第六章样本及抽样分布

合集下载

概率论与数理统计 第六章 样本及抽样分布

概率论与数理统计 第六章 样本及抽样分布

x0 o.w.
n 1
n5
n 15
15
(2)t-分布(学生分布)
设 X ~ N ( 0 ,1), Y ~ 2 ( n ) 且X、Y为独立随 机变量,则称随机变量
t
X Y /n

X
1 n 2 ( X 12 ...... X n )
为自由度为n的t-分布。记为: t ~ t ( n ) 。
3
§1 随机样本
总体: 研究对象在某项数量指标的全体. 记为X。通常称总体X。 个体: 总体X中的每一个元素(实数)xi。 根据总体所含的个体数分为: 有限总体和无限总体。
4
总体与取样
X1
X
X2 X3 Xn
取样模型
X
X2 X1
X3
X4
X5
河流污染取样
5
总体、样本、统计量
总体 样本 统计量
X1 X2
2 ( n ) 分布:
具有可加性
2 X X 12 ...... X n , X i ~ N (0,1)
3. 4.
t ( n ) 分布:
X ~ N (0,1), Y ~ 2 ( n )
t(n) X Y /n
F ( n1 , n 2 ) 分布: U ~ 2 ( n1 ), V ~ 2 ( n 2 )



F (n1 , n2 )
19
分位点及性质:
定义: Pr[ X z ]

z
(1)标准正态分布分位点

(x)
( x)dx 1 ( x)dx


z
z1
( x)
Pr[ X z ]

概率论与数理统计(06)第6章 统计量及其抽样分布

概率论与数理统计(06)第6章  统计量及其抽样分布
一个任意分 布的总体
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z

6教育统计学第六章

6教育统计学第六章
S
n
(3)总体非正态分布条件下平均数的显著性检验
① 当 n≥30 时,尽管总体分布非正态,对于平均数的显 著性检验仍可用Z 检验。
Z
X
0(σ
已知)或
Z
X 0( σ 未知)
S
n
n
② 当 n<30 时,若总体分布非正态,对于平均数的显著 性检验不符合近似 Z 检验的条件,严格讲此时也不符合t 检验 的条件。
计算其置信区间:
X t SX (其X 中 t SX
2
2

SX
S n
小样本的情况
例如,从某小学二年级随机抽取12名学生,其阅读能 力得分为28、32、36、22、34、30、33、25、31、33、 29、26.试估计该校二年级阅读能力总体平均数95%和 99%的置信区间。
X 29.917 , S 4.100 , X 3.926
三、样本平均数与总体平均数离差统计量的形态
从正态总体中随机抽取样本容量为n的一切可 能样本平均数以总体平均数为中心呈正态分布。
当总体标准差已知时:
Z
X
X
X
n
当总体标准差未知时:
N (0,1)
总体标准差 的无偏估计量为
S (X X )2 n 1
S S X
X 2 ( X )2 / n
抽样分布是统计推断的理论依据。实际中只能抽取一个 随机样本根据一定的概率来推断总体的参数。即使是抽取一 切可能样本,计算出的某种统计量与总体相应参数的真值, 大多也是不相同的,这是由于抽样误差的缘故。抽样误差用 抽样分布的标准差来表示。因此,某种统计量在抽样分布上 的标准差称为该种统计量的标准误。
标准误越小,表明样本统计量与总体参数的值越接近, 样本对总体越有代表性,用样本统计量推断总体参数的可靠 度越大,所以标准误是统计推断可靠性的指标。

概率论 第六章 样本及抽样分布

概率论 第六章 样本及抽样分布
函数Fn(x)为 Fn(x)=S(x)/n , -∞<x< +∞。
一般,设 x1,x2, …,xn 是总体F的一个容 量为n的样本值,先将x1,x2, …,xn 按自小到 大的次序排列,并重新编号,设为
x(1) ≤x(2) ≤…≤x(n) 则经验分布函数Fn(x)的观察值为
0,
若x x(1) ,
性质:
(1) limf (t)
1
e ; t2 2
n
2
(2)当n 45时 取t (n) Z .
(三)设X~2(n1), Y~ 2(n2), 且X 与Y相互独立,则随机变量
F X/ n1 Y / n2
则称F服从第一自由度为n1,第二自由 度为n2的F分布,记作
F~F(n1 ,n2)
F分布的分布密度为
2 2
E( X 2 ) D( X ) (E( X ))2
2 2
n
E(S 2 )
E[ 1 n 1
n i 1
(Xi
X
)2 ]
E[
1
n
(
n 1 i1
X
2 i
2
n X )]
1
n
E(
n 1 i1
X
2 i
nX
2
)
1 [E( n 1
n i 1
X
2 i
)
E(n X
2
)]
1[ n 1
n i 1
考察某厂生产的电容器
的使用寿命。在这个试验 中什么是总体,什么是个 体。
解 个体是每一个电容器 的使用寿命;总体X是各个 电容器的使用寿命的集合。
2. 样本
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验,以 获得有关总体的信息,这一抽取过程称为 “抽样”,所抽取的部分个体称为样本. 样 本中所包含的个体数称为样本容量.

统计学第六章抽样和抽样分布

统计学第六章抽样和抽样分布

2021/3/4
统计学第六章抽样和抽样分布
4
一、总体与样本
▪ 把握两个问题: ▪ 1、总体和总体参数; ▪ 2、样本和样本统计量。
2021/3/4
统计学第六章抽样和抽样分布
5
1、总体与总体参数
(1)总体:指根据研究目的确定的所 要研究的同类事物的全体,是所要说 明其数量特征的研究对象。按所研究 标志性质不同,分为变量总体和属性 总体,分别研究总体的数量特征和品 质特征。 构成总体的个别事物(基本单元 )就是总体单位,也称个体。总体单 位的总数称为总体容量,记作N。
缺点:受主观影响易产生倾向性误差; 不能计算、控制误差,无法说明调查结果 的可靠程度。
抽样一般都是指概率抽样。
2021/3/4
统计学第六章抽样和抽样分布
15
2、重复抽样和非重复抽样
(1)重复抽样:又称重置抽样,是指从总体 中抽出一个样本单位,记录其标志值后,又将 其放回总体中继续参加下一轮单位的抽取。特 点是:第一,n个单位的样本是由n次试验的结 果构成的。第二,每次试验是独立的,即其试 验的结果与前次、后次的结果无关。第三,每 次试验是在相同条件下进行的,每个单位在多 次试验中选中的机会(概率)是相同的。在重复 试验中,样本可能的个数是 N n ,N为总体单位 数,n为样本容量。
2021/3/4
统计学第六章抽样和抽样分布
16
2、重复抽样和非重复抽样
(2)非重复抽样:又称为不重置抽样,即每次从
总体抽取一个单位,登记后不放回原总体,不参加下
一轮抽样。下一次继续从总体中余下的单位抽取样本
。特点是:第一,n个单位的样本由 n 次试验结果构成
统计学第六章抽样和抽样分 布
第六章 抽样与抽样分布

概率论与数理统计-第六章

概率论与数理统计-第六章
大街上随机抽取200人,进行调查。记录了
这200人的年龄数据。
总体:北京市民的年龄 随机变量:年龄X
个体:张三28岁;李四5岁;
样本:{ 28;5;14;56;23;2;39;…;69} 样本容量:200
抽样:随机抽取200人进行调查的过程
6
例2:为了确定工厂生产的电池电量分布情况,在
产品中随机抽取500个,测量其电量。记录了
x
0
F n1 , n2
F分布的分位数
x
F分布的上α分位点
对于给定的 , 0 1, 称满足条件
F n1 , n2
f x; n1 , n2 dx 的点F n1 , n2
为F n1 , n2 分布的上 分位数。F n1 , n2 的值可查F 分布表
17
不易计算!
18
抽样分布 —— 任意统计量 Q = g (X1, X2, …, Xn ) 的分布函数 抽样分布的计算: 多维随机变量(独立、同分布)的函数的分布 函数的计算问题。
得到统计量 Q 的抽样分布,就可以用来解决
关于总体 X 的统计推断问题。
19
关于随机变量独立性的两个定理
解:(1)作变换 Yi
显然Y1 , Y2 ,
2 n i 1
Xi
, Yn相互独立,且Yi N 0,1 i 1, 2,
Xi

i 1, 2,
,n
,n
于是 (

) Yi 2 2 n
2 i 1
28
n
(2)
2 ( X X ) X1 X 2 ~ N (0, 2 2 ), 1 2 2 ~ 2 (1) 2

管理统计学(李金林版教材)课后习题答案~~~第六章

管理统计学(李金林版教材)课后习题答案~~~第六章

管理统计学(李金林版教材)课后习题答案~~~第六章基础习题1. 解释总体分布、样本分布和抽样分布的含义。

答:总体分布:整体取值的概率分布规律,即随机变量X 服从的分布;样本分布:从总体中按照一定的抽样规则抽取的部分个体的分布,若从总体中简单随机抽取容量为n 的样本,则样本分布为(X 1,X 2,...,X n );抽样分布:样本统计量的分布。

2. 简述卡方分布、t 分布、F 分布及正态分布之间的关系,它们的概率密度曲线各有什么特征?答:若随机变量X 服从N(μ,σ2),则Z =X−μσ服从N(0,1);若随机变量X 服从N(0,1),则Y =∑(X i )2n i=1服从自由度为n 的χ2分布;若随机变量X~N(0,1),随机变量Y~χ2(n),且X 与Y 相互独立,则称随机变量T =√Y n⁄服从自由度为n 的t 分布;若随机变量X~χ2(n),若随机变量Y~χ2(m),且X 与Y 相互独立,则称随机变量F n,m =X n ⁄Y m ⁄服从第一自由度为n ,第二自由度为m 的F 分布,记为F n,m ~F(n,m)。

χ2分布的概率密度曲线分布在第一象限内,随着自由度n 的增大,曲线向正无穷方向延伸,并越来越低阔,越来越趋近于正态分布的曲线形态。

t 分布的概率密度曲线以0为中心,左右对称,随着自由度n 的增大,t 分布的概率密度曲线逐渐接近标准正态分布的概率密度曲线。

F 分布的概率密度曲线分布在第一象限内,当第一个自由度不变,第二个自由度增大时,曲线越来越向右聚拢,当两个自由度都增加时,F 分布概率密度曲线逐渐接近正态分布的概率密度曲线。

3. 解释中心极限定理的含义。

从均值为μ,方差为σ2的任意一个总体中抽取样本容量为n 的随机样本,则当n 充分大时,样本均值x̅的抽样分布近似服从均值为μ,方差为σ2n ⁄的正态分布,即x̅~N(μ, σ2n ⁄)。

4. 某公司有20名销售员,以下是他们每个人的销售量:3,2,2,3,4,3,2,5,3,2,7,3,4,5,3,3,2,3,3,4。

《概率论与数理统计》第六章

《概率论与数理统计》第六章
所以,X是一个随机变量!
既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章样本及抽样分布【授课对象】理工类本科二年级【授课时数】4学时【授课方法】课堂讲授与提问相结合【基本要求】1、理解总体、个体和样本的概念;2、了解经验分布函数和直方图的作法,知道格林汶科定理;3、理解样本均值、样本方差和样本矩的概念并会计算;4、理解统计量的概念,掌握几种常用统计量的分布及其结论;5、理解分位数的概念,会计算几种重要分布的分位数。

【本章重点】样本均值、样本方差和样本矩的计算;抽样分布——2 分布,t分布,F分布;分位数的理解和计算。

【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。

【授课内容及学时分配】§6.0 前言前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一门数学分支。

它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。

所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。

其研究方法是归纳法(部分到整体)。

对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。

数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。

§6.1 随机样本一、总体与样本1.总体、个体在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。

例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。

但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标X (可以是向量)和该数量指标X 在总体的分布情况。

在上述例子中X 是表示灯泡的寿命或男大学生的身高和体重。

在试验中,抽取了若干个个体就观察到了X 的这样或那样的数值,因而这个数量指标X 是一个随机变量(或向量),而X 的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。

由于我们关心的正是这个数量指标,因此我们以后就把总体和数量指标X 可能取值的全体组成的集合等同起来。

定义1:把研究对象的全体(通常为数量指标X 可能取值的全体组成的集合)称为总体;总体中的每个元素称为个体。

我们对总体的研究,就是对相应的随机变量X 的分布的研究,所谓总体的分布也就是数量指标X 的分布,因此,X 的分布函数和数字特征分别称为总体的分布函数和数字特征。

今后将不区分总体与相应的随机变量,笼统称为总体X 。

根据总体中所包括个体的总数,将总体分为:有限总体和无限总体。

例1:考察一块试验田中小麦穗的重量:X =所有小麦穗重量的全体(无限总体);个体——每个麦穗重x 对应的分布:+∞<<σμσπ=≤=≤ξ=⎰∞-σμ--x N dt ex 重量x P x F xt 0),(~21}{)(22)(22总麦穗数的麦穗数例2:考察一位射手的射击情况:X =此射手反复地无限次射下去所有射击结果全体; 每次射击结果都是一个个体(对应于靶上的一点)个体数量化⎩⎨⎧=未中射中01x1在总体中的比例p 为命中率 0在总体中的比例p -1为非命中率总体X 由无数个0,1构成,其分布为两点分布),1(p B p X P p X P -====1}0{,}1{ 2.样本与样本空间为了对总体的分布进行各种研究,就必需对总体进行抽样观察。

抽样——从总体中按照一定的规则抽出一部分个体的行动。

一般地,我们都是从总体中抽取一部分个体进行观察,然后根据观察所得数据来推断总体的性质。

按照一定规则从总体X 中抽取的一组个体),,,(21n X X X 称为总体的一个样本,显然,样本为一随机向量。

为了能更多更好的得到总体的信息,需要进行多次重复、独立的抽样观察(一般进行n 次),若对抽样要求①代表性:每个个体被抽到的机会一样,保证了n X X X ,,,21 的分布相同,与总体一样。

②独立性:n X X X ,,,21 相互独立。

那么,符合“代表性”和“独立性”要求的样本),,,(21n X X X 称为简单随机样本。

易知,对有限总体而言,有放回的随机样本为简单随机样本,无放回的抽样不能保证n X X X ,,,21 的独立性;但对无限总体而言,无放回随机抽样也得到简单随机样本,我们本书则主要研究简单随机样本。

对每一次观察都得到一组数据(n x x x ,,,21 ),由于抽样是随机的,所以观察值(n x x x ,,,21 )也是随机的。

为此,给出如下定义:定义2:设总体X 的分布函数为)(x F ,若n X X X ,,,21 是具有同一分布函数)(x F 的相互独立的随机变量,则称(n X X X ,,,21 )为从总体X 中得到的容量为n 的简单随机样本,简称样本。

把它们的观察值(n x x x ,,,21 )称为样本值。

定义3:把样本(n X X X ,,,21 )的所有可能取值构成的集合称为样本空间,显然一个样本值(n x x x ,,,21 )是样本空间的一个点。

二、样本的分布:设总体X 的分布函数为)(x F ,(n X X X ,,,21 )是X 的一个样本,则其联合分布函数为:)x ,,x ,x (F n *21=∏=ni 1)(i x F 。

例3:设总体),,(,),1(~21n X X X p B X 为其一个简单随机样本,则样本空间}n ,,,i ;,x )x ,,x ,x {(i n 211021===Ω,因为1{}(1)x x P X x p p -==⋅-,0,1x = 所以样本的联合分布列为:11221122{,,,}{}{}{}n n n n P X x X x X x P X x P X x P X x ======= n i x p p p p p p i x x x x x x nn ,,2,11,0)1()1(.)1(1112211 ==---=---§6.2 分布函数与概率密度函数的近似解在概率论中,我们介绍了几种常用的分布函数以及它们的性质,当时我们总假定它们都是先给定的,而在实际中,所遇到的用于描述随机现象的随机变量,事先并不知道其分布函数,甚至连其分布类型也一无所知,那么,怎么样才能确定它的分布函数)(x F 呢?一般地,利用样本及样本值,建立一定的概率模型,用由此获得的概率统计信息来对总体X 的)(x F 进行估计和推断,这就是: 一、经验分布函数1.定义:设(n X X X ,,,21 )是来自总体X 的样本,用()S x 表示:x R ∀∈,12,,,nX X X 中不大于x 的随机变量的个数,定义经验分布函数为1()()n F x S x x R n=∈。

设(n x x x ,,,21 )是样本的一个观察值,令这n 个数值由小到大的顺序排列后为:*1x ≤*2x ≤*3x ≤……≤*n x ,对∀x ∈R由定义很容易得到经验分布函数的观察值:*()n F x =⎪⎩⎪⎨⎧10n k *n *k *k *x x x x x x x ≥<≤<+11 1,,2,1-=n k通常也称*()n F x 是总体X 的经验分布函数,在不至于混淆的情况下统一用)(x F n 来表示总体X 的经验分布函数。

显然,)(x F n 是单调非降右连续的跳跃函数(阶梯函数),在点*k x x =处有间断,在每个间断点的跃度为n1,(k =1,2,3,…,n )且1)(0≤≤x F n ,)(lim x F n x -∞→=0,)(lim x F n x +∞→=1,它满足分布函数的三个性质,所以必是一个分布函数。

一般地,随着n 的增大,)(x F n 越来越接近X 的分布函数)(x F ,关于这一点,格列汶科(Glivenko )在1953年给了理论上的论证,即:2.定理1(Glivenko-Th ):若总体X 的分布函数为)(x F ,经验分布函数为)(x F n ,则对R x ∈∀,有:}lim(sup |()()|)01n n x P F x F x →∞-∞<<+∞⎧-==⎨⎩[.()()a en F x F x −−−→一致] 定理表明,)(x F n 以概率1一致收敛于)(x F ,即:可以用)(x F n 来近似)(x F ,这也是利用样本来估计和判断总体的基本理论和依据。

例4:某厂从一批荧光灯中抽出10个,测其寿命的数据(单位千时)如下:95.5, 18.1, 13.1, 26.5, 31.7, 33.8, 8.7, 15.0, 48.8, 48.3求该批荧光灯寿命的经验分布函数)(x F n (观察值)。

解:将数据由小到大排列得:8.7,13.1,15.0,18.1,26.5,31.7,33.8,48.8,49.3,95.5, 则经验分布函数为:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧=19.08.07.06.05.04.03.02.01.00)(x F n 5.955.953.493.498.488.488.338.337.317.315.265.261.181.180.150.151.131.137.87.8≥<≤<≤<≤<≤<≤<≤<≤<≤<≤<x x x x x x x x x x x 二、利用直方图求密度函数的近似解:设(n X X X ,,,21 )为来自总体X 的一个样本,其样本观察值为(n x x x ,,,21 ),将该组数值n x x x ,,,21 分成l 组,可作分点:l a a a a ,,,,210 (各组距可以不相等),则各组为:(0a ,1a ],(1a ,2a ],……,(1-l a ,l a ],若样本观察值中每个数值落在各组中的频数分别为1m ,2m ,3m ,…,l m ,则频率分别为:n m 1,n m2……nm l ;以各组为底边,以相应组的频率除以组距为高,建立l 个小矩形,即得总体X 的直方图。

由上分析可知:直方图中每一矩形的面积等于相应组的频率设总体X 的密度函数为)(x f ,则:总体X (真实值)落在第k 组(1-k a ,k a ]的概率为:⎰-kk a a dx x f 1)(。

由Bernoulli 大数定理可知:当n 很大时,样本观察值(单个)落在该区间的频率趋近于此概率;即:(1-k a ,k a ]上矩形的面积接近于)(x f 在此区间上曲边梯形的面积,当n 无限增大时,分组组距越来越小,直方图就越接近总体X 的密度函数)(x f 的图象。

相关文档
最新文档