小升初数学专项题第三十五讲 追及问题_通用版

合集下载

小升初数学专题练习追击问题_通用版(无答案)

小升初数学专题练习追击问题_通用版(无答案)

1、小升初数学专题练习追击问题_通用版(无答案)2、基本关系式:速度差×追及时间=路程差;路程差÷速度差=追及时间;路程差÷追及时间=速度差。

2、追及问题一般是后追前,后者速度一定比前者速度快例1①甲乙二人同地同方向出发,甲每小时走7千米,乙每小时走5千米。

乙先走2小时后,甲才开始走,甲追上乙需要几小时?②甲乙二人同地同方向出发,甲每小时比乙快2千米。

乙先走2小时后,甲才开始走,5小时后追上乙,求甲乙的速度分别是多少?③甲乙二人同地同方向出发,甲每小时比乙快2千米,乙每小时5千米。

乙先出发一段时间后,甲才开始走,5小时后追上乙,求乙比甲提前几小时出发?练一练1)小伟和小华从学校到电影院看电影,小伟以每分60米的速度向影院走去,5分后小华以每分80米的速度向影院走去,结果两人同时到达影院。

学校到影院的路程是多少米?2)小聪和小明从学校到相距2400米的电影院去看电影。

小聪每分行60米,他出发后10分小明才出发,结果俩人同时到达影院,小明每分行多少米?3) 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。

问:两人每秒各跑多少米?例2上午9时有一列货车以每小时49千米的速度从甲城开往乙城,上午11时,又有一列客车以每小时67千米的速度从甲城开往乙城,为了安全,列车间的距离不应小于8千米,那么货车最晚在什么时候停车,让客车开过去?做一做:1)西窗剪烛老师和肖雪皓从相距80米的两地同时同向行走, 肖雪皓在前面每分走50米, 西窗剪烛老师在后面每分走70米,两分后西窗剪烛老师和肖雪皓还相隔多少米?2)有甲,乙两匹马在相距60米的地方同时出发,甲马在前,乙马在后.如果甲马每秒跑10米,乙马每秒跑12米,则当两马相距80米的时候需要多少秒?3)甲乙两人以每分60米的速度同时,同地,同向步行出发.走15分后,甲返回原地取东西,而乙继续前进.甲取东西用去5分钟时间,然后改骑自行车以每分360米的速度去追乙,骑车多少分才能追上?例3小张从家到公园,原打算每分钟走50米。

(完整版)小升初行程问题专项训练之相遇问题追及问题

(完整版)小升初行程问题专项训练之相遇问题追及问题

小升初行程问题专项训练之相遇问题追及问题一、基本公式:1、路程=速度×时间2、相遇问题:相遇路程=速度和×相遇时间3、追及问题:相差路程=速度差×追及时间二、行程问题(一)-----相遇问题例题:1.老李和老刘同时从两地相对出发,老李步行每分钟走8米,老刘骑自行车的速度是老李步行的3倍,经过5分钟后两人相遇,问这两地相距多少米?2.在一条笔直的公路上,王辉和李明骑车从相距900米的A、B两地同时出发,王辉每分钟行200米,李明每分钟行250米,经过多少时间两人相距2700米?(分析各种情况)3.客货两车同时从甲、乙两地相对开出,客车每小时行44千米,货车每小时行52千米,两车相遇后继续以原速度前进,到达乙、甲两地后立即返回,第二次相遇时,货车比客车多行60千米。

问甲、乙两地相距多千米?4.小冬从甲地向乙地走,小青同时从乙地向甲地走,当各自到达终点后,又迅速返回,各自速度不变,两人第一次相遇在距甲地40米处,第二次相遇在距乙地15米处,问甲、乙两地相距多少米?5.甲村、乙村相距6千米,小张与小王分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。

在出发后40分钟两人第一次相遇。

小王到达甲村后返回,在离甲村2千米的地方两人第二次相遇。

问小张和小王两人的速度各是多少?6. 小张与小王分别从甲、乙两村出发,在两村之间往返行走(到达另一村后就马上返回)。

他们离甲村3.5千米处第一次相遇,在离乙村2千米处第二次相遇。

问他们两人第四次相遇的地点离乙村有多远?(相遇指迎面相遇)7.甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。

问:东西两地间的距离是多少千米?8.甲、乙两地相距15千米,小聪和小明分别从甲、乙两地同时相向而行,2小时后在离中点0.5千米处相遇,求小聪和小明的速度。

9.甲、乙两人同时从相距50千米的两地同时出发相向而行,甲每小时行3千米,乙每小时行2千米,与甲同时同向而行的一条小狗,每小时行5千米,小狗在甲、乙之间不停往返,直到两人相遇为止。

追及问题(讲义)六年级下册小升初数学应用题真题汇编通用版

追及问题(讲义)六年级下册小升初数学应用题真题汇编通用版

小升初数学运用题真题汇编典型运用题—追及问题班级姓名得分知识梳理基础题1.(河南南阳六年级期末)一辆客车和一辆轿车先后从南阳出发去郑州,客车先行50千米后轿车出发,客车平均每小时行80千米,轿车平均每小时行100千米。

轿车几小时后追上客车?2.(重庆巴蜀中学招生)有一个200米的环形跑道,甲、乙两人同时从同一地点同方向出发。

甲以每秒0.8米的速度步行,乙以每秒2.4米的速度跑步,乙在第二次追上甲时用了多少秒?提高题3.(安徽滁州六年级期末)小红和妈妈在400米环形跑道上的同一起点处跑步,为了体现公平,妈妈让小红先跑8秒后才去追她,结果又用了20秒才第一次追上她。

已知妈妈的平均速度是每秒7米,小红的平均速度是每秒多少米?4.(重庆西师附中小升初招生)学校组织两个课外兴趣小组去郊外活动。

第一小组每小时行4.5千米,第二小组每小时行3.5千米。

两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组,多长时间能追上第二小组?5.(四川邻水六年级期末)甲船每小时行24千米,乙船每小时行16千米,两船同时相背而行。

2小时后,甲船有事掉头追赶乙船,几小时能追上?6.(四川邻水六年级期末)环形跑道一周长400米,甲、乙两人练习跑步,如果同时、同地背向而行,50秒后第一次相遇,如果同时、同地同向而行,那么,甲需要400秒才能第一次追上乙,求甲、乙二人的速度。

7.(浙江杭州建兰中学小升初分班考试)小轿车每小时比面包车每小时多行6千米,它们同时同地出发,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已超过城门9千米,求出发点到城门的距离。

培优题8.(广东广州白云华附招生)老鼠越狱后开车急速逃窜,黑猫警长发现后立即开警车追捕。

他发现,如果警车的速度是90千米/时,则30分钟后可以追上逃犯,如果警车的速度是100千米/时,则24分钟后可以追上逃犯,但实际警车的速度是110千米/时,则几分钟后可以追上逃犯?9.(浙江杭州小升初考试)小钱和小塘是同班同学且住在同一幢楼。

行程问题:追及问题应用题(小升初专项练习)六年级数学小考总复习(含答案)

行程问题:追及问题应用题(小升初专项练习)六年级数学小考总复习(含答案)

行程问题:追及问题应用题(小升初专项练习)六班级数学小考总复习(含答案)一、追及问题常用的公式:追准时间=追及路程÷(快的速度-慢的速度)追及路程=(快的速度-慢的速度)×追准时间追准时间=两者距离差÷两者速度差两者距离差=两者速度差×追准时间两者速度差=两者距离差÷追准时间快的速度=两者速度差+慢的速度慢的速度=快的速度-两者速度差二、简洁的追及问题的解决方法:(1) 依据问题的类型,找到问题适合的方法与公式。

(2) 除了未知数外,要梳理清楚追及问题里的其余两个条件(路程、时间或速度)。

(3)代入已知有关的路程公式,从而进行求解。

【典型例题】1、一辆货车从A地动身开向距离360千米的B地,由于有个小货物落下了没有装上货车,1.2个小时后一辆小汽车装着这个小货物从A地动身,以每小时行驶115千米的速度朝货车追赶。

已知货车每小时行驶75千米,那么小汽车多久后能追上货车?【例题分析】该题是典型的路程追及问题,现已知货车和小汽车的速度,以及两车相距的路程“75×1.2”。

只需运用追及公式:追准时间=两者距离差÷两者速度差然后代入数据,求出追准时间。

【解答】(75×1.2)÷(115-75)=90÷40=2.25(小时)答:小汽车2.25小时后能追上货车。

【培优练习】1、放学后,贺礼和刘超同时从学校动身去往公车站,两人同向而行,贺礼行走的速度是85米/分,刘超的行走速度是70米/分,10分钟后他们两人相距多少米?2、秦叔叔刚好看到前方有一个跑步者掉落了东西,他距离秦叔叔或许135米远。

跑步者正在以每秒2.3米的速度跑步,秦叔叔此时抓紧以每秒3.2米的速度朝他追去,请问秦叔叔多少秒后可以追上跑步者?3、学校有一条长800米的环形跑道,李俊和石林同时从起点动身,朝同一方向竞赛跑步。

李俊每分钟跑240米,石林每分钟跑200米。

五年级下册小升初专题之追及问题

五年级下册小升初专题之追及问题

追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间追及问题中也涉及到三个量之间关系的转化:路程差=速度差×追及时间速度差=路程差÷追及时间追及时间=路程差÷速度差1.甲、乙二人进行短跑训练,如果甲让乙先跑40米,则甲需要跑20秒追上乙;如果甲让乙先跑6秒,则甲仅用9秒就能追上乙。

求:甲、乙二人的速度各是多少?2.学校组织学生步行去野外实习,每分钟走80米,出发9分钟后,班长发现有重要东西还在学校,就以原速度返回,找到东西再出发时发现又耽搁了18分钟,为了在到达目的地之前赶上队伍他改骑自行车,速度为260米/分,当他追上学生队伍时距目的地还有120米。

求走完全程学生队伍步行需多长时间?3.甲、乙、丙三人从同一地点A地前往B地,甲、乙二人早上8点一起从A地出发,甲每小时走6千米,乙每小时走4千米,丙上午11点才从A地出发。

晚上8点,甲、丙同时到达B地。

求:丙在几点钟追上了乙?4.甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时乙在前,甲在后,出发后8分钟甲、乙第一次相遇,出发后的24分钟时甲、乙第二次相遇。

假设两人的速度保持不变,你知道出发时乙在甲前多少米吗?5.一辆长为12米的大客车以每秒8米的速度由A地开往B地,在距B地4000米处遇见一个行人,l秒后大客车经过这个行人。

大客车到达B地休息了10分钟后返回A地,途中追上这个行人。

大客车从遇到行人到追上行人共用了多少分钟?6.甲、乙两车同时同地出发去同一地点,甲车速度为42千米/小时,乙车速度为35千米/小时。

途中甲车停车5小时,结果甲车比乙车迟1小时到达目的地,求两地间的距离?7.在一条长400米的环形跑道上,正在进行一场5000米的长跑比赛。

1号队员的平均跑步速度是每秒6米,2号队员平均每分钟跑0.8圈。

六年级下册数学小升初专题-相遇追及(多次)、电车问题 全国通用(含答案)

六年级下册数学小升初专题-相遇追及(多次)、电车问题  全国通用(含答案)

小升初数学专题第4讲行程(一)相遇追及(多次)、电车问题一、知识地图简单相遇追及匀速直线行程多次相遇追及(包括火车过桥)发车间隔问题多次相遇追及环形线路行程(包括钟表问题)⎧⎨⎩⎧⎪⎨⎪⎩变速直线行程(求平均速度)流水行船不同参照系的行程自动扶梯行程中的比例关系其他类型(正、反比例运用)相遇点变化问题二、基础知识在历年“小升初”考试和各类小学奥数竞赛试题中,“行程问题”都占有很大的比重。

同时也是小学专题中的难点,“行程问题”经常作为一份试卷中的压轴难题出现,提高解决“行程问题”的能力不仅能帮助在小升初考试和各类数学竞赛中取得优异成绩,还能为今后初中阶段数学、物理学科的学习打下良好的基础。

(一) 典型的相遇和追及所有行程问题是围绕“⨯路程=速度时间”这一条基本关系式的展开,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系,在这里: =⨯路程和速度和相遇时间; =⨯路程差速度差追及时间;这两组关系式中“路程和”或“路程差”实际上对应的是相遇或追及问题中的原始(初始)距离,我们可以通过图示来理解。

(二)多次相遇追及通过图示介绍直线上的相遇和追及的规律 这部分内容涉及以下几个方面:1 求相遇次数2 求相遇地点3 由相遇地点求全程“线段示意图”和“折线示意图”是解行程问题特别是多次相遇问题的重要方法。

追及问题相遇问题举个例子:假设A 、B 两地相距6000米,甲从A 地出发在AB 间往返运动,速度为6千米/小时,乙从B 出发,在AB 间往返运动,速度为4千米/小时。

我们可以依次求出甲、乙每次到达A 点或B 点的时间。

为了说明甲、乙在AB 间相遇的规律,我们可以用“折线示意图”来表示。

折线示意图能将整个行程过程比较清晰的呈现出来:例如AD 表示的是,甲从A 地出发运动到B 地的过程,其中D 点对应的时间为1小时,表示甲第一次到达B 点的时间为1小时,BF 表示乙从B 地出发到达A 地的过程,F 点对应的时间为1.5小时,表示乙第一次到达A 地的时间为1.5小时,AD 与BF 相交于C 点,对应甲、乙的第一次相遇事件,同样的G 点对应是甲、乙的第二次相遇事件。

小升初数学追击问题以及答案

小升初数学追击问题以及答案

小升初数学追击问题以及答案
关于小升初数学追击问题以及答案
小明步行从甲地出发到乙地,李刚骑摩托车同时从乙地出发到甲地。

48分钟后两人相遇,李刚到达甲地后马上返回乙地,在第一次相遇后16分钟追上小明。

如果李刚不停地往返于甲、乙两地,那么当小明到达乙地时,李刚共追上小明几次?
解:李刚行16分钟的路程,小明要行48×2+16=112分钟。

所以李刚和小明的.速度比是112:16=7:1
小明行一个全程,李刚就可以行7个全程。

当李刚行到第2、4、6个全程时,会追上小明。

因此追上3次这是一个关于相遇次数的复杂问题。

解决这类问题最好是画线段帮助分析。

李刚在第一次相遇后16分钟追上小明,如果把小明在这16分钟行的路程看成一份,
那么李刚就行了这样的:48/16*2+1=7份,其中包括小明在48分钟内行的路程的二倍以及小明在相遇后的16分钟内行的路程。

也就是说李刚的速度是小明的7倍。

因此,当小明到达乙地,行了一个全程时,李刚行了7个全程。

在这7个全程中,有4次是从乙地到甲地,与小明是相遇运动,另外3个全程是从甲地到乙地,与小明是追及运动,因此李刚共追上小明3次。

【关于小升初数学追击问题以及答案】。

小升初数学专题练习追击问题_通用版(无答案)-word

小升初数学专题练习追击问题_通用版(无答案)-word

追击问题1、基本关系式:速度差×追及时间=路程差;路程差÷速度差=追及时间;路程差÷追及时间=速度差。

2、追及问题一般是后追前,后者速度一定比前者速度快例1①甲乙二人同地同方向出发,甲每小时走7千米,乙每小时走5千米。

乙先走2小时后,甲才开始走,甲追上乙需要几小时?②甲乙二人同地同方向出发,甲每小时比乙快2千米。

乙先走2小时后,甲才开始走,5小时后追上乙,求甲乙的速度分别是多少?③甲乙二人同地同方向出发,甲每小时比乙快2千米,乙每小时5千米。

乙先出发一段时间后,甲才开始走,5小时后追上乙,求乙比甲提前几小时出发?练一练1)小伟和小华从学校到电影院看电影,小伟以每分60米的速度向影院走去,5分后小华以每分80米的速度向影院走去,结果两人同时到达影院。

学校到影院的路程是多少米?2)小聪和小明从学校到相距2400米的电影院去看电影。

小聪每分行60米,他出发后10分小明才出发,结果俩人同时到达影院,小明每分行多少米?3) 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。

问:两人每秒各跑多少米?例2上午9时有一列货车以每小时49千米的速度从甲城开往乙城,上午11时,又有一列客车以每小时67千米的速度从甲城开往乙城,为了安全,列车间的距离不应小于8千米,那么货车最晚在什么时候停车,让客车开过去?做一做:1)西窗剪烛老师和肖雪皓从相距80米的两地同时同向行走, 肖雪皓在前面每分走50米, 西窗剪烛老师在后面每分走70米,两分后西窗剪烛老师和肖雪皓还相隔多少米?2)有甲,乙两匹马在相距60米的地方同时出发,甲马在前,乙马在后.如果甲马每秒跑10米,乙马每秒跑12米,则当两马相距80米的时候需要多少秒?3)甲乙两人以每分60米的速度同时,同地,同向步行出发.走15分后,甲返回原地取东西,而乙继续前进.甲取东西用去5分钟时间,然后改骑自行车以每分360米的速度去追乙,骑车多少分才能追上?例3小张从家到公园,原打算每分钟走50米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三十五讲追及问题
【知识梳理】追及问题是指两个物体在直线段或环行道路上同向运动,由于各自行驶和运动的速度不同,而后者追上前者的问题。

基本数量关系式:速度差×追及时间= 追及路程
追及路程÷速度差= 追及时间
追及路程÷追及时间= 速度差
【典例精讲1】甲乙两人分别从A村和B村同时向东而行,甲骑自行车每小时行15千米,乙步行每小时行6千米,4小时后,甲追上乙.那么东西两村相距多少千米?
思路分析:根据题意,可得AB两村之间的距离等于甲比乙4小时多走的路程;然后根据速度差×追及时间= 追及路程,用甲乙的速度之差乘以行驶的时间即AB两村的距离。

解答:(15-6)×4
=9×4
=36(千米)
答:东西两村相距36千米.
小结:解决此类问题的关键是要明确甲追上乙时,甲比乙多走的距离就是AB两村的距离,再根据公式“速度差×追及时间= 追及路程”即可解决。

【举一反三】1. 甲,乙两人同时从相距72千米的东西两地同向而行,甲每小时行30千米,乙每小时行12千米。

问:几小时后甲追上乙?
2. 一辆客车以每小时60千米的速度从A地驶向B地,出发1小时后,一辆轿车以每小时80千米的速度也从A地驶向B地,结果比甲车早2小时到达B地。

求A,B两地间的路程是多少?
【典例精讲2】甲、乙两名同学在周长400米的环形跑道上赛跑,己知甲的速度是每分钟80米,乙的速度是张霞的1.25倍,又知乙在甲的前面100米处,问多少分钟后乙可以追上甲?如果她们继续沿相同的方向跑,到第二次追上甲需多长的时间?
思路分析:由于乙在甲的前面100米处,所以在周长400米的环形跑道上,第一次乙追上甲时,乙比甲多走了300米,再根据“追及路程÷速度差= 追及时间”
即可解决,那么第二次乙追上甲时,乙比甲多走了400米。

解答:80×1.25=100(米)
(400-100)÷(100-80)
=300÷20
=15(分钟)
400÷(100-80)=20(分钟)
答:15分钟后乙可以追上甲,第二次追上甲需,2分钟。

小结:解决这类问题的关键是要找到路程差,再根据“追及路程÷速度差= 追及时间”解决。

【举一反三】3. 甲、乙二人在一个400米的环形跑道上散步,若二人同时从同一点同向出发,甲过16分钟第一次从乙身后追上乙,若二人同时从同一点反向而行,只要4分钟就相遇,求甲、乙的速度各是多少?
4. 李明、王丽二人在800米的环形跑道上练习竞走.两人同时出发时李明在王丽的后面.出发6分钟后李明第一次追上王丽,两人走到第26分钟时,又第二次超出王丽.如果两人的速度始终没有改变,问刚开始出发时李明王丽两人相距多少米? 答案及解析:
1.【解析】甲追上乙时,行驶的时间相同,甲比乙多行驶的距离就是东西两地的距离,用“追及路程÷速度差= 追及时间”即可解决。

【答案】:72÷(30-12)
=72÷18
=4(小时)
答:4小时后甲追上乙。

2.【解析】:根据题意可知轿车行完全程要比客车行完全程少用1小时+2小时=3小时,再根据追及问题可知如果同时出发到达时客车比轿车多走3小时的路程,再根据时间=路程差÷速度差,求出客车用的时间,再根据路程=速度×时间求出即可.
【答案】:60×(1+2)÷(80-60)×80,
=180÷20×80,
=9×80,
=720(千米);
答:甲、乙两地的路程是720千米.
3.【解析】从甲第一次追上乙时,可以得到两人的速度之差,根据再相遇,可以得到速度之和,最后利用和差关系即可解决。

【答案】:400÷16=25(米/秒)
400÷4=100(米/秒)
(100+25)÷2=62.5(米/秒)
(100-25)÷2=37.5(米/秒)
答:甲的速度是62.5米/秒,乙的速度是37.5米/秒。

4.【解析】李明第二次王丽时,正好多走了800米,这时利用“追及路程÷追及时间= 速度差”可以求出它们的速度差,再利用“速度差×追及时间= 追及路程”即可解决。

【答案】:800÷(26-6)×6
=240(米)
答:刚开始出发时李明王丽两人相距240米.。

相关文档
最新文档