y=3x2+bx+c的顶点.(1)写出线段AB所在直线的表达式;(2)用含t的代数式表示k;(3)设上述抛物线y=3x2+bx+c与线段AB的另一个交点为R,当△POR的面积等于16时,分别求双曲线y =kx和抛物线y=ax2+bx+c的表达式.第24题图人教版2019学年九年级数学下期期中试卷(二)一、选择题:下面每小题给出的四个选项中,只有一项是正确的,请把正确选项选出来填在相应的表格里,每小题3分,共36分1.下列计算正确的是()A.a2+a2=a4B.2a2×a3=2 C.(a2)3=a6 D.3a﹣2a=12.如图,a∥b,∠1=∠2,∠3=40°,则∠4等于()A.40°B.50°C.60°D.70°3.一种花瓣的花粉颗粒直径约为0.0000065米,0.0000065用科学记数法表示为()A.6.5×10﹣5B.6.5×10﹣6C.6.5×10﹣7D.65×10﹣64.由六个正方体摆成如图所示的模型,从各个不同的方向观察,不可能看到的视图是()A.B.C.D.5.不等式组的解在数轴上表示为()A.B.C.D.6.函数中自变量x的取值范围是()A.x≤2 B.x=1 C.x<2且x≠1 D.x≤2且x≠17.如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C 点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()A.B.C.D.8.如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A.AD=BD B.OD=CD C.∠CAD=∠CBD D.∠OCA=∠OCB9.若关于x的一元二次方程x2﹣(a+5)x+8a=0的两个实数根分别为2和b,则ab=()A.3 B.4 C.5 D.610.如图,⊙O是正五边形ABCDE的外接圆,这个正五边形的边长为a,半径为R,边心距为r,则下列关系式错误的是()A.R2﹣r2=a2B.a=2Rsin36°C.a=2rtan36°D.r=Rcos36°11.有一张矩形纸片ABCD,AB=,AD=,将纸片折叠,使点D落在AB边上的D′处,折痕为AE,再将△AD′E以D′E为折痕向右折叠,使点A落在点A′处,设A′E与BC交于点F(如图),则A′F的长为()A.B. C.D.12.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:每小题4分,共24分13.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为,1.14.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为.15.因式分解:x2(x﹣2)﹣16(x﹣2)=.16.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为.17.若代数式和的值相等,则x=.18.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC边上的动点,将△EBF沿EF所在直线折叠得到△EB′F,连接B′D,则B′D的最小值是.三、解答题:共7道大题,满分60分19.先化简,再求值:()÷,其中x=tan60°﹣2.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1;(3)若每一个方格的面积为1,则△A2B2C2的面积为.21.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了名学生,两幅统计图中的m=,n=.(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校要举办读书知识竞赛,七年(1)班要在班级优胜者2男1女中随机选送2人参赛,求选送的两名参赛同学为1男1女的概率是多少?22.如图,台风中心位于点O处,并沿东北方向(北偏东45°),以40千米/小时的速度匀速移动,在距离台风中心50千米的区域内会受到台风的影响,在点O的正东方向,距离60千米的地方有一城市A.(1)问:A市是否会受到此台风的影响,为什么?(2)在点O的北偏东15°方向,距离80千米的地方还有一城市B,问:B市是否会受到此台风的影响?若受到影响,请求出受到影响的时间;若不受到影响,请说明理由.23.如图,一次函数y=﹣x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.24.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D 作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.25.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.人教版2019学年九年级数学下期期中试卷(三)一、选择题(本题共12个小题。
2019九年级数学上学期期中考试题(含答案解析)精品教育.doc

2019九年级数学上学期期中考试题(含答案解析)2019九年级数学上学期期中考试题(含答案解析)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的)1.方程x2+2x-4=0的两根为x1,x2,则x1+x2的值为(▲ )A.2 B.﹣2 C.4 D.﹣42.已知在Rt△ABC中,∠C=90?,sinA= 35,则tanB的值为(▲ )A.43 B.45 C.54 D.343. 在中,,如果把的各边的长都缩小为原来的,则的正切值(▲ )A.缩小为原来的B.扩大为原来的4倍C.缩小为原来的D.没有变化4.方程y2-y+ =0的两根的情况是(▲ )A.没有实数根;B.有两个不相等的实数根C.有两个相等的实数根D.不能确定5. 如图,DE是ΔABC的中位线,则ΔADE与ΔABC的面积之比是(▲ )A.1:1 B.1:2 C.1:3 D.1:46.如图,给出下列条件:①∠B=∠ACD;②∠ADC=∠ ACB;③ ;④AC2=AD ?AB.其中能够单独判定△ABC∽△ACD的条件个数为( ▲ )A.1 B.2 C.3 D.47.方程的左边配成一个完全平方式后,所得的方程为( ▲ ) A. B. C. D.8.三角形的两边长分别为3和6,第三边的长是方程x2-6x +8=0的一个根,则这个三角形的周长是( ▲ )A.9 B.11 C.13 D.11或139.某商品连续两次降价,每次都降20﹪后的价格为元,则原价是(▲ )A. 元B. 1.2 元C. 元D. 0.82 元10.如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD长的所有可能的整数值有(▲ )A.1个B.2个C.3个D.4个二、填空题(本大题共8小题,每小题2分,共16分.不需要写出解答过程,只需把答案直接填写在答题卡相应的位置)11.已知x=m是方程x2-2x-3=0的一个解,则代数式m2-2m的值为▲ .12.如图,在△ABC中,DE∥BC,若,DE=4,则BC= ▲ .13.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为▲ .14.已知点P是线段AB的黄金分割点,APPB,如果AB=2,那么AP的长为▲ .15.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排28 场比赛,若设参赛球队的个数是x,则列出方程为▲ .16.如图,小明从路灯下,向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB是__▲___米.17.如图,正方形ABCD的边长为4,点M在边DC上,M、N 两点关于对角线AC对称,若DM=1,则tan∠ADN= ▲ .18.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,则BF=___▲__.三、解答题:19.(本题8分)计算:(1) (-12)?1-12+4cos30°?3?2 (2)20.(本题8分)解方程:(1) (2)21.(本题满分6分)如图,在边长为1的正方形网格中,有一格点△ABC,已知A、B、C三点的坐标分别是A(1,0)、B(2,-1)、C(3,1).(1) 请在网格图形中画出平面直角坐标系;(2) 以原点O为位似中心,将△ABC放大2倍,画出放大后的△A′B′C′;(3) 写出△A′B′C′各顶点的坐标:A′____,B′____,C′ ___;22.(本题满分8分)如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米.(1)求钢缆CD的长度;(精确到0.1米)(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?(参考数据:tan400=0.84, sin400=0.64, cos400= ) 23. (本题满分6分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB中点,(1)求证:AC2=AB?AD;(2)若AD=4,AB=6,求的值.24.(本题满分6分)已知关于x的一元二次方程的两个实数根分别为,.(1)求证:该一元二次方程总有两个实数根;(2)若,判断动点P(m,n)所形成的函数图象是否经过点A(4,5),并说明理由.25. (本题满分8分)小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.(1)求返回时A、B两地间的路程;(2)若小明从A地步行到B地后,以跑步形式继续前进到C 地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?26. (本题满分10分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC= .(1)写出点B的坐标;(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似?如存在,请求出的m值;如不存在,请说明理由.27. (本题满分12分)如图,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.点P从B出发沿BA向A运动,速度为每秒1cm,点E是点B以P为对称中心的对称点,点P运动的同时,点Q从A出发沿AC向C运动,速度为每秒2cm,当点Q到达顶点C时,P,Q同时停止运动,设P,Q两点运动时间为t秒.(1)当t为何值时,PQ∥BC?(2)设四边形PQCB的面积为y,求y关于t的函数关系式;并说明四边形PQCB面积能否是△ABC面积的?若能,求出此时t的值;若不能,请说明理由;(3)当t为何值时,△AEQ为等腰三角形?(直接写出结果)28.(本题满分12分)已知Rt△ABC中,AC=BC=2.一直角的顶点P在AB上滑动,直角的两边分别交线段AC,BC于E.F两点(1)如图1,当 = 且PE⊥AC时,求证: = ;(2)如图2,当 =1时(1)的结论是否仍然成立?为什么?(3)在(2)的条件下,将直角∠EPF绕点P旋转,设∠BPF=α(0°<α<90°).连结EF,当△CEF的周长等于2+ 时,请直接写出α的度数.2019九年级数学上学期期中考试题(含答案解析)参考答案及评分标准一、选择题(10小题,每题3分,共30分)1 2 3 4 5 6 7 8 9 10B A DCD C B C A C二、填空题(每空2分,共16分)11 12 13 14 15 16 17 183 12 1+﹣1 =28 5.6 或2三、解答题:(共84分)19.(每题4分,共8分)(1)—4+ (2)3+20.(每题4分,共8分)(1);(2)3、-1;21. (本题满分6分)解:(1)1分;(2)2分;(3)A′(-2,0),B′(-4,2),C′(-6,-2)各1分;22. (本题满分8分)解:(1)在Rt△BCD中,,∴ ≈6.7;(3分)(2)在Rt△BCD中,BC=5,∴BD=5tan40°=4.2.(4分)过E作AB的垂线,垂足为F,在Rt△AFE中,AE=1.6,∠EAF=180°﹣120° =60°,AF= =0.8(6分)∴FB=AF+AD+BD=0.8+2+4.20=7米.(7分)答:钢缆CD的长度为6.7米,灯的顶端E距离地面7米.(8分)23. (本题满分6分)(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB?AD;(3分)(2)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE= AB,∴CE= ×6=3,∵AD=4,∴ . (6分)24. (本题满分6分)解:(1)∵△=(m+6)2﹣4(3m+9)=m2+12m+36﹣12m﹣36=m2≥0,(2分)∴该一元二次方程总有两个实数根;(3分)(2)动点P(m,n)所形成的函数图象经过点A(4,5);(4分)理由:∵x1+x2=m+6,n=x1+x2﹣5,∴n=m+1,(5分)∵当m=4时,n=5,∴动点P(m,n)所形成的函数图象经过点A(4,5).(6分)25、(本题满分8分)解:(1)设返回时A,B两地间的路程为x米,由题意得:,(2分)解得x=1800.答:A、B两地间的路程为1800米;(4分)(2)设小明从A地到B地共锻炼了y分钟,由题意得:25×6+5×10+[10+(y﹣30)×1](y﹣30)=904,(6分)整理得y2﹣50y﹣104=0,解得y1=52,y2=﹣2(舍去).答:小明从A地到C地共锻炼52分钟.(8分)26.(本题满分10分)解:(1)B(1,3),(1分)(2)如图1,过点B作BD⊥AB,交x轴于点D,在Rt△ABC和Rt△ADB中,∵∠BAC=∠DAB,∴Rt△ABC∽Rt△ADB,∴D点为所求,又tan∠ADB=tan∠ABC= ,∴CD=BC÷tan∠ADB=3÷ ,∴OD=OC+CD=1+ = ,∴D(,0);(4分)(3)这样的m存在.在Rt△ABC中,由勾股定理得AB=5,如图1,当PQ∥BD时,△APQ∽△ABD,则 = ,解得m= ,(6分)如图2,当PQ⊥AD时,△APQ∽△ADB,则 = ,解得m= . (9分)故存在m的值是或时,使得△APQ与△ADB相似.(10分)27、(本题满分12分)解:(1)Rt△ABC中,∵∠C=90°,BC=8cm,AC=6cm,∴AB=10cm.∵BP=t,AQ=2t,∴AP=AB﹣BP=10﹣t.∵PQ∥BC,解得t= ;(2分)(2)∵S四边形PQCB=S△ACB﹣S△APQ= AC?BC﹣AP?AQ?sinA∴y= ×6×8﹣×(10﹣2t)?2t?=24﹣ t(10﹣2t)= t2﹣8t+24,即y关于t的函数关系式为y= t2﹣8t+24;(4分)四边形PQCB面积能是△ABC面积的,理由如下:由题意,得 t2﹣8t+24= ×24,整理,得t2﹣10t+12=0,解得t1=5﹣,t2=5+ (不合题意舍去).故四边形PQCB面积能是△ABC面积的,此时t的值为5﹣;(6分)(3)△AEQ为等腰三角形时,分三种情况讨论:①如果AE=AQ,那么10﹣2t=2t,解得t= ;(8分)②如果EA=EQ,那么(10﹣2t)× =t,解得t= ;(10分)③如果QA=QE,那么2t× =5﹣t,解得t= .故当t为秒秒秒时,△AEQ为等腰三角形.(12分)28.(本题满分12分)解:(1)如图1,∵PE⊥AC,∴∠AEP=∠PEC=90°.又∵∠EPF=∠ACB=90°,∴四边形PECF为矩形,∴∠PFC=90°,∴∠PFB=90°,∴∠AEP=∠PFB.∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴∠FPB=∠B=45°,△AEP∽△PFB,∴PF=BF, = ,∴ = = ;(3分)(2)(1)的结论不成立,理由如下:连接PC,如图2.∵ =1,∴点P是AB的中点.又∵∠ACB=90°,CA=CB,∴CP=AP= AB.∠ACP=∠BCP= ∠ACB=45°,CP⊥AB,∴∠APE+∠CPE=90°.∵∠CPF+∠CPE=90°,∴∠APE=∠CPF.在△APE和△CPF中,∴△APE≌△CPF,∴AE=CF,PE=PF.故(1)中的结论 = 不成立;(6分)(3)当△CEF的周长等于2+ 时,α的度数为75°或15°.提示:在(2)的条件下,可得AE=CF(已证),∴EC+CF=EC+AE=AC=2.∵EC+CF+EF=2+ ,∴EF= .设CF=x,则有CE=2﹣x,在Rt△CEF中,根据勾股定理可得x2+(2﹣x)2=()2,整理得:3x2﹣6x+2=0,解得:x1= ,x2= .①若CF= ,如图3,过点P作PH⊥BC于H,易得PH=HB=CH=1,FH=1﹣ = ,在Rt△PHF中,tan∠FPH= = ,∴∠FPH=30°,∴α=∠FPB=30+45°=75°;(9分)②若CF= ,如图4,过点P作PG⊥AC于G,同理可得:∠APE=75°,∴α=∠FPB=180°﹣∠APE﹣∠EPF=15°.(12分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年秋季九年级数学期中数学试卷(含答案)
一 选择题
1.如图,已知直线a//b//c ,直线m 交直线a,b,c 于点A,B,C.直线n 交直线a,b,c 于点D,E,F,若2
1
=BC AB , 则
EF
DE
=( ). A.31 B.21 C.3
2
D.1
2.如图,∠1=∠2,则下列各式不能说明△ABC ∽△ADE 的是( ) A.∠D=∠B B.∠E=∠C C.
AC AE AB AD = D.BC
DE
AB AD =
3.在△ABC 中,∠C=90°,下列各式不一定成立的是( ) A.a=b ∙cosA B.A=c ∙cosB C.c=A
a
sin D.a=b ∙tanA 4.下列说法中正确的有( )
①位似图形都相似;②两个等腰三角形一定相似;③两个相似多边形的面积比为4:9,则周长的比为16:81;④若一个三角形的三边分别比另一个三角形的三边长2cm ,那么这两个三角形一定相似.
A.1个
B.2个
C. 3个
D.4个 5.如图,AB 为⊙O 直径,弦CD ⊥AB 于E,则下面结论中错误的是( ) A. CE=DE B. 弧BC=弧BD C.∠BAC=∠BAD D. OE=BE
6.如图,点D(0,3),0(0,0),C(4,0)在OA 上,BD 是OA 的一条弦,则sin ∠OBD 等于( )
A.21
B.43
C.54
D.5
3
7.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ARC=35°,则∠CAD 的度数是( )
A.35°
B.45°
C.55°
D.65°
8.如图,已知等边三角形ABC 的边长为2,DE 是它的中位线.则下面四个结论: (1)DE=1; (2)AB 边上的高为3;
(3)△CDE ∽△CAB; (4)△CDE 的面积与△CAB 面积之比为1:4. 其中正确的有( )
A.1个
B.2个
C.3个
D.4个 9如图,AB 是⊙O 的直径,BC,CD,DA 是⊙O 的弦,且BC=CD= DA,则∠BCD=( )
A. 105°
B. 120°
C. 135°
D. 150° 10.下列说法中,正确的是( ) A.平分一条直径的弦必垂直于这条直径 B.平分一条弧的直线垂直于这条弧所对的弦 C.弦的垂线必经过这条弦所在圆的圆心
D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心
11.如图所示,AB 是⊙O 的直径,D,E 是半圆上任意两点,连接AD,DE,AE 与BD 相交于点C,要使△ADC 与MAB 相似,可以添加一个条件下列添加的条件中错误的是( ) A.∠ACD=∠DAB B. AD=DE C. AD ·AB=CD ·BD D. AD 2
=BD ∙CD
12.数学活动课上,小敏、小颖分别画了△ABC 和△DEF ,尺寸如图。
如果两个三角形的面积分别记作S △ABC ,S △DEF ,,那么它们的大小关系是( )
A.S △ABC >S △DEF
B. S △ABC <S △DEF
C. S △ABC =S △DEF
D.不能确定
二 填空题
13.已知在Rt △ABC 中,∠C=90°,tanA=
4
3
,则sinA= . 14如图,在⊙O 中,A,B 是圆上的两点.已知∠AOB=40°,直径CD//AB,连接AC,则∠BAC= 度.
15.已知矩形ABCD 中,AB=1,在BC 上取一点E,将△ABE 沿AE 向上折叠,使B 点落在AD 上的F 点.若四边形EFDC 与矩形ABCD 相似.由对应边成比例,则可得只含AD 的一个比例式 .
16.如图,有一圆形展厅,在其圆形边缘上的点A 处安装了一台监视器,它的监控角度是65度.为了监控整个展厅,最少需在圆形边缘上共安装这样的监视器 台.
17.如图,在△ABC 中,AB =6cm,AC=5cm.点P 从A 点出发,以2cm/s 的速度沿AB 方向向B 运动,同时点Q 从C 点出发,以1 cm/s 的速度沿CA 方向向点A 运动,当一点到达终止.当一点也停止.连接PQ.设运动时间为ts ,当t= 时,△ABC 与△APQ 相似.
三解答题 18.计算:
(1)sin 2
30°+cos30°∙tan60°; (2)1230tan 345sin 200-+.
19.如图,D 是△ABC 的边AC 上的一点.连接BD ,已知∠ABD=∠C,AB=6,AD=4,求线段CD 的长.
20.据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)
(1)求B,C的距离.
(2)通过计算,判断此轿车是否超速.
21.如图,在直角坐标系中,△ABO三个顶点及点P的坐标分别是0(0,0),A(4,2),B(2,4),P(4,4),以点P为位似中心,画△DEF与△ABO位似.且相似比为1:2,请在网格中画出符合条件的△DEF.
22.如图,在⊙O中,点C是弧AB的中点,弦AB与半径OC相交于点D,AB=12,CD=2.求⊙O 半径的长。
23.如图,某建筑物AB的高为6米.在建筑物顶端A侧得一棵树CD的点C的佣角为45°在地面点B测得点C的仰角为60°,求树高CD(结果用根式表示)(参考数据:4.1
3≈
≈,).
7.1
2
24.如图.在Rt△AOB中,∠B=40°,以OA为半径,O为圆心作⊙O,交AB于点C,交OB于点
D.
求弧CD的度数。
25.如图,P为圆外一点,PB交圆于点A,B,PD交圆于点C,D,BD=75°,AC=15°.
(1)求∠P的度数;
(2)如果我们把顶点在圆外,并且两边都和圆相交的角叫圆外角,请你仿照圆周角定理“圆周角的度数等于它所对弧的度数的一半.”来概括出圆外角的性质;
(3)请你定义“圆内角”,并概括圆内角的性质。
。