浙江省台州市2014年中考数学试卷(解析版)

合集下载

2014年浙江省台州市中考模拟数学 (1)

2014年浙江省台州市中考模拟数学 (1)

2014年浙江省台州市中考模拟数学一.选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)-的倒数是( )A. 4B. -C.D. -4解析:-()2的倒数-4.答案:D.2.(3分)下列计算正确是( )A. a2·a3=a6B. a3-a2=aC. (a3)2=a6D. 2a5÷a4=a解析:A、a2·a3=a5,错误;B、原式不能合并,错误;C、(a3)2=a6,正确;D、2a5÷a4=2a,错误,答案:C3.(3分)用科学记数法表示0.0000210,结果是( )A. 2.10×10-4B. 2.10×10-5C. 2.1×10-4D. 2.1×10-5解析:0.0000210=2.10×10-5,答案:B.4.(3分)对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是( )A. 是一条直线B. 过点(,-k)C. 经过一、三象限或二、四象限D. y随着x增大而减小解析:∵k≠0∴-k2>0∴-k2<0∴函数y=-k2x(k是常数,k≠0)符合正比例函数的形式.∴此函数图象经过二四象限,y随x的增大而减小,∴C错误.答案:C.5.(3分)外切两圆的半径R,r分别是方程x2-5x+6=0的两根,则两圆圆心距为( )A. 1B. 5C. 1或5D. 3解析:∵x2-5x+6=0,∴(x-2)(x-3)=0,解得:x=2或x=3,∴半径分别为3,1,∵外切,∴两圆的圆心距为:3+2=5.答案:B.6.(3分)设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( )A. 1.5B. 2C. 2.5D. 3解析:∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b是直角三角形的两条直角边,∴a2+b2=2.52,②由①②可得ab=3,答案:D.7.(3分)用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是( )A.B.C.D.解析:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,答案:C.8.(3分)下列图形中,既是轴对称图形又是中心对称图形的共有( )A. 1个B. 2个C. 3个D. 4个解析:各图形中:(1)不是轴对称图形,是中心对称图形,不符合题意;(2)是轴对称图形,不是中心对称图形,不符合题意;(3)既是轴对称图形,也是中心对称图形,符合题意;(4)既是轴对称图形,又是中心对称图形,符合题意.故既是轴对称图形又是中心对称图形的共有2个.答案:B.二.填空题(共6小题,每小题3分,计18分)9.(3分)函数y=中自变量x的取值范围是.解析:由题意得,x-2>0,解得x>2.答案:x>2.10.(3分)如图,双曲线y=(k>0)与⊙O在第一象限内交于P、Q两点,分别过P、Q两点向x轴和y轴作垂线.已知点P坐标为(1,3),则图中阴影部分的面积为.解析:∵⊙O在第一象限关于y=x对称,y=(k>0)也关于y=x对称,P点坐标是(1,3),∴Q点的坐标是(3,1),∴S阴影=1×3+1×3-2×1×1=4.答案:4.11.(3分)抛物线y=-x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.解析:根据抛物线的图象可知:抛物线的对称轴为x=-1,已知一个交点为(1,0),根据对称性,则另一交点为(-3,0),所以y>0时,x的取值范围是-3<x<1.答案:-3<x<112.(3分)在半径为6cm的圆中,60°的圆心角所对的弧长等于cm(结果保留π).解析:弧长为:=2π.答案:2π.13.(3分)已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为.解析:∵BC∥MN∴=,即=,解得:BC=1∵OB=3∵BC∥EF∴=,即=,解得:EF=∵PE=3∴PF=3-=∴梯形OCFP的面积为:(2+)×3×=3.75故图中阴影部分面积为3.75.答案:3.7514.(3分)如图,已知:∠MON=30°,点A1、A2、A3在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为.解析:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.答案:32.三.解答题.(共58分)15.(5分)计算:|-4|+--cos45°.解析:本题涉及绝对值、负整数指数幂、0指数幂、二次根式化简、特殊角的三角函数值等考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.答案:原式=4+2-1-2×=5-2=3.16.(6分)先化简,再求值:( +1)÷,其中x=-4.解析:将括号内的部分通分相加,将除法转化为乘法同时因式分解,约分后将x=-4代入计算即可.答案:原式=(+)·=·=,当x=-4时,原式==-3.17.(6分)据调查,超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学用所学过的知识在一条笔直的道路上检测车速.如图,观测点C到公路的距离CD为100米,检测路段的起点A位于点C的南偏西60°方向上,终点B位于点C的南偏西45°方向上.某时段,一辆轿车由西向东匀速行驶,测得此车由A处行驶到B处的时间为4秒.问此车是否超过了该路段16米/秒的限制速度?(参考数据:≈1.4,≈1.7)解析:先根据等腰直角三角形的性质得出BD=CD,在Rt△ACD中,由AD=CD·tan∠ACD可得出AD的长,再根据AB=AD-BD求出AB的长,故可得出此时的车速,再与限制速度相比较即可.答案:在Rt△BCD中,∵∠BDC=90°,∠BCD=45°,CD=100米,∴BD=CD=100米.在Rt△ACD中,∵∠ADC=90°,∠ACD=60°,CD=100米,∴AD=CD·tan∠ACD=100(米).∴AB=AD-BD=100-100≈70(米).∴此车的速度为(米/秒).∵17.5>16,∴此车超过了该路段16米/秒的限制速度.18.(6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(-4,1),点B的坐标为(-2,1).(1)画出△ABC绕C点顺时针旋转90°的△A1B1C1并写出A1点的坐标.(2)以原点O为位似中心,位似比为2,在第二象限内作△ABC的位似图形△A2B2C2,并写出C2的坐标.解析:(1)根据△ABC绕C点顺时针旋转90°的△A1B1C1,得出各对应点的坐标即可得出答案;(2)根据位似图形的性质得出对应点位置即可得出答案.答案:(1)如图所示:A1(-2,5);(2)如图所示:C1(-2,4).19.(6分)如图,四边形ABCD中,AD∥BC,AF=CE,BE⊥AC于E,DF⊥AC于F.试判断DC与AB的位置关系,并说明理由.解析:根据ASA证△DFA≌△BEC,推出AD=BC,根据平行四边形的判定得出四边形ABCD是平行四边形,根据平行四边形的性质推出即可.答案:DC∥AB,理由如下:∵AD∥BC,∴∠DAF=∠BCE,又∵BE⊥AC,DF⊥AC,∴∠DFA=∠BEC=90°,在△DFA和△BEC中∵,∴△DFA≌△BEC(ASA),∴AD=BC,∵AD∥BC∴四边形ABCD是平行四边形,∴DC∥AB.20.(7分)某电脑公司现有A、B、C三种型号的甲品牌电脑和D,E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.解析:(1)依据题意先用列表法或画树状图法,列出所有可能的结果,然后根据概率公式求出该事件的概率;(2)(3)根据题意列出方程求解则可.答案:(1)列表如图:有6种可能结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E);(2)因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概率是;(3)由(2)可知,当选用方案(A,D)时,设购买A型号、D型号电脑分别为x,y台,根据题意,得解得,经检验不符合实际,舍去;当选用方案(A,E)时,设购买A型号、E型号电脑分别为a,b台,根据题意,得解得.所以希望中学购买了7台A型号电脑.21.(6分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有人,抽测成绩的众数是;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?解析:(1)用4次的人数除以所占百分比即可得到总人数,人数最多的次数即为该组数据的众数;(2)用总人数减去其他各组的人数即可得到成绩为5次的人数;(3)用总人数乘以达标率即可得到达标人数.答案:(1)从条形统计图和扇形统计图可知,达到4次的占总人数的20%,∴总人数为:10÷20%=50人,众数为5次;(2)如图.(3)∵被调查的50人中有36人达标,∴350名九年级男生中估计有350×=252人.22.(7分)某租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地收割小麦,其中30台派往A地,20台派往B地.两地区与该租赁公司商定的每天的租赁价格如下:(1)设派往A地x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),请用x表示y,并注明x的范围.(2)若使租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案写出.解析:(1)派往A地x台乙型联合收割机,那么派往B地(30-x)台,派往A地的(30-x)台甲型收割机,派往B地(20-30+x)台,可得y=(30-x)×1800+(x-10)×1600+1600x+(30-x)×1200,10≤x≤30.(2)根据题意可列不等式(30-x)×1800+(x-10)×1600+1600x+(30-x)×1200≥79600,解出x 看有几种方案.答案:(1)y=(30-x)×1800+(x-10)×1600+1600x+(30-x)×1200=200x+74000,10≤x≤30;(2)200x+74000≥79600,解得x≥28,三种方案,依次为x=28,29,30的情况(13分)①当x=28时,派往A地28台乙型联合收割机,那么派往B地2台乙,派往A地的2台甲型收割机,派往B地18台甲.②当x=29时,派往A地29台乙型联合收割机,那么派往B地1台乙,派往A地的1台甲型收割机,派往B地19台甲.③当x=30时,派往A地30台乙型联合收割机,那么派往B地0台乙,派往A地的0台甲型收割机,派往B地20台甲.23.(9分)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=-x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式.(2)当DE=4时,求四边形CAEB的面积.(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.解析:(1)首先求出点A、B的坐标,然后利用待定系数法求出抛物线的解析式;(2)设点C坐标为(m,0)(m<0),根据已知条件求出点E坐标为(m,8+m);由于点E在抛物线上,则可以列出方程求出m的值.在计算四边形CAEB面积时,利用S四边形CAEB=S△A CE+S梯形OCEB-S△BCO,可以简化计算;(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.答案:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=-4,∴A(-4,0),B(0,4).∵点A(-4,0),B(0,4)在抛物线y=-x2+bx+c上,∴,解得:b=-3,c=4,∴抛物线的解析式为:y=-x2-3x+4.(2)设点C坐标为(m,0)(m<0),则OC=-m,AC=4+m.∵OA=OB=4,∴∠BAC=45°,∴△ACD为等腰直角三角形,∴CD=AC=4+m,∴CE=CD+DE=4+m+4=8+m,∴点E坐标为(m,8+m).∵点E在抛物线y=-x2-3x+4上,∴8+m=-m2-3m+4,解得m1=m2=-2.∴C(-2,0),AC=OC=2,CE=6,S四边形CAEB=S△ACE+S梯形OCEB-S△BCO=×2×6+(6+4)×2-×2×4=12.(3)设点C坐标为(m,0)(m<0),则OC=-m,CD=AC=4+m,BD=OC=-m,则D(m,4+m). ∵△ACD为等腰直角三角形,△DBE和△DAC相似∴△DBE必为等腰直角三角形.i)若∠BED=90°,则BE=DE,∵BE=OC=-m,∴DE=BE=-m,∴CE=4+m-m=4,∴E(m,4).∵点E在抛物线y=-x2-3x+4上,∴4=-m2-3m+4,解得m=0(不合题意,舍去)或m=-3,∴D(-3,1);ii)若∠EBD=90°,则BE=BD=-m,在等腰直角三角形EBD中,DE=BD=-2m,∴CE=4+m-2m=4-m,∴E(m,4-m).∵点E在抛物线y=-x2-3x+4上,∴4-m=-m2-3m+4,解得m=0(不合题意,舍去)或m=-2,∴D(-2,2).综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(-3,1)或(-2,2).。

2014-2015年浙江省台州市三门县城关中学八年级上学期期中数学试卷和答案

2014-2015年浙江省台州市三门县城关中学八年级上学期期中数学试卷和答案

2014-2015学年浙江省台州市三门县城关中学八年级(上)期中数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)下列图形中具有不稳定性的是()A.长方形B.等腰三角形C.直角三角形D.锐角三角形3.(3分)小芳有两根长度为4cm和9cm的木条,他想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择的木条的长度只能是()A.5 cm B.3 cmC.17 cm D.12 cm4.(3分)在直角坐标系中,点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,2)B.(2,﹣1)C.(﹣1,﹣2)D.(1,﹣2)5.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD 的面积是()A.2 B.5 C.10 D.206.(3分)如图,AB∥DC,AB=DC,要使∠A=∠C,直接利用三角形全等的判定方法是()A.AAS B.SAS C.ASA D.SSS7.(3分)小明在镜子里看到自己的像在用右手拿着梳子向左梳头,那么他实际是()A.用右手向左梳头 B.用左手向右梳头C.用右手向右梳头 D.用左手向左梳头8.(3分)若n边形恰好有n条对角线,则n为()A.4 B.5 C.6 D.79.(3分)如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系()A.EF>BE+CF B.EF=BE+CF C.EF<BE+CF D.不能确定10.(3分)如图,△ABC的中线BE与CD交于点G,连结DE,下列结论不正确的是()A.点G叫做△ABC的重心B.S△ADC=2S△BDEC.S△BDG=S△CEG D.S△ABC=3S△ADE二、填空题(本题有6小题,每小题3分,共18分)11.(3分)一个外角和与内角和相等的多边形是.12.(3分)如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°.那么∠BCD的度数等于度.13.(3分)如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,这样的点P共有个.14.(3分)如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为.15.(3分)已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是.16.(3分)如图是用黑白两种颜色的正六边形地砖,按规律拼成的若干个图案,按此规律请你写出:第5个图案中有白色地砖块;第n块图案中有白色地砖块.三、解答题(本题有8小题,第17~18题每题4分,第19~21题每题6分,第22,23题每题8分,第24题10分,共52分)17.(4分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使△QAC的周长最小.18.(4分)已知等腰三角形底角的度数是顶角度数的三倍少15°,求这个等腰三角形顶角的度数.19.(6分)如图,已知∠ACB=∠ADB=90°,AC=AD,E在AB上,连接CE、DE (1)请你找出与点E有关的所有全等的三角形.(2)选择(1)中的一对全等三角形加以证明.20.(6分)如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°,求∠DAE的度数.21.(6分)如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.22.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.23.(8分)如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情况.情形一:如图2,沿等腰三角形△ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿∠B1A1C 的平分线A1B2折叠,此时点B1与点C重合.探究发现:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?.(填“是”或“不是”)(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n 次折叠∠BAC是△ABC的好角,则∠B与∠C不妨设∠B>∠C)之间的等量关系为.应用提升:(3)小丽找到一个三角形,三个角分别为15°,60°,105°,发现60°和105°的两个角都是此三角形的好角,请你完成,如果一个三角形的最小角是18°,试直接写出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.24.(10分)学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N 分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:①;②;③.并对②,③的判断,选择一个给出证明.2014-2015学年浙江省台州市三门县城关中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.(3分)下列图形中具有不稳定性的是()A.长方形B.等腰三角形C.直角三角形D.锐角三角形【解答】解:等腰三角形,直角三角形,锐角三角形都具有稳定性,长方形不具有稳定性.故选:A.3.(3分)小芳有两根长度为4cm和9cm的木条,他想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择的木条的长度只能是()A.5 cm B.3 cmC.17 cm D.12 cm【解答】解:设木条的长度为lcm,则9﹣4<l<9+4,即5<l<13.故选:D.4.(3分)在直角坐标系中,点M(1,2)关于x轴对称的点的坐标为()A.(﹣1,2)B.(2,﹣1)C.(﹣1,﹣2)D.(1,﹣2)【解答】解:点M(1,2)关于x轴对称的点的坐标为:(1,﹣2).故选:D.5.(3分)如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD 的面积是()A.2 B.5 C.10 D.20【解答】解:过D作DE⊥AB于E,∵∠C=90°,∴DC⊥AC,∵AD平分∠BAC,CD=2,∴CD=DE=2,∴S=×AB×DE=×5×2=5,△ABD故选:B.6.(3分)如图,AB∥DC,AB=DC,要使∠A=∠C,直接利用三角形全等的判定方法是()A.AAS B.SAS C.ASA D.SSS【解答】解:∵AB∥∥DC,∴∠ABD=∠CDB,在△ABD和△CDB中∵,∴△ABD≌△CDB(SAS),∴∠A=∠C.故选:B.7.(3分)小明在镜子里看到自己的像在用右手拿着梳子向左梳头,那么他实际是()A.用右手向左梳头 B.用左手向右梳头C.用右手向右梳头 D.用左手向左梳头【解答】解:根据镜面对称的性质,当你面对镜子的时候,右手拿着梳子向左梳头,对于镜子中的像来说是左手拿着梳子,向右梳头.故选:B.8.(3分)若n边形恰好有n条对角线,则n为()A.4 B.5 C.6 D.7【解答】解:依题意有=n,n(n﹣5)=0,解得n=0(不合题意舍去)或n=5.故选:B.9.(3分)如图,△ABC中BD、CD平分∠ABC、∠ACB,过D作直线平行于BC,交AB、AC于E、F,当∠A的位置及大小变化时,线段EF和BE+CF的大小关系()A.EF>BE+CF B.EF=BE+CF C.EF<BE+CF D.不能确定【解答】解:由BD平分∠ABC得,∠EBD=∠ABC,∵EF∥BC,∴∠AEF=∠ABC=2∠EBD,∠AEF=∠EBD+∠EDB,∴∠EBD=∠EDB,∴△BED是等腰三角形,∴ED=BE,同理可得,DF=FC,(△CFD是等腰三角形)∴EF=ED+EF=BE+FC,∴EF=BE+CF.故选:B.10.(3分)如图,△ABC的中线BE与CD交于点G,连结DE,下列结论不正确的是()A.点G叫做△ABC的重心B.S△ADC=2S△BDEC.S△BDG=S△CEG D.S△ABC=3S△ADE【解答】解:∵△ABC的中线BE与CD交于点G,∴G是△ABC的重心,故(A)正确;∵△ABC的中线BE与CD交于点G,=S△ADC=S△ABC,S△BDE=S△ABE,∴S△ABE=2S△BDE,故(B)正确;∴S△ADC∵△ABC的中线BE与CD交于点G,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,=S△BCE,∴S△BCD∴S=S△CEG,故(C)正确;△BDG∵DE∥BC,∴△ADE∽△ABC,∴=,=4S△ADE,故(D)错误;∴S△ABC故选:D.二、填空题(本题有6小题,每小题3分,共18分)11.(3分)一个外角和与内角和相等的多边形是四边形.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故答案是:四边形.12.(3分)如图,如果直线m是多边形ABCDE的对称轴,其中∠A=130°,∠B=110°.那么∠BCD的度数等于60度.【解答】解:把AE与直线m的交点记作F,∵在四边形ABCF中,∠A=130°,∠B=110°,且直线m是多边形的对称轴;∴∠BCD=2∠BCF=2×(360°﹣130°﹣110°﹣90°)=60°.故填60°.13.(3分)如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,这样的点P共有6个.【解答】解:如图,①AB的垂直平分线交AC一点P 1(PA=PB),交直线BC于点P2;②以A为圆心,AB为半径画圆,交AC有二点P3,P4,交BC有一点P2,(此时AB=AP);③以B为圆心,BA为半径画圆,交BC有二点P5,P2,交AC有一点P6(此时BP=BA).故符合条件的点有6个.故答案为:6.14.(3分)如图,在△ABC中,AB=AC,DE是AB的中垂线,△BCE的周长为14,BC=6,则AB的长为8.【解答】解:∵DE是AB的中垂线∴AE=BE,∵△BCE的周长为14∴BC+CE+BE=BC+CE+AE=BC+AC=14∵BC=6∴AC=8∴AB=AC=8.故填8.15.(3分)已知△ABC的三边长a、b、c,化简|a+b﹣c|﹣|b﹣a﹣c|的结果是2(b﹣c).【解答】解:∵△ABC的三边长分别是a、b、c,∴a+b>c,b﹣a<c,∴a+b﹣c>0,b﹣a﹣c<0,∴|a+b﹣c|﹣|b﹣a﹣c|=a+b﹣c﹣(﹣b+a+c)=a+b﹣c+b﹣a﹣c=2(b﹣c);故答案为:2(b﹣c)16.(3分)如图是用黑白两种颜色的正六边形地砖,按规律拼成的若干个图案,按此规律请你写出:第5个图案中有白色地砖22块;第n块图案中有白色地砖4n+2块.【解答】解:第一个图形中有6块白色地砖;第二个图形中有6+4=10块白色地砖;第三个图形中有6+2×4=14块白色地砖;第4个图形中有6+3×4=18块白色地砖;第5个图形中有6+4×4=22块白色地砖;…第n个图形中有6+(n﹣1)×4=4n+2块白色地砖.故答案为:22,4n+2.故答案为:18,4n+2.三、解答题(本题有8小题,第17~18题每题4分,第19~21题每题6分,第22,23题每题8分,第24题10分,共52分)17.(4分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC(顶点均在格点上)关于直线DE对称的△A1B1C1;(2)在DE上画出点Q,使△QAC的周长最小.【解答】解:(1)所作图形如图所示:(2)如图所示:利用轴对称图形的性质可得点C关于直线DE的对称点C1,连接AC1,交直线DE于点Q,点Q即为所求,此时△QAC的周长最小.18.(4分)已知等腰三角形底角的度数是顶角度数的三倍少15°,求这个等腰三角形顶角的度数.【解答】解:设顶角为x度,则底角为(3x﹣15)°,则:3x﹣15+3x﹣15+x=180,解得:x=30,所以这个等腰三角形顶角的度数是30°.19.(6分)如图,已知∠ACB=∠ADB=90°,AC=AD,E在AB上,连接CE、DE (1)请你找出与点E有关的所有全等的三角形.(2)选择(1)中的一对全等三角形加以证明.【解答】(1)△ACE≌△ADE,△BCE≌△BDE;(2)在RT△ABC和RT△ABD中,,∴△ABC≌△ABD(HL),∴∠CAB=∠DAB,在△ACE和△ADE中,,∴△ACE≌△ADE(SAS).20.(6分)如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°,求∠DAE的度数.【解答】解:在△ABC中∠BAC=180﹣∠B﹣∠C=80°,又∵AE平分∠BAC,∴∠EAC=40°,在直角△ACD中,∠DAC=90﹣∠C=60°,∴∠DAE=∠DAC﹣∠EAC=20°.21.(6分)如图所示,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.求证:BF=2CF.【解答】证明:连接AF,(1分)∵AB=AC,∠BAC=120°,∴∠B=∠C==30°,(1分)∵AC的垂直平分线EF交AC于点E,交BC于点F,∴CF=AF(线段垂直平分线上的点到线段两端点的距离相等),∴∠FAC=∠C=30°(等边对等角),(2分)∴∠BAF=∠BAC﹣∠FAC=120°﹣30°=90°,(1分)在Rt△ABF中,∠B=30°,∴BF=2AF(在直角三角形中,30°角所对的直角边等于斜边的一半),(1分)∴BF=2CF(等量代换).22.(8分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.【解答】证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中∴△ACD≌△BEC(SAS),(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.23.(8分)如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n与点C重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.小丽展示了确定∠BAC是△ABC的好角的两种情况.情形一:如图2,沿等腰三角形△ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿△ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;将余下的部分沿∠B1A1C 的平分线A1B2折叠,此时点B1与点C重合.探究发现:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?是.(填“是”或“不是”)(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系∠B=3∠C.根据以上内容猜想:若经过n 次折叠∠BAC是△ABC的好角,则∠B与∠C不妨设∠B>∠C)之间的等量关系为∠B=n∠C.应用提升:(3)小丽找到一个三角形,三个角分别为15°,60°,105°,发现60°和105°的两个角都是此三角形的好角,请你完成,如果一个三角形的最小角是18°,试直接写出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.【解答】解:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角;理由如下:小丽展示的情形二中,∵沿∠BAC的平分线AB1折叠,∴∠B=∠AA1B1;又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,∴∠A1B1C=∠C;∵∠AA1B1=∠C+∠A1B1C(外角定理),∴∠B=2∠C;故答案是:是;(2)∠B=3∠C;在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C 的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C重合,则∠BAC是△ABC的好角.证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1B1C=∠A1A2B2,∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1﹣∠A1B1C=∠BAC+2∠B﹣2C=180°,根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,∴∠B=3∠C;由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;故答案为:∠B=3∠C;∠B=n∠C(3)由(2)知,∠B=n∠C,∠BAC是△ABC的好角,因为最小角是18°是△ABC的好角,根据好角定义,则可设另两角分别为18m°,18mn°(其中m、n都是正整数).由题意,得18m+18mn+18=180,所以m(n+1)=9.因为m、n都是正整数,所以m与n+1是9的整数因子,因此有:m=1,n+1=9;m=3,n+1=3;所以m=1,n=8;m=3,n=2;所以18m=18°,18mn=144°;18m=54°,18mn=108°.所以该三角形的另外两个角的度数分别为:18°,144°;54°,108°;24.(10分)学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N 分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:①是;②是;③否.并对②,③的判断,选择一个给出证明.【解答】(1)证明:在△ABM和△BCN中,,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∴∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60°.(2)①是;②是;③否.②的证明:如图,在△ACM和△BAN中,,∴△ACM≌△BAN(SAS),∴∠AMC=∠BNA,∴∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°﹣60°=120°,∴∠BQM=60°.③的证明:如图,在Rt△ABM和Rt△BCN中,,∴Rt△ABM≌Rt△BCN(SAS),∴∠AMB=∠BNC.又∵∠NBM+∠BNC=90°,∴∠QBM+∠QMB=90°,∴∠BQM=90°,即∠BQM≠60°.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.B4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

2014-2015年浙江省台州市玉环县八年级(下)期中数学试卷(解析版)

2014-2015年浙江省台州市玉环县八年级(下)期中数学试卷(解析版)

2014-2015学年浙江省台州市玉环县八年级(下)期中数学试卷一、选择题(40分)1.(4分)若正比例函数y=kx(k≠0)的图象经过(﹣1,3),则k的值为()A.﹣1B.﹣3C.1D.32.(4分)已知四边形ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是()A.B.C.D.3.(4分)已知正方形的边长为1,则它的对角线的长为()A.1B.2C.D.24.(4分)一次函数y=﹣5x+3的图象经过的象限是()A.一,二,三B.二,三,四C.一,二,四D.一,三,四5.(4分)菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是()A.10B.20C.30D.406.(4分)如图,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm7.(4分)若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣18.(4分)如图,矩形OABC的一顶点O恰好落在平面直角坐标系的坐标原点处,边OA与x轴正方向的夹角为30°.连结AC.若AB=6,AC=10,则点A的坐标为()A.(,4)B.(4,4)C.(4,)D.(4,2)9.(4分)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x+a,y+b),B(x,y),下列结论正确的是()A.a>0B.a<0C.b=0D.ab<0 10.(4分)动手操作:在矩形纸片ABCD中,AB=6,AD=10.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P,Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为()A.4cm B.6cm C.8cm D.10cm二、填空题(30分)11.(5分)在平行四边形ABCD中,∠A=50°,则∠C=.12.(5分)如图,正方形ABCD的面积为4cm2,则图中阴影部分的面积为cm2.13.(5分)如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式ax+b<0的解集是.14.(5分)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“联盟数”.若“联盟数”[1,m﹣5]的一次函数是正比例函数,则m的值为.15.(5分)如图,已知四边形ABCD是菱形,∠A=72°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3=度.16.(5分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B4的坐标是,B2015的坐标是.三.解答题(80分)17.(8分)计算:(﹣3)2+﹣(π﹣3.14)0.18.(8分)已知y与x+1成正比例关系,当x=2时,y=1,求:当x=﹣3时y的值.19.(8分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.20.(8分)若正比例函数y=﹣x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解.21.(10分)某地区的电力资源丰富,并且得到了较好的开发.该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x(度)与相应电费y(元)之间的函数图象如图所示.(1)当月用电量为100度时,应交电费元;(2)当x≥100时,求y与x之间的函数关系式为;(3)月用电量为260度时,应交电费元.22.(12分)(1)在图1中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),请写出图中的顶点C的坐标(,).(2)在图2中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),求出图中的标点C的坐标,并说明理由(C点坐标用含c,d,e的代数式表示).归纳与发现(3)通过对图1,2的观察,你会发现:图3中的平行四边形ABCD的顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)时,则横坐标a,c,m,e 之间的等量关系为.23.(12分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(﹣1,0)、(2,0).(1)求直线AB的函数表达式;(2)直线AB上有一点P,使得△PBC的面积等于9,求点P的坐标;(3)设点D与A、B、C点构成平行四边形,直接写出所有符合条件的点D的坐标.24.(14分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C 出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB 方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2014-2015学年浙江省台州市玉环县八年级(下)期中数学试卷参考答案与试题解析一、选择题(40分)1.(4分)若正比例函数y=kx(k≠0)的图象经过(﹣1,3),则k的值为()A.﹣1B.﹣3C.1D.3【解答】解:∵正比例函数y=kx(k≠0)的图象经过(﹣1,3),∴3=﹣k,解得:k=﹣3.故选:B.2.(4分)已知四边形ABCD是平行四边形,则下列各图中∠1与∠2一定不相等的是()A.B.C.D.【解答】解:A正确;∵∠1和∠2是对顶角,∴∠1=∠2;B、D正确;∵四边形ABCD是平行四边形,∴∠B=∠D,AB∥CD,∴∠1=∠2;C不正确;故选:C.3.(4分)已知正方形的边长为1,则它的对角线的长为()A.1B.2C.D.2【解答】解:根据勾股定理,得正方形的对角线的长==.故选:C.4.(4分)一次函数y=﹣5x+3的图象经过的象限是()A.一,二,三B.二,三,四C.一,二,四D.一,三,四【解答】解:∵y=﹣5x+3∴k=﹣5<0,b=3>0∴直线经过第一、二、四象限.故选:C.5.(4分)菱形的一个内角是120°,一条较短的对角线的长为10,则菱形的周长是()A.10B.20C.30D.40【解答】解:如图,∵菱形ABCD中,∠ABC=120°,∴AB=AD,∠A=60°,∴△ABD是等边三角形,∴AB=BD=10,∴菱形的周长是:40.故选:D.6.(4分)如图,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为()A.3cm B.6cm C.9cm D.12cm【解答】解:∵四边形ABCD是平行四边形,∴OA=OC;又∵点E是BC的中点,∴BE=CE,∴AB=2OE=2×3=6(cm)故选:B.7.(4分)若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A.2B.﹣2C.1D.﹣1【解答】解:将点(m,n)代入函数y=2x+1得,n=2m+1,整理得,2m﹣n=﹣1.故选:D.8.(4分)如图,矩形OABC的一顶点O恰好落在平面直角坐标系的坐标原点处,边OA与x轴正方向的夹角为30°.连结AC.若AB=6,AC=10,则点A的坐标为()A.(,4)B.(4,4)C.(4,)D.(4,2)【解答】解:在直角△ABC中,BC===8,则OA=BC=8.在直角△OAD中,AD=OA•sin∠AOD=8×=4,OD=OA•cos∠AOD=8×=4.则A的坐标是(4,4).故选:A.9.(4分)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A (x+a,y+b),B(x,y),下列结论正确的是()A.a>0B.a<0C.b=0D.ab<0【解答】解:∵根据函数的图象可知:y随x的增大而增大,∴y+b<y,x+a<x,∴b<0,a<0,∴选项A、C、D都不对,只有选项B正确,故选:B.10.(4分)动手操作:在矩形纸片ABCD中,AB=6,AD=10.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P,Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为()A.4cm B.6cm C.8cm D.10cm【解答】解:①当p与B重合时,BA′=BA=6,CA′=BC﹣BA′=10﹣6=4cm,②当Q与D重合时,由勾股定理,得CA′==8cm,CA′最远是8,CA′最近是4,点A′在BC边上可移动的最大距离为8﹣4=4cm,故选:A.二、填空题(30分)11.(5分)在平行四边形ABCD中,∠A=50°,则∠C=50°.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A=50°.故答案为50.12.(5分)如图,正方形ABCD的面积为4cm2,则图中阴影部分的面积为2 cm2.【解答】解:如图:,因为阴影部分A的面积等于空白部分B的面积,阴影部分C的面积等于空白部分D的面积,所以图中阴影部分的面积等正方形ABCD的面积的一半,所以图中阴影部分的面积为:4÷2=2(cm2).故答案为:2.13.(5分)如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式ax+b<0的解集是x<2.【解答】解:从图象上得到函数值y随x的增大而增大,一次函数y=ax+b的图象经过A(2,0),即当x=2时,y=0,∴关于x的不等式ax+b<0的解集是x<2.故本题答案为:x<2.14.(5分)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“联盟数”.若“联盟数”[1,m﹣5]的一次函数是正比例函数,则m的值为5.【解答】解:根据正比例函数的意义,若“联盟数”[1,m﹣5]的一次函数是正比例函数,则m﹣5=0,解得m=5.故答案为:5.15.(5分)如图,已知四边形ABCD是菱形,∠A=72°,将它分割成如图所示的四个等腰三角形,那么∠1+∠2+∠3=90度.【解答】解:∵四边形ABCD是菱形,∴∠A=∠C=72°,∵∠6=∠C=72°,∴∠3=180﹣2×72°=36°,∵∠6=∠2+∠5=2∠2=72°,∴∠2=36°,∵∠2=∠1+∠4=2∠1=36°,∴∠1=18°,∴∠1+∠2+∠3=36°+36°+18°=90°.故答案为:90.16.(5分)正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置,点A1、A2、A3和点C1、C2、C3、…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B4的坐标是(15,8),B2015的坐标是(22015﹣1,22014).【解答】解:∵点B1(1,1),B2(3,2),∴A1(0,1)A2(1,2)A3(3,4),∴直线y=kx+b(k>0)为y=x+1,的横坐标,纵坐标为An的纵坐标∴Bn的横坐标为A n+1又A n的横坐标数列为An=2n﹣1﹣1,所以纵坐标为2n﹣1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n﹣1,2n﹣1).所以B4的坐标是(24﹣1,23),即(15,8).B2015的坐标(22015﹣1,22014),故答案为:(15,8),(22015﹣1,22014).三.解答题(80分)17.(8分)计算:(﹣3)2+﹣(π﹣3.14)0.【解答】解:原式=9+2﹣1=10.18.(8分)已知y与x+1成正比例关系,当x=2时,y=1,求:当x=﹣3时y的值.【解答】解:y=k(x+1),将x=2,y=1代入得:1=3k,解得:k=,∴函数解析式为:y=x+,当x=﹣3时,y=﹣3×+=﹣.19.(8分)如图,在▱ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:四边形BFDE是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴AD﹣AE=BC﹣CF,∴ED=BF,又∵AD∥BC,∴四边形BFDE是平行四边形.20.(8分)若正比例函数y=﹣x的图象与一次函数y=x+m的图象交于点A,且点A的横坐标为﹣1.(1)求该一次函数的解析式;(2)直接写出方程组的解.【解答】解:(1)将x=﹣1代入y=﹣x,得y=1,则点A坐标为(﹣1,1).将A(﹣1,1)代入y=x+m,得﹣1+m=1,解得m=2,所以一次函数的解析式为y=x+2;(2)方程组的解为.21.(10分)某地区的电力资源丰富,并且得到了较好的开发.该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x(度)与相应电费y(元)之间的函数图象如图所示.(1)当月用电量为100度时,应交电费60元;(2)当x≥100时,求y与x之间的函数关系式为y=x+10(x≥100);(3)月用电量为260度时,应交电费140元.【解答】解:(1)根据函数图象,知:当x=100时,y=60,故当月用电量为100时,应交付电费60元;(2)设一次函数为y=kx+b,当x=100时,y=60;当x=200时,y=110∴解得:所求的函数关系式为:y=x+10(x≥100)(3)当x=260时,y=×260+10=140∴月用量为260度时,应交电费140元.22.(12分)(1)在图1中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),请写出图中的顶点C的坐标(5,2).(2)在图2中,平行四边形ABCD的顶点A,B,C,D的坐标(如图),求出图中的标点C的坐标,并说明理由(C点坐标用含c,d,e的代数式表示).归纳与发现(3)通过对图1,2的观察,你会发现:图3中的平行四边形ABCD的顶点坐标为A(a,b),B(c,d),C(m,n),D(e,f)时,则横坐标a,c,m,e 之间的等量关系为a+m=c+e.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=4,∵B(1,2),∴C(5,2);故答案为:5,2.(2)C(e+c,d);证明如下:过点B作BM⊥AD于M,过点C作CN⊥AD于N,在平行四边形ABCD中,AB=CD,AB∥CD,∴∠BAM=∠CDN,∵∠AMB=∠DNC=90°,在△AMB和△CDN中,,∴△AMB≌△DNC(AAS),∴AM=DN,BM=CN,∴C点坐标为(e+c,d);(3)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,BC∥AD,BC=AD,∴a﹣c=e﹣m,即a+m=c+e.故答案为:a+m=c+e.23.(12分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(﹣1,0)、(2,0).(1)求直线AB的函数表达式;(2)直线AB上有一点P,使得△PBC的面积等于9,求点P的坐标;(3)设点D与A、B、C点构成平行四边形,直接写出所有符合条件的点D的坐标.【解答】解:(1)设直线AB的函数解析式为y=kx+b,∵直线AB经过点A(0,2)、B(﹣1,0),得,解得.∴直线AB的函数解析式为y=2x+2;(2)由题意,设点P的坐标为(x,2x+2),S△POA=×BC×|p y|=×3×|2x+2|=9.解得x=2或x=﹣4.故点P的坐标是(2,6)或(﹣4,﹣6);(3)当AD=BC,AB=DC时,AD=BC=3,D(3,2);当AD=BC,BD=AC时,AD=BC=3,D(﹣3,2)当AC=BD,AB=DC时,D(1,﹣2);综上所述:点D与A、B、C点构成平行四边形,点D的坐标为(3,2)、(﹣3,2)、(1,﹣2).24.(14分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C 出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB 方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).。

2014年浙江省台州市中考数学试卷含答案.docx

2014年浙江省台州市中考数学试卷含答案.docx

2014 年中考真题浙江省台州市2014 年中考数学试卷一、选择题(本题有10 个小题,每小题 4 分,共40 分.请选出各题中一个符合题意的正确选项,不选,多选,错选,均不得分)1.( 4 分)( 2014?台州)计算﹣4×(﹣ 2)的结果是()A . 8B .﹣ 8C. 6D.﹣ 2考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:﹣ 4×(﹣ 2),=4 ×2,=8 .故选 A .点评:本题考查了有理数的乘法,是基础题,熟记运算法则是解题的关键.2.( 4 分)( 2014?台州)如图,由相同的小正方体搭成的几何体的主视图是()A .B .C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解;从正面看第一层是三个正方形,第二层是中间一个正方形,故选: D .点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.( 4 分)( 2014?台州)如图,跷跷板垂足为 D, OD=50cm ,当它的一端BAB 的支柱 OD着地时,另一端经过它的中点O,且垂直与地面A 离地面的高度AC 为()BC,A . 25cmB .50cm C. 75cm D. 100cm考点:三角形中位线定理专题:应用题.分析:判断出 OD 是△ ABC 的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AC=2OD .解答:解:∵ O 是 AB 的中点, OD 垂直于地面, AC 垂直于地面,∴ OD 是△ ABC 的中位线,∴ AC=2OD=2 ×50=100cm .故选 D.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,关键.熟记定理是解题的4.( 4 分)( 2014?台州)下列整数中,与最接近的是()A . 4B .5C. 6D. 7考点:估算无理数的大小分析:根据 5,25解答:解:与最接近的是故选: B .与5,30 的距离小于36 与 30的距离,可得答案.点评:本题考查了估算无理数的大小,两个被开方数的差小,算术平方根的差也小是解题关键.5.( 4 分)( 2014?台州)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A .B.C. D .考点:圆周角定理.分析:根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.解答:解:∵直径所对的圆周角等于直角,∴从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是 B .故选 B.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.6.( 4 分)( 2014?台州)某品牌电插座抽样检查的合格率为()A .购买 100 个该品牌的电插座,一定有99 个合格B .购买 1000 个该品牌的电插座,一定有10 个不合格C.购买 20 个该品牌的电插座,一定都合格D.即使购买一个该品牌的电插座,也可能不合格99%,则下列说法总正确的是考点:概率的意义.分析:根据概率的意义,可得答案.解答:解; A 、 B、 C、说法都非常绝对,故 A 、 B 、C 错误;D 、即使购买一个该品牌的电插座,也可能不合格,说法合理,故 D 正确;故选: D .点评:本题考查了概率的意义,本题解决的关键是理解概率的意义以及必然事件的概念.7.(4 分)( 2014?台州)将分式方程1﹣=去分母,得到正确的整式方程是()A . 1﹣ 2x=3 B .x﹣ 1﹣ 2x=3C. 1+2x=3D. x﹣ 1+2x=3考点:解分式方程.专题:计算题.分析:分式方程两边乘以最简公分母x﹣ 1,即可得到结果.解答:解:分式方程去分母得:x﹣ 1﹣ 2x=3,故选 B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.v 8.( 4 分)( 2014?台州)如图,把一个小球垂直向上抛出,则下列描述该小球的运动速度(单位: m/s)与运动时间(单位:s)关系的函数图象中,正确的是()A .B .C.D.考点:动点问题的函数图象分析:一个小球垂直向上抛出,小球的运动速度v 越来越小,到达最高点是为0,小球下落时速度逐渐增加,据此选择即可.解答:解:根据分析知,运动速度v 先减小后增大,故选: C.点评:本题主要考查了动点问题的函数图象.分析小球的运动过程是解题的关键.9.( 4 分)( 2014?台州)如图, F 是正方形ABCD 的边 CD 上的一个动点,BF 的垂直平分线交对角线AC 于点 E,连接 BE ,FE,则∠ EBF 的度数是()A . 45°B .50°C. 60°D.不确定考点:全等三角形的判定与性质;正方形的性质.分析:证明 Rt△ BHE ≌ Rt△ EIF ,可得∠ IEF+ ∠ HEB=90 °,再根据BE=EF 即可解题.解答:解:如图所示,过 E 作 HI ∥ BC,分别交AB 、CD 于点 H、 I ,则∠ BHE= ∠EIF=90 °,∵E 是 BF 的垂直平分线 EM 上的点,∴ EF=EB ,∵E 是∠ BCD 角平分线上一点,∴ E 到 BC 和 CD 的距离相等,即BH=EI,Rt △ BHE 和 Rt△ EIF 中,,∴Rt△ BHE ≌ Rt△ EIF( HL ),∴∠ HBE= ∠ IEF ,∵∠HBE+ ∠HEB=90 °,∴∠ IEF+ ∠ HEB=90 °,∴∠ BEF=90 °,∵ BE=EF ,∴∠ EBF=∠ EFB=45 °,故选 A .点评:本题考查了正方形角平分线和对角线重合的性质,考查了直角三角形全等的判定,考查了全等三角形对应角相等的性质.10.( 4 分)( 2014?台州)如图,菱形 ABCD 的对角线 AC=4cm ,把它沿着对角线 AC 平移 1cm 得到菱形 EFGH ,则图中阴影部分图形的面积与四边形 EMCN 的面积之比为 (方向)A . 4: 3B .3: 2C . 14: 9D . 17: 9考点 :菱形的性质;平移的性质分析:首先得出 △ MEC ∽△ DAC ,则=,进而得出=,即可得出答案.解答:解:∵ ME ∥ AD ,∴△ MEC ∽△ DAC ,∴= ,∵菱形 ABCD 的对角线 AC=4cm ,把它沿着对角线 AC 方向平移 1cm 得到菱形 EFGH ,∴ AE=1cm , EC=3cm ,∴ =,∴ = ,∴图中阴影部分图形的面积与四边形EMCN 的面积之比为:=.故选: C .点评:此题主要考查了菱形的性质以及相似三角形的判定与性质,得出=是解题关键.二、填空题(本题有 6 小题,每小题5 分,共 30 分) 11.(5 分)( 2014?台州)计算 x?2x 2 的结果是 2x 3. 考点 :单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.2 3解答:解: x?2x =2x .故答案是: 2x 3.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.12.( 5 分)( 2014?台州)如图折叠一张矩形纸片,已知∠1=70 °,则∠ 2 的度数是55° .考点:平行线的性质;翻折变换(折叠问题).分析:根据折叠性质得出∠2=∠ EFG,求出∠ BEF ,根据平行线性质求出∠CFE,即可求出答案.解答:解:根据折叠得出∠EFG= ∠ 2,∵∠ 1=70°,∴∠ BEF=∠ 1=70°,∵AB ∥ DC ,∴∠ EFC=180°﹣∠ BEF=110 °,∴∠ 2=∠EFG= ∠ EFC=55 °,故答案为: 55°.点评:本题考查了平行线的性质,折叠的性质,对顶角相等的应用,解此题的关键是能根据平行线性质求出∠ CFE 的度数. !13.( 5 分)( 2014?台州)因式分解3的结果是a( a+2)( a﹣ 2).a ﹣4a考点:提公因式法与公式法的综合运用专题:计算题.分析:原式提取 a 后,利用平方差公式分解即可.2解答:解:原式 =a( a ﹣ 4)=a( a+2)( a﹣ 2).故答案为: a( a+2)( a﹣ 2).点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(5 分)(2014?台州)抽屉里放着黑白两种颜色的袜子各在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是1 双(除颜色外其余都相同),.考点:列表法与树状图法分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与它们恰好同色的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有 12 种等可能的结果,它们恰好同色的有 4 种情况,∴它们恰好同色的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.15.( 5 分)( 2014?台州)如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点 A 、B,并使 AB 与车轮内圆相切于点 D,做 CD ⊥ AB 交外圆于点 C.测得AB=60cm ,则这个车轮的外圆半径为 50 cm.CD=10cm ,考点:垂径定理的应用;勾股定理分析:设点 O 为外圆的圆心,连接OA 和 OC,根据 CD=10cm , AB=60cm ,设设半径为r,则 OD=r ﹣ 10,根据垂径定理得:222r =( r﹣ 10) +30,求得 r 的值即可.解答:解:如图,设点 O 为外圆的圆心,连接OA 和 OC,∵ CD=10cm , AB=60cm ,∴设半径为 r,则 OD=r ﹣10,222根据题意得: r =( r﹣ 10) +30,解得: r=50,故答案为50.2014 年中考真题点评:本题考查了垂径定理的应用,解题的关键是正确构造直角三角形.16.(5 分)( 2014?台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第 n 次运算的结果y n=(用含字母x 和 n 的代数式表示).考点:分式的混合运算.专题:图表型;规律型.分析:将 y1代入 y2计算表示出y2,将 y2代入 y3计算表示出y3,归纳总结得到一般性规律即可得到结果.解答:解:将y1=代入得:y2==;将 y2 =代入得:y3==,依此类推,第n 次运算的结果y n=.故答案为:点评:此题考查了分式的混合运算,找出题中的规律是解本题的关键.2014 年中考真题三、解答题(本题共 8 小题,第17~ 20 题每题 8 分,第 21 题 10分,第 22、 23 题每题 12分,第24 题 14 分,共 80 分)17.( 8分)( 2014?台州)计算: |2﹣1|+(﹣()﹣ 1﹣ 1).考点:实数的运算;零指数幂;负整数指数幂.分析:分别根据 0 指数幂及负整数指数幂的运算法则、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;解答:解:原式 =2﹣1+1﹣=.点评:本题考查的是实数的运算,熟知0 指数幂及负整数指数幂的运算法则、绝对值的性质是解答此题的关键.18.( 8 分)( 2014?台州)解不等式组:,并把解集在如图数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.解答:解:∵解不等式①得: x> 2,解不等式②得: x< 3,∴不等式组的解集为2< x< 3,在数轴上表示为:.点评:本题考查了解一元一次不等式和解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是求出不等式组的解集.19.( 8 分)( 2014?台州)已知反比函数 y=,当x=2时,y=3.(1)求 m 的值;(2)当 3≤x≤6 时,求函数值 y 的取值范围.考点:待定系数法求反比例函数解析式;反比例函数的性质分析:( 1)把 x、 y 的值代入反比例函数解析式,通过方程来求m 的值;( 2)根据反比例函数图象的性质进行解答.解答:时, y=3 代入 y=,得解:( 1)把 x=22014 年中考真题3=,解得: m=﹣ 1;( 2)由 m=﹣ 1 知,该反比例函数的解析式为:y= .当x=3 时, y=2;当x=6 时, y=1.∴当 3≤x≤6 时,函数值 y 的取值范围是:1≤y≤2.点评:本题考查了反比例函数的性质,待定系数法求反比例函数解析式.(1)题,实际上是把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程20.( 8 分)(2014?台州)如图EF⊥ AD ,垂足为 A , AB=CD 1 是某公交汽车挡风玻璃的雨刮器,其工作原理如图 2.雨刷且AD=BC ,这样能使雨刷 EF 在运动时,始终垂直于玻璃窗下沿 BC,请证明这一结论.考点:平行四边形的判定与性质.专题:应用题.分析:首先证明四边形ABCD 是平行四边形,然后根据平行四边形的性质即可判断.解答:证明:∵ AB=CD 、 AD=BC ,∴四边形ABCD 是平行四边形,∴AD ∥BC ,又∵ EF⊥ AD ,∴EF⊥ BC .点评:本题考查了平行四边形的判定与性质,正确理解平行四边形的判定方法是关键.21.( 10 分)( 2014?台州)如图,某翼装飞行员从离水平地面高AC=500m 的 A 处出发,沿这俯角为 15°的方向,直线滑行 1600 米到达 D 点,然后打开降落伞以 75°的俯角降落到地面上的 B 点.求他飞行的水平距离 BC(结果精确到 1m).考点:解直角三角形的应用-仰角俯角问题.分析:首先过点 D 作 DE⊥ AC 于点 E,过点 D 作 DF⊥ BC 于点 F,进而里锐角三角函数关系得出 DE 、 AE 的长,即可得出 DF 的长,求出 BC 即可.解答:解:过点 D 作 DE⊥ AC 于点 E,过点 D 作 DF⊥ BC 于点 F,由题意可得:∠ADE=15 °,∠ BDF=15 °, AD=1600m , AC=500m ,∴ cos∠ ADE=cos15 °=≈0.97,∴≈0.97,解得: DE=1552 ( m),sin15°=≈0.26,∴≈0.26,解得; AE=416 ( m),∴DF=500﹣ 416=84 (m),∴ tan∠ BDF=tan15 °=≈0.27,∴≈0.27,解得: BF=22.68 ( m),∴BC=CF+BF=1552+22.68=1574.68 ≈1575 (m),答:他飞行的水平距离为 1575m .点评:此题主要考查了解直角三角形的应用,正确构造直角三角形得出CF,BF 的长是解题关键.22.( 12 分)( 2014?台州)为了估计鱼塘中成品鱼(个体质量在0.5kg 及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如表:质量 /kg0.50.60.7 1.0 1.2 1.6 1.9数量 /条181518512然后做上记号再放回水库中,过几天又捕捞了100 条成品鱼,发现其中 2 条带有记号.(1)请根据表中数据补全如图的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1kg ).考点:频数(率)分布直方图;用样本估计总体.分析:( 1)由函数图象可以得出 1.1﹣ 1.4 的有 5 条,就可以补全直方图;( 2)分别求出各组的频率,就可以得出结论;( 3)由这组数据的个数为50,就可以得出第25 个和第 26 个数的平均数就可以得出结论;( 4)设鱼塘中成品鱼的总质量为x,根据作记号的鱼50: x=2: 100 建立方程求出其解即可.解答:解:( 1)由函数图象可以得出 1.1﹣ 1.4 的有 5 条,补全图形,得:( 2)由题意,得0.5﹣ 0.8 的频率为: 24÷50=0.48,0.8﹣ 1.1 的频率为: 18÷50=0.36,1.1﹣ 1.4 的频率为: 5÷50=0.1,1.4﹣ 1.7 的频率为: 1÷50=0.02,1.7﹣2.0 的频率为: 2÷50=0.04.∵ 0.48> 0.36> 0.1> 0.04>0.02.∴估计从鱼塘中随机捕一条成品鱼,其质量落在0.5﹣0.8的可能性最大;26 个数分别是 1.0,1.0,( 3)这组数据的个数为50,就可以得出第25 个和第∴( 1.0+1.0)÷2=1.0鱼塘里质量中等的成品鱼,其质量落在0.8﹣ 1.1 内;( 4)设鱼塘中成品鱼的总质量为x,由题意,得50: x=2: 100,解得: x=2500 .2500 ×=2260kg .点评:本题考查了频数分布直方图的运用,比较频率大小的运用,中位数的运用,平均数的运用,由样本数据估计总体数据的运用,解答时认真分析统计表和统计图的数据是关键.23.( 12 分)( 2014?台州)某公司经营杨梅业务,以 3 万元 / 吨的价格向农户收购杨梅后,分拣成A 、B 两类, A 类杨梅包装后直接销售; B 类杨梅深加工后再销售. A 类杨梅的包装成本为 1 万元 /吨,根据市场调查,它的平均销售价格 y(单位:万元 /吨)与销售数量 x(x≥2)之间的函数关系如图; B 类杨梅深加工总费用 s(单位:万元)与加工数量 t(单位:吨)之间的函数关系是 s=12+3t,平均销售价格为 9 万元 /吨.(1)直接写出 A 类杨梅平均销售价格 y 与销售量 x 之间的函数关系式;(2)第一次,该公司收购了 20 吨杨梅,其中 A 类杨梅有 x 吨,经营这批杨梅所获得的毛利润为 w 万元(毛利润 =销售总收入﹣经营总成本).①求 w 关于 x 的函数关系式;②若该公司获得了30 万元毛利润,问:用于直销的 A 类杨梅有多少吨?(3)第二次,该公司准备投入 132 万元,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.考点:二次函数的应用分析:( 1)这是一个分段函数,分别求出其函数关系式;(2)① 当 2≤x< 8 时及当 x≥8 时,分别求出 w 关于 x 的表达式.注意 w= 销售总收入﹣经营总成本 =wA+wB ﹣ 3×20;②若该公司获得了30 万元毛利润,将30 万元代入①中求得的表达式,求出 A 类杨梅的数量;( 3)本问是方案设计问题,总投入为132 万元,这笔 132 万元包括购买杨梅的费用+A 类杨梅加工成本 +B 类杨梅加工成本.共购买了m 吨杨梅, 其中 A 类杨梅为 x 吨,B 类杨梅为( m ﹣ x )吨,分别求出当 2≤x < 8 时及当 x ≥8 时 w 关于 x 的表达式,并分别求出其最大值.解答:解:( 1) ① 当 2≤x < 8 时,如图,设直线 AB 解析式为: y=kx+b ,将 A ( 2,12)、 B ( 8, 6)代入得:,解得,∴ y=﹣ x+14 ;② 当 x ≥8 时, y=6 .∴ A 类杨梅平均销售价格y 与销售量 x 之间的函数关系式为:y=.( 2)设销售 A 类杨梅 x 吨,则销售 B 类杨梅( 20﹣ x )吨. ① 当 2≤x < 8 时,wA=x (﹣ x+14 )﹣ x= ﹣ x 2+13x ;wB=9 ( 20﹣ x )﹣ [12+3( 20﹣ x ) ] =108﹣ 6x∴ w=wA+wB ﹣ 3×202=(﹣ x +13x ) +(108﹣ 6x )﹣ 602=﹣ x +7x+48 ; 当 x ≥8 时, wA=6x ﹣x=5x ;wB=9 ( 20﹣ x )﹣ [12+3( 20﹣ x ) ] =108﹣ 6x ∴ w=wA+wB ﹣ 3×20 =( 5x ) +( 108﹣ 6x )﹣ 60 =﹣ x+48 .∴ w 关于 x 的函数关系式为: w=.2② 当 2≤x < 8 时,﹣ x +7x+48=30 ,解得 x 1=9, x 2=﹣ 2,均不合题意; 当 x ≥8 时,﹣ x+48=30 ,解得 x=18 .∴当毛利润达到 30 万元时,直接销售的A 类杨梅有18 吨.( 3)设该公司用 132 万元共购买了 m 吨杨梅, 其中 A 类杨梅为 x 吨,B 类杨梅为 (m ﹣ x )吨,则购买费用为 3m 万元, A 类杨梅加工成本为 x 万元, B 类杨梅加工成本为[12+3 (m﹣ x ) ] 万元,∴ 3m+x+[12+3 ( m ﹣ x ) ]=132,化简得: x=3m ﹣60.① 当 2≤x < 8 时,wA=x (﹣ x+14 )﹣ x= ﹣ x 2+13x ;wB=9 ( m﹣ x)﹣ [12+3 (m﹣x) ]=6m ﹣ 6x﹣ 12∴w=wA+wB ﹣ 3×m2﹣ 12)﹣ 3m=(﹣ x +13x ) +(6m﹣ 6x2=﹣ x +7x+3m ﹣ 12.22将 3m=x+60 代入得: w= ﹣x +8x+48=﹣( x﹣ 4) +64∴当 x=4 时,有最大毛利润64 万元,此时 m=, m﹣ x=;②当 x>8 时,wA=6x ﹣x=5x ;wB=9 ( m﹣ x)﹣ [12+3 (m﹣x) ]=6m ﹣ 6x﹣ 12∴w=wA+wB ﹣ 3×m=( 5x) +( 6m﹣ 6x﹣12)﹣ 3m=﹣ x+3m ﹣12.将3m=x+60 代入得: w=48∴当 x> 8 时,有最大毛利润48 万元.综上所述,购买杨梅共吨,其中 A 类杨梅 4 吨, B 类吨,公司能够获得最大毛利润,最大毛利润为64 万元.点评:本问是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.24.(14 分)( 2014?台州)研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.定义:六个内角相等的六边形叫等角六边形.(1)研究性质①如图 1,等角六边形ABCDEF 中,三组正对边AB 与 DE, BC 与 EF, CD 与 AF 分别有什么位置关系?证明你的结论②如图 2,等角六边形ABCDEF 中,如果有AB=DE ,则其余两组正对边BC 与 EF,CD 与AF 相等吗?证明你的结论③如图 3,等角六边形ABCDEF 中,如果三条正对角线AD ,BE ,CF 相交于一点O,那么三组正对边AB 与 DE, BC 与 EF, CD 与 AF 分别有什么数量关系?证明你的结论.(2)探索判定三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?。

【中考12年】浙江省台州市2001-中考数学试题分类解析 专题11 圆

【中考12年】浙江省台州市2001-中考数学试题分类解析 专题11 圆

【中考12年】浙江省台州市2001-2012年中考数学试题分类解析专题11 圆一、选择题1. (2001年浙江舟山、嘉兴、台州、丽水4分)已知⊙O的半径是4,P是⊙O外的一点,且PO=8,从点P引⊙O的两条切线,切点分别是A,B,则AB=【】A.4 B...2. (2001年浙江舟山、嘉兴、台州、丽水4分)如图,⊙O1和⊙O2外切于点P,过点P的直线AB分别交⊙O1,⊙O2于点A,B.已知⊙O1和⊙O2的面积比是3:1,则AP:BP=【】:A.3:1 B.6:1 C.9:1 D13. (2002年浙江台州4分)如图,⊙O的两条割线PAB,PCD分别交⊙O于点A,B和点C,D.已知PA=6,AB=4,PC=5,则CD=【】(A )103 (B ) 245(C ) 7 (D )244. (2003年浙江台州4分)如图,四个半径均为R 的等圆彼此相切,则图中阴影部分(形似水壶)图形 的面积为【 】A 、24RB 、2R πC 、 22R πD 、 24R π5. (2004年浙江温州、台州4分)如图,PT 是外切两圆的公切线,T 为切点,PAB 、PCD分别为这两圆的割线,若PA=3,PB=6,PC=2,则PD 等于【 】(A) 12 (B) 9 (C) 8 (D) 46. (2005年浙江台州4分)如图所示的两圆位置关系是【 】(A )相离 (B )外切 (C )相交 (D ) 内切7. (2005年浙江台州4分)如图,半径为1的圆中,圆心角为120°的扇形面积为【 】(A )31 (B )21 (C )π31 (D ) π218. (2005年浙江台州4分)如图,PA 、PB 是⊙O 的切线,A 、 B 为切点,OP 交AB 于点D ,交⊙O于点C , 在线段AB 、PA 、PB 、PC 、CD 中,已知其中两条线段的长,但还无法..计算出⊙O 直径的两条线 段是【 】(A )AB 、CD (B )PA 、PC (C )PA 、AB (D )PA 、PB9. (2006年浙江台州4分)直径所对的圆周角是【】(A)锐角(B)直角(C)钝角(D)无法确定10. (2006年浙江台州4分)如图,已知⊙O中,弦AB,CD相交于点P,AP=6,BP=2,CP=4,则PD的长是【】(A)6 (B)5 (C)4 (D)311. (2006年浙江台州4分)我们知道,“两点之间线段最短”,“直线外一点与直线上各点连结的所有线段中,垂线段最短”.在此基础上,人们定义了点与点的距离,点到直线的距离.类似地,若点P是⊙O外一点(如图),则点P与⊙O的距离应定义为【】(A)线段PO的长度(B)线段PA的长度(C)线段PB的长度(D)线段PC的长度12. (2008年浙江台州4分)下列命题中,正确的是【】①顶点在圆周上的角是圆周角;②圆周角的度数等于圆心角度数的一半;③900的圆周角所对的弦是直径;④不在同一条直线上的三个点确定一个圆;⑤同弧所对的圆周角相等A.①②③B.③④⑤C.①②⑤D.②④⑤13. (2009年浙江台州4分)大圆半径为6,小圆半径为3,两圆圆心距为10,则这两圆的位置关系为【】A.外离 B.外切C.相交 D.内含14. (2010年浙江台州4分)如图,⊙O的直径CD⊥AB,∠AOC=50°,则∠CDB大小为【】A.25° B.30° C.40° D.50°15. (2011年浙江台州4分)如图是一个组合烟花的横截面,其中16个圆的半径相同,点A、B、C、D分别是四个角上的圆的圆心,且四边形ABCD为正方形.若圆的半径为r,组合烟花的高为h,则组合烟花侧面包装纸的面积至少需要(接缝面积不计) 【】A .26h πB .24rh rh π+C .12rh 2rh π+D .24rh 2rh π+16. (2011年浙江台州4分)如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为【 】A .13B .5C .3D .217. (2012年浙江台州4分)如图,点A 、B 、C 是⊙O 上三点,∠AOC=130°,则∠ABC 等于【 】A . 50°B .60°C .65°D .70°二、填空题1. (2001年浙江舟山、嘉兴、台州、丽水5分)如图,OA ,OB 是⊙O 的两条半径,BC 是⊙O的切线,且∠AOB=84°,则∠ABC的度数为▲ 度.2. (2010年浙江台州5分)如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E.则直线CD与⊙O的位置关系是▲ ,阴影部分面积为(结果保留π) ▲ .3. (2011年浙江台州5分)如图,CD是⊙O的直径,弦AB⊥CD,垂足为点M,AB=20,分别以CM、DM为直径作两个大小不同的⊙O1和⊙O2,则图中阴影部分的面积为▲ (结果保留 ).4. (2012年浙江台州5分)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16厘米,则球的半径为▲ 厘米.三、解答题1. (2001年浙江舟山、嘉兴、台州、丽水10分)如图,⊙O的两条割线PAB和PCD分别交⊙O于点A,B和点C,D.已知PA=2,PC=4,PD=7,AC=CD,求PB,BD的长.2. (2002年浙江台州14分)如图,已知半圆O的直径AB=10,⊙O1与半圆O内切干点C,与AB相切干点D.(1)求证:CD平分∠ACB;(2)若AC:CB=1:3,求△CDB的面积S△CDB;(3)设AC:CB=x(x>0),⊙O1的半径为 y,请用含x的代数式表示y.3. (2003年浙江台州8分)如图PA是△ABC的外接圆O的切线,A是切点,PD∥AC,且PD与AB、AC分别相交于E、D。

历年浙江省台州市中考数学试卷(含答案)

历年浙江省台州市中考数学试卷(含答案)

2017年浙江省台州市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)5的相反数是()A.5 B.﹣5 C.D.﹣2.(4分)如图所示的工件是由两个长方体构成的组合体,则它的主视图是()A.B.C.D.3.(4分)人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为()A.978×103B.97.8×104C.9.78×105D.0.978×1064.(4分)有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数5.(4分)如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.1 B.2 C.D.46.(4分)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=,当电压为定值时,I关于R的函数图象是()A.B.C.D.7.(4分)下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b28.(4分)如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE9.(4分)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟10.(4分)如图,矩形EFGH的四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD 面积的时,则为()A.B.2 C.D.4二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)因式分解:x2+6x=.12.(5分)如图,已知直线a∥b,∠1=70°,则∠2=.13.(5分)如图,扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为120°,AB长为30厘米,则的长为厘米.(结果保留π)14.(5分)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为元/千克.15.(5分)三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为.16.(5分)如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C 分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是.三、解答题(本大题共8小题,共80分)17.(8分)计算:+(﹣1)0﹣|﹣3|.18.(8分)先化简,再求值:(1﹣)•,其中x=2017.19.(8分)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64;cos40°≈0.77;tan40°≈0.84)20.(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.21.(10分)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.(1)下列选取样本的方法最合理的一种是.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:①m=,n=;②补全条形统计图;③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.22.(12分)如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.23.(12分)交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度,密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:速度v(千米/小时)…51020324048…流量q(辆/小时) (55)01000160017921601152…(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是(只填上正确答案的序号)①q=90v+100;②q=;③q=﹣2v2+120v.(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题.①市交通运行监控平台显示,当12≤v<18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值.24.(14分)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2﹣5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m就是方程x2﹣5x+2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程ax2+bx+c=0(a≠0,b2﹣4ac≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1),Q(m2,n2)就是符合要求的一对固定点?2017年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017•台州)5的相反数是()A.5 B.﹣5 C.D.﹣【分析】根据相反数的定义求解即可.【解答】解:5的相反数是﹣5,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)(2017•台州)如图所示的工件是由两个长方体构成的组合体,则它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看下边是一个矩形,上边是一个小矩形,两矩形没有邻边,故选:A.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(4分)(2017•台州)人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为()A.978×103B.97.8×104C.9.78×105D.0.978×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:978000用科学记数法表示为:9.78×105,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(4分)(2017•台州)有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【分析】根据各自的定义判断即可.【解答】解:有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的方差,故选A【点评】此题考查了统计量的选择,弄清方差表示的意义是解本题的关键.5.(4分)(2017•台州)如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.1 B.2 C.D.4【分析】作PE⊥OA于E,根据角平分线的性质解答.【解答】解:作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,PE⊥OA,∴PE=PD=2,故选:B.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.(4分)(2017•台州)已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=,当电压为定值时,I关于R的函数图象是()A.B.C.D.【分析】根据反比例函数的性质即可解决问题.【解答】解:∵I=,电压为定值,∴I关于R的函数是反比例函数,且图象在第一象限,故选C.【点评】本题考查反比例函数的性质,解题的关键是理解反比例函数的定义,灵活运用所学知识解决问题.7.(4分)(2017•台州)下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.(4分)(2017•台州)如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选C.【点评】本题考查了等腰三角形的性质,当等腰三角形的底角对应相等时其顶角也相等,难度不大.9.(4分)(2017•台州)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟【分析】设小王的行车时间为x分钟,小张的行车时间为y分钟,根据题意列出小王和小张车费的代数式,两者相等,计算可得出时间差.【解答】解:设小王的行车时间为x分钟,小张的行车时间为y分钟,依题可得:1.8×6+0.3x=1.8×8.5+0.3y+0.8×(8.5﹣7),10.8+0.3x=16.5+0.3y,0.3(x﹣y)=5.7,x﹣y=19.故这两辆滴滴快车的行车时间相差19分钟.故选:D.【点评】考查了二元一次方程的应用,解题的关键是仔细审题,确定已知量和未知量,找出它们之间的等量关系.10.(4分)(2017•台州)如图,矩形EFGH的四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的时,则为()A.B.2 C.D.4【分析】设重叠的菱形边长为x,BE=BF=y,由矩形和菱形的对称性以及折叠的性质得:四边形AHME、四边形BENF是菱形,得出EN=BE=y,EM=x+y,由相似的性质得出AB=4MN=4x,求出AE=AB﹣BE=4x﹣y,得出方程4x﹣y=x+y,得出x=y,AE=y,即可得出结论.【解答】解:设重叠的菱形边长为x,BE=BF=y,由矩形和菱形的对称性以及折叠的性质得:四边形AHME、四边形BENF是菱形,∴AE=EM,EN=BE=y,EM=x+y,∵当重叠部分为菱形且面积是菱形ABCD面积的,且两个菱形相似,∴AB=4MN=4x,∴AE=AB﹣BE=4x﹣y,∴4x﹣y=x+y,解得:x=y,∴AE=y,∴==;故选:A.【点评】本题考查了折叠的性质、菱形的判定与性质、矩形的性质、相似多边形的性质等知识;熟练掌握菱形的判定与性质是解决问题的关键.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)(2017•台州)因式分解:x2+6x=x(x+6).【分析】根据提公因式法,可得答案.【解答】解:原式=x(6+x),故答案为:x(x+6).【点评】本题考查了因式分解,利用提公因式法是解题关键.12.(5分)(2017•台州)如图,已知直线a∥b,∠1=70°,则∠2=110°.【分析】先根据平角定义求出∠1的邻补角=180°﹣∠1,再根据两直线平行,同位角相等即可得解.【解答】解:∵∠1=70°,∴∠1的邻补角=180°﹣∠1=110°,∵a∥b,∴∠2=110°.故答案为:110°.【点评】本题考查了平行线的性质,平角定义;熟记平行线的性质是解题的关键.13.(5分)(2017•台州)如图,扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为120°,AB长为30厘米,则的长为20π厘米.(结果保留π)【分析】根据弧长公式l=列式计算即可得解.【解答】解:的长==20π(厘米).故答案为:20π.【点评】本题考查了弧长的计算,熟记弧长公式是解题的关键.14.(5分)(2017•台州)商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为10元/千克.【分析】设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥,解得,x≥10,故为避免亏本,商家把售价应该至少定为每千克10元.故答案为:10.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.15.(5分)(2017•台州)三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽签后每个运动员的出场顺序都发生变化的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,抽签后每个运动员的出场顺序都发生变化有2种情况,∴抽签后每个运动员的出场顺序都发生变化的概率=,故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.16.(5分)(2017•台州)如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D 在正六边形内部(包括边界),则正方形边长a的取值范围是≤a≤3﹣.【分析】当正方形ABCD的顶点A、B、C、D在正六边形的边上时,正方形的边长的值最大,解直角三角形得到a,当正方形ABCD的对角线AC在正六边形一组平行的对边的中点上时,正方形边长a的值最小,AC是正方形的对角线,解直角三角形即可得到结论.【解答】解:①当正方形ABCD的对角线AC在正六边形一组平行的对边的中点上时,正方形边长a的值最小,AC是正方形的对角线,∴AC=A′D=,∴a=,②当正方形ABCD的四个顶点都在正六边形的边上时,正方形边长a的值最大,AC是正方形的对角线AC,则△AEB是等腰三角形,四边形AFGD是等腰梯形,过F,G分别作FH⊥AD,GN⊥AD,设AE=x,则AF=1﹣x,∴AB=x,AH=DN=(1﹣x),∴AD=1+(1﹣x),∴x=1+(1﹣x),∴x=﹣1,∴AB=3﹣,∴正方形边长a的取值范围是:≤a≤3﹣,故答案为:≤a≤3﹣.【点评】本题考查了正多边形与圆,正方形的性质,解直角三角形,正确的找出正方形边长的最大值和最小值是解题的关键.三、解答题(本大题共8小题,共80分)17.(8分)(2017•台州)计算:+(﹣1)0﹣|﹣3|.【分析】直接利用绝对值的性质以及零指数幂的性质和二次根式的性质分别化简求出答案.【解答】解:原式=3+1﹣3=1.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、二次根式、绝对值等考点的运算.18.(8分)(2017•台州)先化简,再求值:(1﹣)•,其中x=2017.【分析】根据分式的减法和乘法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1﹣)•===,当x=2017时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(8分)(2017•台州)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64;cos40°≈0.77;tan40°≈0.84)【分析】过点A作AC⊥OB,垂足为点C,解三角形求出AC的长度,进而作出比较即可.【解答】解:过点A作AC⊥OB,垂足为点C,在Rt△ACO中,∵∠AOC=40°,AO=1.2米,∴AC=sin∠AOC•AO≈0.64×1.2=0.768,∵汽车靠墙一侧OB与墙MN平行且距离为0.8米,∴车门不会碰到墙.【点评】本题主要考查了解直角三角形的应用,解题的关键是正确添加辅助线,此题难度不大.20.(8分)(2017•台州)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P (1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及解含绝对值符号的一元一次方程,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据CD=2,找出关于a的含绝对值符号的一元一次方程.21.(10分)(2017•台州)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.(1)下列选取样本的方法最合理的一种是③.(只需填上正确答案的序号)①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:①m=20,n=6;②补全条形统计图;③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.【分析】(1)根据抽样调查时选取的样本需具有代表性即可求解;(2)①首先根据A类有80户,占8%,求出抽样调査的家庭总户数,再用D类户数除以总户数求出m,用E类户数除以总户数求出n;②用总户数分别减去A、B、D、E、F类户数,得到C类户数,即可补全条形统计图;③根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;④用180万户乘以样本中送回收点的户数所占百分比即可.【解答】解:(1)根据抽样调查时选取的样本需具有代表性,可知下列选取样本的方法最合理的一种是③.①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.(2)①抽样调査的家庭总户数为:80÷8%=1000(户),m%==20%,m=20,n%==6%,n=6.故答案为20,6;②C类户数为:1000﹣(80+510+200+60+50)=100,条形统计图补充如下:③根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;④180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体以及抽样调查的可靠性.22.(12分)(2017•台州)如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.(1)求证:△APE是等腰直角三角形;(2)若⊙O的直径为2,求PC2+PB2的值.【分析】(1)只要证明∠AEP=∠ABP=45°,∠PAB=90°即可解决问题;(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,可得PM=AN,由△PCM,△PNB都是等腰直角三角形,推出PC=PM,PB=PN,可得PC2+PB2=2(PM2+PN2)=2(AN2+PN2)=2PA2=PE2=22=4;【解答】(1)证明:∵AB=AC,∠BAC=90°,∴∠C=∠ABC=45°,∴∠AEP=∠ABP=45°,∵PE是直径,∴∠PAB=90°,∴∠APE=∠AEP=45°,∴AP=AE,∴△PAE是等腰直角三角形.(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,∴PM=AN,∵△PCM,△PNB都是等腰直角三角形,∴PC=PM,PB=PN,∴PC2+PB2=2(PM2+PN2)=2(AN2+PN2)=2PA2=PE2=22=4.(也可以证明△ACP≌△ABE,△PBE是直角三角形)【点评】本题考查三角形的外接圆与外心、勾股定理、矩形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题,属于中考常考题型.23.(12分)(2017•台州)交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度,密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:速度v(千米/小时)…51020324048…流量q(辆/小时) (55)01000160017921601152…(1)根据上表信息,下列三个函数关系式中,刻画q,v 关系最准确的是③(只填上正确答案的序号)①q=90v+100;②q=;③q=﹣2v2+120v.(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?(3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题.①市交通运行监控平台显示,当12≤v<18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值.【分析】(1)利用函数的增减性即可判断;(2)利用配方法,根据二次函数的性质即可解决问题;(3)①求出v=12或18时,定义的k的值即可解决问题;②由题意流量q最大时d的值=流量q最大时k的值;【解答】解:(1)函数①q=90v+100,q随v的增大而增大,显然不符合题意.函数②q=q随v的增大而减小,显然不符合题意.故刻画q,v关系最准确的是③.故答案为③.(2)∵q=﹣2v2+120v=﹣2(v﹣30)2+1800,∵﹣2<0,∴v=30时,q达到最大值,q的最大值为1800.(3)①当v=12时,q=1152,此时k=96,当v=18时,q=1512,此时k=84,∴84<k≤96.②当v=30时,q=1800,此时k=60,∵在理想状态下,假设前后两车车头之间的距离d(米)均相等,∴流量q最大时d的值为=m.【点评】本题考查二次函数的应用、最值问题等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.(14分)(2017•台州)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2﹣5x+2=0,操作步骤是:第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n即为该方程的另一个实数根.(1)在图2中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);(2)结合图1,请证明“第三步”操作得到的m就是方程x2﹣5x+2=0的一个实数根;(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程ax2+bx+c=0(a≠0,b2﹣4ac≥0)的实数根,请你直接写出一对固定点的坐标;(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1),Q(m2,n2)就是符合要求的一对固定点?【分析】(1)根据“第四步”的操作方法作出点D即可;(2)过点B作BD⊥x轴于点D,根据△AOC∽△CDB,可得=,进而得出=,即m2﹣5m+2=0,据此可得m是方程x2﹣5x+2=0的实数根;(3)方程ax2+bx+c=0(a≠0)可化为x2+x+=0,模仿研究小组作法可得一对固定点的坐标;(4)先设方程的根为x,根据三角形相似可得=,进而得到x2﹣(m1+m2)x+m1m2+n1n2=0,再根据ax2+bx+c=0,可得x2+x+=0,最后比较系数可得m1,n1,m2,n2与a,b,c之间的关系.【解答】解:(1)如图所示,点D即为所求;。

台州中考2014数学试卷真题

台州中考2014数学试卷真题

台州中考2014数学试卷真题一、选择题1. 下列说法错误的是()A. 过关秘笈一:将原问题转化为一个与之等价的问题。

B. 过关秘笈二:理清思路,分析解题逻辑。

C. 过关秘笈三:运用正确的解题方法。

D. 过关秘笈四:反复检查,防止粗心错误。

2. 已知直线l与x轴的交点为A(4,0),与y轴的交点为B(0,2),则直线l的斜率是()A. -2/4B. 2/4C. 4/2D. -4/23. 已知sinA=4/5,求cosA的值。

A. 3/7B. 4/7C. 5/7D. 5/44. 一辆汽车以每小时60千米的速度行驶40分钟,此时它行驶了多少千米?A. 40B. 30C. 45D. 505. 下列各点中,在第二象限的是()A. (-5,3)B. (2,7)C. (4,-8)D. (9,-5)二、填空题6. 一共有15只小鸡,它们的腿一共有___只。

7. 若4x=18,则x=___。

8. 若a:b=4:5,b:4=6:8,则a:b=___。

9. 设正方形的边长为x,其对角线的长度为___。

10. 一张长和宽都是10厘米的正方形纸片一角剪去了一个正方形,剪去部分的面积是原来正方形面积的___。

三、解答题11. 已知x+1是方程2x-3=3(x-1)的一个解,求x的值。

12. 两个相同的圆A、B,A的半径是4厘米,B的直径是A的直径的2倍,求B的面积。

13. 在四边形ABCD中,AB=BC=CD=3厘米,∡ABC=120°,求四边形ABCD的周长。

14. 图中的矩形ABCD中,AB=3,BC=4,点E是BC的中点,连接AE交BD于F,求DF的长度。

15. 如图,在△ABC中,∠C=90°,D、E分别是CA、CB的中点,连接DE交AB于F,若AF=4,求FB的长度。

四、解题过程及解答1. 解析:过关秘笈是解题的关键,帮助我们理清思路,选择正确的解题方法,并在答题过程中不断检查,避免粗心错误。

2014-2015学年浙江省台州市三门县八年级(下)期末数学试卷(解析版)

2014-2015学年浙江省台州市三门县八年级(下)期末数学试卷(解析版)

2014-2015学年浙江省台州市三门县八年级(下)期末数学试卷一、选择题,每题4分,共40分1.(4分)下列根式中,不是最简二次根式的是()A. B.C.D.2.(4分)下列各组数中,能构成直角三角形的三边的长度是()A.3,5,7 B.,,C.0.3,0.5,0.4 D.5,22,233.(4分)某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断她能否获奖,只需知道这11名选手得分的()A.中位数B.平均数C.众数D.方差4.(4分)下列计算正确的是()A.2+4=6B.=4 C.÷=3 D.=﹣35.(4分)下列说法中不正确的是()A.菱形是特殊的平行四边形B.平行四边形的对边平行且相等C.正方形的对角线互相垂直平分且相等D.矩形的对角线互相垂直6.(4分)如图,在5×5的正方形网格中,线段AB的长度与下列哪个整数最接近()A.3 B.4 C.5 D.67.(4分)在某次实验中,测得两个变量m与v之间的关系最接近于下列各关系式中的()A.v=2m﹣2 B.v=3m﹣3 C.v=m2﹣1 D.v=m+18.(4分)如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段都与AC平行或BD平行,已知AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度是()A.100m B.200m C.100m D.不能确定9.(4分)y关于x的一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b <2的解集是()A.x<0 B.x>1 C.x<﹣4 D.x>﹣410.(4分)如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D 作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A.B.C.D.二、填空题(每题5分,共30分)11.(5分)若二次根式有意义,则x的取值范围是.12.(5分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为S甲2=0.363,S乙2=0.551,S丙2=0.484,S丁2=0.242,则四人中成绩最稳定的是.13.(5分)某一次函数的图象经过点(﹣1,2),且函数y的值随自变量x的增大而减小,请写出一个符合上述条件的函数关系式:.14.(5分)如图是跷跷板示意图,支柱OC与地面垂直,点O是横板AB的中点,AB绕点O上下转动,横板AB的B端最大高度h是否会随横板长度的变化而变化呢?一位同学做了如下研究:他先设AB=2m,OC=0.5m,通过计算得到此时的h1,再将横板AB换成横板A′B′,O为横板A′B′的中点,且A′B′=3m,此时B′点的最大高度为h2,由此得到h1与h2的大小关系是:h1h2(填“>”“=”或“<”)15.(5分)式子可以理解为“以a、b为直角边长的直角三角形的斜边长”,利用这个知识,我们可以恰当地构造图形来解决一些数学问题.比如在解“已知a+b=2,则的最小值为”时,我们就可以构造两个直角三角形,转化为“求两个直角三角形的斜边和最小是多少”的问题.请你根据所给图形和题意,在横线上填上正确的答案.16.(5分)如图,边长为1的菱形ABCD中,∠DAB=60°,以对角线AC为边作第2个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第3个菱形AEGH使∠HAE=60°…,则第3个菱形的边长是,按此规律所作第n个菱形的边长是.三、解答题(共80分)17.(8分)计算:(1)|2﹣|+(2)(﹣)﹣6.18.(8分)某校招聘一名英语教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分都为100分,根据结果择优录取,三位候选人的各项测试成绩如下表所示:根据实际需要,学校将教学、科研和组织三项能力测试按5:3:2的比例确定每人的平均成绩,录用成绩最高的,已知甲、乙的平均成绩为76.3分、72.2分,请你计算丙的成绩并说明谁将被录用?19.(8分)如图,直线l1:y=x+1与直线l2:y=mx+n交于点P(1,b),直线l2与x轴交于点A(4,0).(1)求b的值;(2)解关于x,y的方程组,并直接写出它的解;(3)判断直线l3:y=nx+m是否也经过点P?请说明理由.20.(8分)已知AC是平行四边形ABCD的一条对角线,BM⊥AC,DN⊥AC,垂足分别是M,N,求证:DM∥BN.21.(10分)如图,Rt△ABC中,∠ACB=90°.在AB的同侧分别以AB、BC、AC 为直径作三个半圆.图中阴影部分的面积分别记作为S1和S2.(1)求证:S1+S2=S△ABC;(2)若Rt△ABC的周长是2+,斜边长为2,求图中阴影部分面积的和.22.(12分)为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭2010年1至12月的用水量,统计得到的数据绘制成如图的两幅统计图,如图1是这50户家庭总用水量的折线统计图,如图2是这50户家庭月总用水量的不完整的条形统计(1)根据图1提供的信息,补全图2中的条形统计图;(2)求被抽查的50户家庭月总用水量的极差、众数、中位数;(3)若该小区共有400户家庭,请你根据上述提供的统计数据,估计该住宅区2011年的总用水量.23.(12分)某公司推销一种产品,公司付给推销员的月报酬有两种方案.方案一:不论推销多少件都有1000元的月基本工资,每推销一件产品增加推销费50元;方案二:推销员的月报酬y(元)关于月推销产品数量x(件)的关系如图所示.(1)请直接写出两种方案中推销员的月报酬y(元)关于月推销产品数量x(件)的关系式,并画出方案一中y关于x的函数图象.(2)月推销产品达到多少件时,两种方案月报酬差额将达到1800元?(3)若公司决定改进“方案一”:保持月基本工资不变,每件推销费50元基础增加m元,使得推销量达到50件时,两种方案的月报酬差额不超过500元.求m 的取值范围.24.(14分)如图,直角三角形纸片ABC中,∠ACB=90°,AC=8,BC=6,折叠该纸片使点B落在射线BC上的F点,折痕与AB、BC的交点分别为D、E.当F在射线BC上移动时,折痕的端点D,E也随之移动.(1)如图1,过点D作DG⊥AC于点G.①求证:四边形CEDG是矩形②随着折叠后F位置的不同,连接GE,试求GE的最小值(2)如图2,折叠该纸片后,使点F与点C重合①DE的长②将折叠后的图形沿直线AE剪开,原纸片被剪成三片,求这三片图形的面积比.2014-2015学年浙江省台州市三门县八年级(下)期末数学试卷参考答案与试题解析一、选择题,每题4分,共40分1.(4分)下列根式中,不是最简二次根式的是()A. B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:因为==2,因此不是最简二次根式.故选:B.2.(4分)下列各组数中,能构成直角三角形的三边的长度是()A.3,5,7 B.,,C.0.3,0.5,0.4 D.5,22,23【分析】根据勾股定理的逆定理,只要两边的平方和等于第三边的平方即可构成直角三角形.只要判断两个较小的数的平方和是否等于最大数的平方即可判断.【解答】解:A、∵32+52=34≠72,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;B、∵()2+()2=7≠()2 ,∴以这三个数为长度的线段不能构成直角三角形,故选项错误;C、∵(0.3)2+(0.4)2=0.25=(0.5)2,∴以这三个数为长度的线段,能构成直角三角形,故选项正确;D、∵52+222=509≠232,∴以这三个数为长度的线段不能构成直角三角形,故选项错误.故选:C.3.(4分)某校为了丰富校园文化,举行初中生书法大赛,决赛设置了6个获奖名额,共有11名选手进入决赛,选手决赛得分均不相同.若知道某位选手的决赛得分,要判断她能否获奖,只需知道这11名选手得分的()A.中位数B.平均数C.众数D.方差【分析】由于比赛设置了6个获奖名额,共有11名选手参加,根据中位数的意义分析即可.【解答】解:11个不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:A.4.(4分)下列计算正确的是()A.2+4=6B.=4 C.÷=3 D.=﹣3【分析】A、根据合并二次根式的法则即可判定;B、根据二次根式的乘法法则即可判定;C、根据二次根式的除法法则即可判定;D、根据二次根式的性质即可判定.【解答】解:A、2+4不是同类项不能合并,故A选项错误;B、=2,故B选项错误;C、÷=3,故C选项正确;D、=3,故D选项错误.故选:C.5.(4分)下列说法中不正确的是()A.菱形是特殊的平行四边形B.平行四边形的对边平行且相等C.正方形的对角线互相垂直平分且相等D.矩形的对角线互相垂直【分析】根据菱形、平行四边形以及正方形的性质求解即可求得答案.注意掌握排除法在选择题中的应用.【解答】解:A、菱形是特殊的平行四边形,正确;B、平行四边形的对边平行且相等;正确;C、正方形的对角线互相垂直平分且相等;正确;D、矩形的对角线相等,菱形的对角线互相平分且垂直.错误.故选:D.6.(4分)如图,在5×5的正方形网格中,线段AB的长度与下列哪个整数最接近()A.3 B.4 C.5 D.6【分析】首先求出AB=,由<<,由此即可解决问题.【解答】解:由图象可知,AB==,∵<<,∴与最接近的数为6,故选:D.7.(4分)在某次实验中,测得两个变量m与v之间的关系最接近于下列各关系式中的()A.v=2m﹣2 B.v=3m﹣3 C.v=m2﹣1 D.v=m+1【分析】根据各个选项中的关系式,可以分别将m代入解析式,看看哪个函数最接近,从而可以解答本题.【解答】解:在A中,当m=1时,v=2×1﹣2=0,当m=2时,v=2×2﹣2=2,当m=3时,v=2×3﹣2=4,故选项A错误;在B中,当m=1时,v=3×1﹣3=0,当m=2时,v=3×2﹣3=3,当m=3时,v=3×3﹣3=6,故选项B错误;在C中,当m=1时,v=12﹣1=0,当m=2时,v=22﹣1=3,当m=3时,v=32﹣1=8,当m=4时,v=42﹣1=15,故选项C正确;在D中,当m=1时,v=1+1=2,故选项D错误;故选:C.8.(4分)如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段都与AC平行或BD平行,已知AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度是()A.100m B.200m C.100m D.不能确定【分析】如图,延长AC、BD交于点E,延长HK交AE于F,延长NJ交FH于M,则四边形EDHF,四边形MNCF,四边形MKGJ是平行四边形,△ABC是等边三角形,由此即可解决问题.【解答】解:如图,延长AC、BD交于点E,延长HK交AE于F,延长NJ交FH 于M.由题意可知,四边形EDHF,四边形MNCF,四边形MKGJ是平行四边形,△ABC 是等边三角形,∴ED=FM+MK+KH=CN+JG+HK,EC=EF+FC=JN+KG+DH,∴“九曲桥”的总长度是AE+EB=2AB=200m.故选:B.9.(4分)y关于x的一次函数y=kx+b的图象如图所示,则关于x的不等式kx+b <2的解集是()A.x<0 B.x>1 C.x<﹣4 D.x>﹣4【分析】一次函数y=kx+b的图象在y轴左方时,y<2,再根据图象写出解集即可.【解答】解:当不等式kx+b<2时,一次函数y=kx+b的图象在y轴左方,因此x <0.故选:A.10.(4分)如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D 作匀速运动,那么△ABP的面积y与点P运动的路程x之间的函数图象大致是()A.B.C.D.【分析】首先判断出从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);然后判断出从点C到点D,△ABP的底AB的dx 一定,高都等于BC的长度,所以△ABP的面积一定,y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),进而判断出△ABP的面积y与点P运动的路程x之间的函数图象大致是哪一个即可.【解答】解:从点B到点C,△ABP的面积y与点P运动的路程x之间的函数关系是:y=x(0≤x≤1);因为从点C到点D,△ABP的面积一定:2×1÷2=1,所以y与点P运动的路程x之间的函数关系是:y=1(1≤x≤3),所以△ABP的面积y与点P运动的路程x之间的函数图象大致是:.故选:B.二、填空题(每题5分,共30分)11.(5分)若二次根式有意义,则x的取值范围是x≥2.【分析】根据二次根式有意义的条件,可得x﹣2≥0,解不等式求范围.【解答】解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.12.(5分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为S甲2=0.363,S乙2=0.551,S丙2=0.484,S丁2=0.242,则四人中成绩最稳定的是丁.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为S甲2=0.363,S乙2=0.551,S丙2=0.484,S丁2=0.242,所以S丁2最小,射击成绩稳定的是丁;故答案为:丁.13.(5分)某一次函数的图象经过点(﹣1,2),且函数y的值随自变量x的增大而减小,请写出一个符合上述条件的函数关系式:y=﹣2x等(答案不唯一).【分析】根据y随着x的增大而减小推断出k与0的关系,再利用过点(﹣1,2)来确定函数的解析式.【解答】解:∵y随着x的增大而减小,∴k<0.又∵直线过点(﹣1,2),∴解析式为y=﹣2x或y=﹣x+1等.故答案为:y=﹣2x(答案不唯一)14.(5分)如图是跷跷板示意图,支柱OC与地面垂直,点O是横板AB的中点,AB绕点O上下转动,横板AB的B端最大高度h是否会随横板长度的变化而变化呢?一位同学做了如下研究:他先设AB=2m,OC=0.5m,通过计算得到此时的h1,再将横板AB换成横板A′B′,O为横板A′B′的中点,且A′B′=3m,此时B′点的最大高度为h2,由此得到h1与h2的大小关系是:h1=h2(填“>”“=”或“<”)【分析】过点B作BD⊥AD,B′D′⊥A′B′,根据三角形中位线定理即可得出结论.【解答】解:过点B作BD⊥AD,B′D′⊥A′B′,∵OC是△ABD与△A′B′D′的中位线,∴BD=B′D′=OC,即h1=h2,故答案为:=.15.(5分)式子可以理解为“以a、b为直角边长的直角三角形的斜边长”,利用这个知识,我们可以恰当地构造图形来解决一些数学问题.比如在解“已知a+b=2,则的最小值为”时,我们就可以构造两个直角三角形,转化为“求两个直角三角形的斜边和最小是多少”的问题.请你根据所给图形和题意,在横线上填上正确的答案.【分析】画出图形,利用勾股定理求解即可.【解答】解:构造图形如下:则的最小值===.故答案为:.16.(5分)如图,边长为1的菱形ABCD中,∠DAB=60°,以对角线AC为边作第2个菱形ACEF,使∠FAC=60°.连结AE,再以AE为边作第3个菱形AEGH使∠HAE=60°…,则第3个菱形的边长是3,按此规律所作第n个菱形的边长是()n﹣1.【分析】连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第n个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM=,∴AC=,同理可得第3个菱形的边长为:AE=AC=()2=3,第4个菱形的边长为:AG=AE=()3,按此规律所作的第n个菱形的边长为()n﹣1,故答案为:3,()n﹣1.三、解答题(共80分)17.(8分)计算:(1)|2﹣|+(2)(﹣)﹣6.【分析】(1)先去绝对值符号,再合并同类二次根式即可;(2)先化简二次根式,再合并同类二次根式即可.【解答】解:(1)原式=2﹣+5=2+4;(2)原式=2﹣3﹣=﹣3.18.(8分)某校招聘一名英语教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分都为100分,根据结果择优录取,三位候选人的各项测试成绩如下表所示:根据实际需要,学校将教学、科研和组织三项能力测试按5:3:2的比例确定每人的平均成绩,录用成绩最高的,已知甲、乙的平均成绩为76.3分、72.2分,请你计算丙的成绩并说明谁将被录用?【分析】先根据“教学、科研和组织三项能力测试按5:3:2的比例确定每人的平均成绩”计算丙的平均成绩,再与甲、乙的平均成绩进行比较,选出最高成绩即为被录用的人选.【解答】解:∵丙的测试成绩为:(73×5+65×3+84×2)÷(5+3+2)=72.8(分),又∵甲、乙的平均成绩为76.3分、72.2分,∴甲的综合成绩最好,候选人甲将被录用.19.(8分)如图,直线l1:y=x+1与直线l2:y=mx+n交于点P(1,b),直线l2与x轴交于点A(4,0).(1)求b的值;(2)解关于x,y的方程组,并直接写出它的解;(3)判断直线l3:y=nx+m是否也经过点P?请说明理由.【分析】(1)由点P的坐标结合一次函数图象上点的坐标特征,即可求出b的值;(2)利用数形结合的思想即可得出方程组的解就是两直线的交点坐标,依此即可得出结论;(3)根据点A、P的坐标,利用待定系数法求出m、n的值,由此即可得出直线l3的解析式,代入x=1得出y=2,由此即可得出直线l3:y=nx+m也经过点P.【解答】解:(1)∵点P(1,b)在直线l1:y=x+1上,∴b=1+1=2.(2)∵直线l1:y=x+1与直线l2:y=mx+n交于点P(1,2),∴关于x,y的方程组的解为.(3)直线l3:y=nx+m也经过点P.理由如下:将点A(4,0)、P(1,2)代入直线l2:y=mx+n中,得:,解得:,∴直线l3:y=x﹣.当x=1时,y=×1﹣=2,∴直线l3:y=x﹣经过点P(1,2).20.(8分)已知AC是平行四边形ABCD的一条对角线,BM⊥AC,DN⊥AC,垂足分别是M,N,求证:DM∥BN.【分析】欲证明DM∥BN,只要证明四边形DNBM是平行四边形即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DN⊥AC,BM⊥AC,∴∠AND=∠BMC=90°,DN∥BM,∴∠DAN=∠BCM,在△ADN和△CBM中,,∴△ADN≌△BCM,∴DN=BM.∴四边形DNBM是平行四边形,∴DM∥BN.21.(10分)如图,Rt△ABC中,∠ACB=90°.在AB的同侧分别以AB、BC、AC 为直径作三个半圆.图中阴影部分的面积分别记作为S1和S2.(1)求证:S1+S2=S△ABC;(2)若Rt△ABC的周长是2+,斜边长为2,求图中阴影部分面积的和.【分析】(1)根据题给图形可知:S1+S2=π(AC)2+π(BC)2﹣π(AB)2+S,又在Rt△ABC中BC2+AC2=AB2,继而即可得出答案;△ABC(2)要求阴影部分的面积求出Rt△ABC的面积即可,也即求出AC•BC即可.【解答】解:(1)在Rt△ABC中,有BC2+AC2=AB2…(1分)∴S1+S2=π(AC)2+π(BC)2﹣π(AB)2+S△ABC=π(BC2+AC2﹣AB2)+S△ABC=S△ABC.…(4分)(2)∵AB+AC+BC=2+,AB=2,∴AC+BC=.…(5分)两边平方得:AC2+BC2+2AC•BC=6,又AC2+BC2=AB2=4,∴2AC•BC=2,AC•BC=1.=AC•BC=.∴S△ABC∴图中阴影部分面积的和为.…(8分)22.(12分)为了解某住宅区的家庭用水量情况,从该住宅区中随机抽样调查了50户家庭2010年1至12月的用水量,统计得到的数据绘制成如图的两幅统计图,如图1是这50户家庭总用水量的折线统计图,如图2是这50户家庭月总用水量的不完整的条形统计(1)根据图1提供的信息,补全图2中的条形统计图;(2)求被抽查的50户家庭月总用水量的极差、众数、中位数;(3)若该小区共有400户家庭,请你根据上述提供的统计数据,估计该住宅区2011年的总用水量.【分析】(1)根据折线统计图的数据可以将频数直方图补充完整;(2)极差是一组数据中最大值与最小值之间的差值;众数是一组数据中出现次数最多的数据;中位数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数;(3)现计算出去年50户家庭年总用水量,再用去年50户家庭年总用水量除以户数再除以月数即可求得该住宅区今年每户家庭平均每月的用水量,平均用水量×400×12即可得到答案.【解答】解:(1)如图所示:(2)极差为:800﹣550=250(米3),众数为:750米3;中位数为:(700+750)÷2=725(米3);(3)50户家庭月总用水量平均数为:(米3).所以该住宅区2011年的总用水量为400÷50×700×12=67200(米3).23.(12分)某公司推销一种产品,公司付给推销员的月报酬有两种方案.方案一:不论推销多少件都有1000元的月基本工资,每推销一件产品增加推销费50元;方案二:推销员的月报酬y(元)关于月推销产品数量x(件)的关系如图所示.(1)请直接写出两种方案中推销员的月报酬y(元)关于月推销产品数量x(件)的关系式,并画出方案一中y关于x的函数图象.(2)月推销产品达到多少件时,两种方案月报酬差额将达到1800元?(3)若公司决定改进“方案一”:保持月基本工资不变,每件推销费50元基础增加m元,使得推销量达到50件时,两种方案的月报酬差额不超过500元.求m 的取值范围.【分析】(1)根据待定系数法即可解决问题,利用描点法画出图象即可.(2)列出方程即可解决问题.(3)分两种情形列出不等式即可解决问题.【解答】解:(1)设第二种方案中推销员的月报酬y2(元)关于月推销产品数量x(件)的关系式为:y2=kx+b,当0≤x≤20时,y2=1000;当20≤x时,,解得:,∴y2=150x﹣2000.∴y2=.由已知得第一种方案中推销员的月报酬y1(元)关于月推销产品数量x(件)的关系式为y1=50x+1000.将y1=50x+1000在图中画出来,如图所示.(2)由题意150x﹣2000﹣50x﹣1000=1800,解得x=48,∴月推销产品达到48件时,两种方案月报酬差额将达到1800元.(3)由题意50(50+m)+1000﹣(150X﹣2000)≤500解得m≤11,或150x﹣2000﹣[50(50+m)+1000]≤500,解得m≥30,∴两种方案的月报酬差额不超过500元时,0<m≤11或m≥30.24.(14分)如图,直角三角形纸片ABC中,∠ACB=90°,AC=8,BC=6,折叠该纸片使点B落在射线BC上的F点,折痕与AB、BC的交点分别为D、E.当F在射线BC上移动时,折痕的端点D,E也随之移动.(1)如图1,过点D作DG⊥AC于点G.①求证:四边形CEDG是矩形②随着折叠后F位置的不同,连接GE,试求GE的最小值(2)如图2,折叠该纸片后,使点F与点C重合①DE的长4②将折叠后的图形沿直线AE剪开,原纸片被剪成三片,求这三片图形的面积比.【分析】(1)①利用三个角是直角的四边形是矩形得出结论;②因为矩形的对角线相等,所以GE的最小值就是CD的最小值,而CD的最小值就是CD⊥AB时对应的值,即直角△ABC斜边上的高,利用面积法求出;(2)①根据中位线定理得:DE=AB=4;②利用DE∥AC得△APC∽△EPD,相似比为2,分别求出三片图形的面积,并计算其比值.【解答】证明:(1)①如图1,∵DE为折痕,∴DE⊥BC,∴∠CED=90°,∵DG⊥AC,∴∠DGC=90°,∵∠ACB=90°,∴四边形CEDG是矩形;②在Rt△ACB中,AC=8,BC=6,由勾股定理得:AB==10,∵矩形的对角线相等,∴GE=CD,∴CD的最小值就是GE的最小值,点C到AB的距离==4.8,则GE的最小值为4.8;(2)①如图3,由折叠得:DE⊥BC,CE=BE,∵∠ACB=90°,∴AC⊥BC,∴DE∥AC,∴AD=BD,∴DE=AC=×8=4,故答案为:4;②如图3,∵DE∥AC,DE=AC,∴△APC∽△EPD,∴=,∵CE=BC=×6=3,∵∠ACB=90°,AC=8,=×AC×CE=×8×3=12,∴S△ACES△PCE=S△ACE=×12=4,S△ADE+S△PDE=DE•CE+S△PCE=×4×3+×4=8,∴这三片图形的面积比=12:8:4=3:2:1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省台州市2014年中考数学试卷一、选择题(本题有10个小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选,多选,错选,均不得分)1.(4分)(2014•台州)计算﹣4×(﹣2)的结果是()A.8B.﹣8 C.6D.﹣2考点:有理数的乘法.分析:根据有理数的乘法运算法则进行计算即可得解.解答:解:﹣4×(﹣2),=4×2,=8.故选A.点评:本题考查了有理数的乘法,是基础题,熟记运算法则是解题的关键.2.(4分)(2014•台州)如图,由相同的小正方体搭成的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解;从正面看第一层是三个正方形,第二层是中间一个正方形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3.(4分)(2014•台州)如图,跷跷板AB的支柱OD经过它的中点O,且垂直与地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A.25cm B.50cm C.75cm D.100cm考点:三角形中位线定理专题:应用题.分析:判断出OD是△ABC的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得AC=2OD.解答:解:∵O是AB的中点,OD垂直于地面,AC垂直于地面,∴OD是△ABC的中位线,∴AC=2OD=2×50=100cm.故选D.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键.4.(4分)(2014•台州)下列整数中,与最接近的是()A.4B.5C.6D.7考点:估算无理数的大小分析:根据5,25 与30的距离小于36与30的距离,可得答案.解答:解:与最接近的是5,故选:B.点评:本题考查了估算无理数的大小,两个被开方数的差小,算术平方根的差也小是解题关键.5.(4分)(2014•台州)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是()A.B.C.D.考点:圆周角定理.分析:根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.解答:解:∵直径所对的圆周角等于直角,∴从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B.故选B.点评:此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.6.(4分)(2014•台州)某品牌电插座抽样检查的合格率为99%,则下列说法总正确的是()A.购买100个该品牌的电插座,一定有99个合格B.购买1000个该品牌的电插座,一定有10个不合格C.购买20个该品牌的电插座,一定都合格D.即使购买一个该品牌的电插座,也可能不合格考点:概率的意义.分析:根据概率的意义,可得答案.解答:解;A、B、C、说法都非常绝对,故A、B、C错误;D、即使购买一个该品牌的电插座,也可能不合格,说法合理,故D正确;故选:D.点评:本题考查了概率的意义,本题解决的关键是理解概率的意义以及必然事件的概念.7.(4分)(2014•台州)将分式方程1﹣=去分母,得到正确的整式方程是()A.1﹣2x=3 B.x﹣1﹣2x=3 C.1+2x=3 D.x﹣1+2x=3考点:解分式方程.专题:计算题.分析:分式方程两边乘以最简公分母x﹣1,即可得到结果.解答:解:分式方程去分母得:x﹣1﹣2x=3,故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.(4分)(2014•台州)如图,把一个小球垂直向上抛出,则下列描述该小球的运动速度v (单位:m/s)与运动时间(单位:s)关系的函数图象中,正确的是()A.B.C.D.考点:动点问题的函数图象分析:一个小球垂直向上抛出,小球的运动速度v越来越小,到达最高点是为0,小球下落时速度逐渐增加,据此选择即可.解答:解:根据分析知,运动速度v先减小后增大,故选:C.点评:本题主要考查了动点问题的函数图象.分析小球的运动过程是解题的关键.9.(4分)(2014•台州)如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是()A.45°B.50°C.60°D.不确定考点:全等三角形的判定与性质;正方形的性质.分析:证明Rt△BHE≌Rt△EIF,可得∠IEF+∠HEB=90°,再根据BE=EF即可解题.解答:解:如图所示,过E作HI∥BC,分别交AB、CD于点H、I,则∠BHE=∠EIF=90°,∵E是BF的垂直平分线EM上的点,∴EF=EB,∵E是∠BCD角平分线上一点,∴E到BC和CD的距离相等,即BH=EI,Rt△BHE和Rt△EIF中,,∴Rt△BHE≌Rt△EIF(HL),∴∠HBE=∠IEF,∵∠HBE+∠HEB=90°,∴∠IEF+∠HEB=90°,∴∠BEF=90°,∵BE=EF,∴∠EBF=∠EFB=45°,故选A.点评:本题考查了正方形角平分线和对角线重合的性质,考查了直角三角形全等的判定,考查了全等三角形对应角相等的性质.10.(4分)(2014•台州)如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为()A.4:3 B.3:2 C.14:9 D.17:9考点:菱形的性质;平移的性质分析:首先得出△MEC∽△DAC,则=,进而得出=,即可得出答案.解答:解:∵ME∥AD,∴△MEC∽△DAC,∴=,∵菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,∴AE=1cm,EC=3cm,∴=,∴=,∴图中阴影部分图形的面积与四边形EMCN的面积之比为:=.故选:C.点评:此题主要考查了菱形的性质以及相似三角形的判定与性质,得出=是解题关键.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)(2014•台州)计算x•2x2的结果是2x3.考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:x•2x2=2x3.故答案是:2x3.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.12.(5分)(2014•台州)如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是55°.考点:平行线的性质;翻折变换(折叠问题).分析:根据折叠性质得出∠2=∠EFG,求出∠BEF,根据平行线性质求出∠CFE,即可求出答案.解答:解:根据折叠得出∠EFG=∠2,∵∠1=70°,∴∠BEF=∠1=70°,∵AB∥DC,∴∠EFC=180°﹣∠BEF=110°,∴∠2=∠EFG=∠EFC=55°,故答案为:55°.点评:本题考查了平行线的性质,折叠的性质,对顶角相等的应用,解此题的关键是能根据平行线性质求出∠CFE的度数.!13.(5分)(2014•台州)因式分解a3﹣4a的结果是a(a+2)(a﹣2).考点:提公因式法与公式法的综合运用专题:计算题.分析:原式提取a后,利用平方差公式分解即可.解答:解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.(5分)(2014•台州)抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是.考点:列表法与树状图法分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与它们恰好同色的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,它们恰好同色的有4种情况,∴它们恰好同色的概率是:=.故答案为:.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.15.(5分)(2014•台州)如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为50cm.考点:垂径定理的应用;勾股定理分析:设点O为外圆的圆心,连接OA和OC,根据CD=10cm,AB=60cm,设设半径为r,则OD=r﹣10,根据垂径定理得:r2=(r﹣10)2+302,求得r的值即可.解答:解:如图,设点O为外圆的圆心,连接OA和OC,∵CD=10cm,AB=60cm,∴设半径为r,则OD=r﹣10,根据题意得:r2=(r﹣10)2+302,解得:r=50,故答案为50.点评:本题考查了垂径定理的应用,解题的关键是正确构造直角三角形.16.(5分)(2014•台州)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).考点:分式的混合运算.专题:图表型;规律型.分析:将y1代入y2计算表示出y2,将y2代入y3计算表示出y3,归纳总结得到一般性规律即可得到结果.解答:解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:点评:此题考查了分式的混合运算,找出题中的规律是解本题的关键.三、解答题(本题共8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)(2014•台州)计算:|2﹣1|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.分析:分别根据0指数幂及负整数指数幂的运算法则、绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;解答:解:原式=2﹣1+1﹣=.点评:本题考查的是实数的运算,熟知0指数幂及负整数指数幂的运算法则、绝对值的性质是解答此题的关键.18.(8分)(2014•台州)解不等式组:,并把解集在如图数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.解答:解:∵解不等式①得:x>2,解不等式②得:x<3,∴不等式组的解集为2<x<3,在数轴上表示为:.点评:本题考查了解一元一次不等式和解一元一次不等式组,在数轴上表示不等式组的解集的应用,解此题的关键是求出不等式组的解集.19.(8分)(2014•台州)已知反比函数y=,当x=2时,y=3.(1)求m的值;(2)当3≤x≤6时,求函数值y的取值范围.考点:待定系数法求反比例函数解析式;反比例函数的性质分析:(1)把x、y的值代入反比例函数解析式,通过方程来求m的值;(2)根据反比例函数图象的性质进行解答.解答:解:(1)把x=2时,y=3代入y=,得3=,解得:m=﹣1;(2)由m=﹣1知,该反比例函数的解析式为:y=.当x=3时,y=2;当x=6时,y=1.∴当3≤x≤6时,函数值y的取值范围是:1≤y≤2.点评:本题考查了反比例函数的性质,待定系数法求反比例函数解析式.(1)题,实际上是把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程20.(8分)(2014•台州)如图1是某公交汽车挡风玻璃的雨刮器,其工作原理如图2.雨刷EF⊥AD,垂足为A,AB=CD且AD=BC,这样能使雨刷EF在运动时,始终垂直于玻璃窗下沿BC,请证明这一结论.考点:平行四边形的判定与性质.专题:应用题.分析:首先证明四边形ABCD是平行四边形,然后根据平行四边形的性质即可判断.解答:证明:∵AB=CD、AD=BC,∴四边形ABCD是平行四边形,∴AD∥BC,又∵EF⊥AD,∴EF⊥BC.点评:本题考查了平行四边形的判定与性质,正确理解平行四边形的判定方法是关键.21.(10分)(2014•台州)如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿这俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m).考点:解直角三角形的应用-仰角俯角问题.分析:首先过点D作DE⊥AC于点E,过点D作DF⊥BC于点F,进而里锐角三角函数关系得出DE、AE的长,即可得出DF的长,求出BC即可.解答:解:过点D作DE⊥AC于点E,过点D作DF⊥BC于点F,由题意可得:∠ADE=15°,∠BDF=15°,AD=1600m,AC=500m,∴cos∠ADE=cos15°=≈0.97,∴≈0.97,解得:DE=1552(m),sin15°=≈0.26,∴≈0.26,解得;AE=416(m),∴DF=500﹣416=84(m),∴tan∠BDF=tan15°=≈0.27,∴≈0.27,解得:BF=22.68(m),∴BC=CF+BF=1552+22.68=1574.68≈1575(m),答:他飞行的水平距离为1575m.点评:此题主要考查了解直角三角形的应用,正确构造直角三角形得出CF,BF的长是解题关键.22.(12分)(2014•台州)为了估计鱼塘中成品鱼(个体质量在0.5kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如表:质量/kg0.5 0.6 0.7 1.0 1.2 1.6 1.9数量/条 1 8 15 18 5 1 2然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.(1)请根据表中数据补全如图的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1kg).考点:频数(率)分布直方图;用样本估计总体.分析:(1)由函数图象可以得出1.1﹣1.4的有5条,就可以补全直方图;(2)分别求出各组的频率,就可以得出结论;(3)由这组数据的个数为50,就可以得出第25个和第26个数的平均数就可以得出结论;(4)设鱼塘中成品鱼的总质量为x,根据作记号的鱼50:x=2:100建立方程求出其解即可.解答:解:(1)由函数图象可以得出1.1﹣1.4的有5条,补全图形,得:(2)由题意,得0.5﹣0.8的频率为:24÷50=0.48,0.8﹣1.1的频率为:18÷50=0.36,1.1﹣1.4的频率为:5÷50=0.1,1.4﹣1.7的频率为:1÷50=0.02,1.7﹣2.0的频率为:2÷50=0.04.∵0.48>0.36>0.1>0.04>0.02.∴估计从鱼塘中随机捕一条成品鱼,其质量落在0.5﹣0.8的可能性最大;(3)这组数据的个数为50,就可以得出第25个和第26个数分别是1.0,1.0,∴(1.0+1.0)÷2=1.0鱼塘里质量中等的成品鱼,其质量落在0.8﹣1.1内;(4)设鱼塘中成品鱼的总质量为x,由题意,得50:x=2:100,解得:x=2500.2500×=2260kg.点评:本题考查了频数分布直方图的运用,比较频率大小的运用,中位数的运用,平均数的运用,由样本数据估计总体数据的运用,解答时认真分析统计表和统计图的数据是关键.23.(12分)(2014•台州)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.考点:二次函数的应用分析:(1)这是一个分段函数,分别求出其函数关系式;(2)①当2≤x<8时及当x≥8时,分别求出w关于x的表达式.注意w=销售总收入﹣经营总成本=wA+wB﹣3×20;②若该公司获得了30万元毛利润,将30万元代入①中求得的表达式,求出A类杨梅的数量;(3)本问是方案设计问题,总投入为132万元,这笔132万元包括购买杨梅的费用+A类杨梅加工成本+B类杨梅加工成本.共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,分别求出当2≤x<8时及当x≥8时w关于x的表达式,并分别求出其最大值.解答:解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.∴A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=.(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,wA=x(﹣x+14)﹣x=﹣x2+13x;wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=wA+wB﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,wA=6x﹣x=5x;wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=wA+wB﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m ﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m ﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,wA=x(﹣x+14)﹣x=﹣x2+13x;wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=wA+wB﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x>8时,wA=6x﹣x=5x;wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=wA+wB﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.点评:本问是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.24.(14分)(2014•台州)研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.定义:六个内角相等的六边形叫等角六边形.(1)研究性质①如图1,等角六边形ABCDEF中,三组正对边AB与DE,BC与EF,CD与AF分别有什么位置关系?证明你的结论②如图2,等角六边形ABCDEF中,如果有AB=DE,则其余两组正对边BC与EF,CD与AF相等吗?证明你的结论③如图3,等角六边形ABCDEF中,如果三条正对角线AD,BE,CF相交于一点O,那么三组正对边AB与DE,BC与EF,CD与AF分别有什么数量关系?证明你的结论.(2)探索判定三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?考点:四边形综合题;全等三角形的判定与性质;多边形内角与外角;平行四边形的判定与性质;相似三角形的判定与性质专题:证明题;新定义;探究型.分析:(1)通过验证容易得到猜想:三组正对边分别平行.要证明两条线段平行,只需证明同位角相等或内错角相等或同旁内角互补,要证AB∥DE,只需连接AD,证明∠ADE=∠DAB即可,其它两组同理可得.(2)要证BC=EF,CD=AF,只需连接AE、BD,证明△AFE≌△DCB即可.(3)由条件“三条正对角线AD,BE,CF相交于一点O“及(1)中的结论可证到=,将等角六边形ABCDEF补成等边三角形后,可以证到AB+AF=DE+DC,从而得到三组正对边分别相等.(4)若只有1个内角为120°或有2个内角为120°,可以通过举反例说明该六边形不一定是等角六边形;若有3个内角为120°,可以通过分类讨论证明该六边形一定是等角六边形.解答:解:(1)①结论:AB∥DE,BC∥EF,CD∥AF.证明:连接AD,如图1,∵六边形ABCDEF是等角六边形,∴∠BAF=∠F=∠E=∠EDC=∠C=∠B==120°.∵∠DAF+∠F+∠E+∠EDA=360°,∴∠DAF+∠EDA=360°﹣120°﹣120°=120°.∵∠DAF+∠DAB=120°,∴∠DAB=∠EDA.∴AB∥DE.同理BC∥EF,CD∥AF.②结论:EF=BC,AF=DC.证明:连接AE、DB,如图2,∵AB∥DE,AB=DE,∴四边形ABDE是平行四边形.∴AE=DB,∠EAB=∠BDE.∵∠BAF=∠EDC.∴∠F AE=∠CDB.在△AFE和△DCB中,.∴△AFE≌△DCB.∴EF=BC,AF=DC.③结论:AB=DE,AF=DC,EF=BC.延长FE、CD相交于点P,延长EF、BA相交于点Q,延长DC、AB相交于点S,如图3.∵六边形ABCDEF是等角六边形,∴∠BAF=∠AFE=120°.∴∠QAF=∠QF A=60°.∴△QAF是等边三角形.∴∠Q=60°,QA=QF=AF.同理:∠S=60°,SB=SC=BC;∠P=60°,PE=PD=ED.∵∠S=∠P=60°,∴△PSQ是等边三角形.∴PQ=QS=SP.∴QB=QS﹣BS=PS﹣CS=PC.∴AB+AF=AB+QA=QB=PC=PD+DC=ED+DC.∵AB∥ED,∴△AOB~△DOE.∴.同理:,.∴.∴==1.∴AB=ED,AF=DC,EF=BC.(2)连接BF,如图4,∵BC∥EF,∴∠CBF+∠EFB=180°.∵∠A+∠ABF+∠AFB=180°,∴∠ABC+∠A+∠AFE=360°.同理:∠A+∠ABC+∠C=360°.∴∠AFE=∠C.同理:∠A=∠D,∠ABC=∠E.Ⅰ.若只有1个内角等于120°,不能保证该六边形一定是等角六边形.反例:当∠A=120°,∠ABC=150°时,∠D=∠A∠=120°,∠E=∠ABC=150°.∵六边形的内角和为720°,∴∠AFE=∠C=(720°﹣120°﹣120°﹣150°﹣150°)=90°.此时该六边形不是等角六边形.Ⅱ.若有2个内角等于120°,也不能保证该六边形一定是等角六边形.反例:当∠A=∠D=120°,∠ABC=150°时,∠E=∠ABC=150°.∵六边形的内角和为720°,∴∠AFE=∠C=(720°﹣120°﹣120°﹣150°﹣150°)=90°.此时该六边形不是等角六边形.Ⅲ.若有3个内角等于120°,能保证该六边形一定是等角六边形.设∠A=∠D=α,∠ABC=∠E=β,∠AFE=∠C=γ.则2α+2β+2γ=720°.∴α+β+γ=360°.∵有3个内角等于120°,∴α、β、γ中至少有两个为120°. - 21 - 若α、β、γ都等于120°,则六个内角都等于120°;若α、β、γ中有两个为120°,根据α+β+γ=360°可得第三个也等于120°,则六个内角都等于120°.综上所述:至少有3个内角等于120°,能保证该六边形一定是等角六边形.点评: 本题引导学生对几何图形进行科学探究(从定义到性质到判定),考查了相似三角形、全等三角形以及平行四边形的性质与判定、多边形的内角和定理等知识,考查了分类讨论的思想,培养了学生的批判意识(举反例说明一个命题是假命题),是一道非常难得的好题.。

相关文档
最新文档