正态性检验方法的比较

合集下载

参数检验方法

参数检验方法

参数检验方法一、概述参数检验是指对某个或一组参数进行检验,以确定其是否符合特定的要求或标准。

在科学研究、工程设计、质量控制等领域中,参数检验是一个非常重要的工具。

本文将介绍参数检验的方法及步骤。

二、参数检验方法1. 正态性检验正态性检验是指对数据进行正态分布的验证。

正态分布是指数据呈现出钟形曲线分布,符合高斯分布规律。

在进行许多统计分析时,都需要先判断数据是否符合正态分布。

常用的正态性检验方法有:(1)直方图法:通过绘制数据的频率直方图来判断数据是否呈现出正态分布。

(2)Q-Q图法:通过绘制样本与理论正态分布之间的散点图来判断数据是否呈现出正态分布。

(3)K-S检验法:通过计算样本与理论正态分布之间的最大差异来判断数据是否呈现出正态分布。

2. 方差齐性检验方差齐性检验是指对不同样本之间方差是否相等进行验证。

当不同样本之间方差不相等时,可能会影响到后续统计推断结果的准确性。

常用的方差齐性检验方法有:(1)Levene检验法:通过计算不同样本之间方差的平均值来判断是否方差齐性。

(2)Bartlett检验法:通过计算不同样本之间方差的总和来判断是否方差齐性。

3. 独立性检验独立性检验是指对两个或多个变量是否独立进行验证。

当两个或多个变量存在相关关系时,可能会影响到后续统计推断结果的准确性。

常用的独立性检验方法有:(1)卡方检验法:通过计算实际观测值与理论期望值之间的差异来判断两个变量是否独立。

(2)Fisher精确概率法:对于小样本数据,可以采用Fisher精确概率法进行独立性检验。

4. 均值比较均值比较是指对不同样本之间均值是否相等进行验证。

当不同样本之间均值不相等时,可能会影响到后续统计推断结果的准确性。

常用的均值比较方法有:(1)t检验法:通过计算不同样本之间均值之差与标准误差之比来判断是否存在显著差异。

(2)方差分析法:对于多个样本之间的均值比较,可以采用方差分析法进行检验。

三、参数检验步骤1. 数据收集:收集所需的数据,并对数据进行整理和清洗。

总结正态性检验的几种方法

总结正态性检验的几种方法

总结正态性检验的几种方法1.1 正态性检验方法1)偏度系数样本的偏度系数(记为1g )的计算公式为()2331331(1)(2)(1)(2)n ii n n g x x n n s n n s μ==-=----∑, 其中s 为标准差,3μ为样本的3阶中心距,即()3311n i i x x n μ==-∑。

偏度系数是刻画数据的对称性指标,关于均值对称的数据其偏度系数为0,右侧更分散的数据偏度系数为正,左侧更分散的数据偏度系数为负。

(2)峰度系数样本的峰度系数(记为2g ),计算公式为()242412244(1)(1)3(1)(2)(3)(2)(3)(1)(1)3(1)(2)(3)(2)(3)n i i n n n g x x n n n s n n n n n n n n s n n μ=+-=-------+-=------∑,其中s 为标准差,4μ为样本的3阶中心距,即()4411n i i x x n μ==-∑。

当数据的总体分布为正态分布时,峰度系数近似为0,;当分布为正态分布的尾部更分散时,峰度系数为正;否则为负。

当峰度系数为正时,两侧极端数据较多,当峰度系数为负时,两侧极端数据较少。

(3)QQ 图QQ 图可以帮助我们鉴别样本的分布是否近似于某种类型的分布。

现假设总体为正态分布()2,N μσ,对于样本12,,,n x x x L ,其顺序统计量是(1)(2)(),,,n x x x L 。

设()x Φ为标准正态分布()0,1N 的分布函数,1()x -Φ是反函数,对应正态分布的QQ 图是由以下的点 1()0.375,,1,2,,0.25i i x i n n -⎛⎫-⎛⎫Φ= ⎪ ⎪+⎝⎭⎝⎭L , 构成的散点图,若样本数据近似为正态分布,在QQ 图上这些点近似地在直线上y x σμ=+,附近,此直线的斜率是标准差σ,截距式均值,μ,所以利用正态QQ 图可以做直观的正态性检验。

【学习】AD,RJ和KS-哪种正态性检验是最好的?

【学习】AD,RJ和KS-哪种正态性检验是最好的?

【学习】AD,RJ和KS-哪种正态性检验是最好的?Minitab中的正态性检验提供了三种⽅法:Anderson-Darling(AD),Ryan-Joiner(RJ)和Kolmogorov-Smirnov(KS)。

AD检验是默认的,那它在检验⾮正态的时候是不是最好的⽅法呢?对于这三种正态性检验⽅法,检验结果有时是有差异的(如下图),那么就有个问题:到底以哪种⽅法的结果为准?今天我们就来⽐较⼀下每种正态性检验在以下三种不同情形下检验⾮正态数据的能⼒。

我们将为每个情形使⽤模拟数据,但是它们反映了在分析数据以提⾼质量时可能遇到的常见情况。

三种情形情形1:⽣产过程中产⽣较⼤的离群值。

在此模拟中,从平均值= 0,标准偏差= 1的正态分布中模拟了29个值,从均值= 0,标准偏差= 4的正态分布中模拟了1个值。

情形2:制造过程发⽣了变化,从⽽导致分布发⽣变化。

创建⼀个双峰分布(如下图),⼀个是均值为10,标准差为1的正态分布;⼀个是均值为14,标准差为1的正态分布。

情形3:测量结果⾃然遵循⾮正态分布,正如我们通常会看到的失效时间数据。

对于这种情况,从Weibull(a = 1,b = 1.5)分布中模拟了30个值。

注意:此⽂中评估的三种情形并⾮旨在评估使⽤中⼼极限定理的检验(例如单样本t,双样本t和配对t检验)的正态性假设的有效性。

我们的重点是在使⽤分布估计制造有缺陷(不合格)单元的可能性时检验⾮正态性。

仿真(情形1为例)步骤1:模拟数据(即29个来⾃正态分布+ 1个来⾃具有⼤标准差的正态分布)。

步骤2:运⾏正态性检验(AD,RJ和KS),并记录P值。

步骤3:重复步骤1和2 ,N次。

步骤4:分析每个正态性检验的P值,并基于不同的alpha值绘制拒绝正态性概率的置信区间。

仿真结果⽐较在情形1中,Ryan-Joiner检验显然是赢家,仿真结果如下。

在情形2中,Anderson-Darling检验是最好的,仿真结果如下。

正态性检验的几种方法

正态性检验的几种方法

正态性检验的几种方法一、引言正态分布是自然界中一种最常见的也是最重要的分布。

因此,人们在实际使用统计分析时,总是乐于正态假定,但该假定是否成立,牵涉到正态性检验。

目前,正态性检验主要有三类方法:一是计算综合统计量,如动差法、Shapiro-Wilk 法(W 检验)、D ’Agostino 法(D 检验)、Shapiro-Francia 法(W ’检验)。

二是正态分布的拟合优度检验,如2χ检验、对数似然比检验、Kolmogorov-Smirov 检验。

三是图示法(正态概率图Normal Probability plot),如分位数图(Quantile Quantile plot ,简称QQ 图)、百分位数(Percent Percent plot ,简称PP 图)和稳定化概率图(Stablized Probability plot ,简称SP 图)等。

而本文从不同角度出发介绍正态性检验的几种常见的方法,并且就各种方法作了优劣比较,还进行了应用。

二、正态分布2.1 正态分布的概念定义1若随机变量X 的密度函数为()()()+∞∞-∈=--,,21222x e x f x σμπσ其中μ和σ为参数,且()0,,>+∞∞-∈σμ则称X 服从参数为μ和σ的正态分布,记为()2,~σμN X 。

另我们称1,0==σμ的正态分布为标准正态分布,记为()1,0~N X ,标准正态分布随机变量的密度函数和分布函数分别用()x ϕ和()x Φ表示。

引理1 若()2,~σμN X ,()x F 为X 的分布函数,则()⎪⎭⎫⎝⎛-Φ=σμx x F由引理可知,任何正态分布都可以通过标准正态分布表示。

2.2 正态分布的数字特征引理2 若()2,~σμN X ,则()()2,σμ==x D x E 引理3 若()2,~σμN X ,则X 的n 阶中心距为()()N k kn k k n kn ∈⎩⎨⎧=-+==2,!!1212,02σμ定义2 若随机变量的分布函数()x F 可表示为:()()()()x F x F x F 211εε+-= ()10<≤ε其中()x F 1为正态分布()21,σμN 的分布函数,()x F 2为正态分布()22,σμN 的分布函数,则称X 的分布为混合正态分布。

正态性分析的方法总结

正态性分析的方法总结

四、直方图
直方图,是一种二维统计图表,它的两个坐标分别是统 计样本和该样本对应的某个属性的度量。当直方图为钟 型分布时,则可判断其正态。
五、箱线图
箱形图又称为盒须图、盒式图或箱线图,是一种用作显 示一组数据分散情况资料的统计图。因型状如箱子而得 名。在各种领域也经常被使用,常见于品质管理。在箱 线图中,观察矩形位置和中位数,若矩形位于中间位置, 且中位数位于矩形的中间位置,则分布为正态或近似正 态,对称的;g2>3是分布的峰度比正态分布 的峰度低阔;g2<3时,表面分布的峰度比正态分布的峰 度高狭。当N>1000时,g2值才比较可靠
假设检验方法
一、Kolmogorov-Smirno(KS)检验(基于经验分布函数(ECDF)的检验)
Kolmogorov-Smirnov检验法是检验单一样本是否来自某一特定分布。比如检 验一组数据是否为正态分布。它的检验方法是以样本数Kolmogorov-Smirnov 检验法是检验单一样本是否来自某一特定分布。比如检验一组数据是否为正 态分布。它的检验方法是以样本数。 即对于假设检验问题: H0:样本所来自的总体分布服从某特定分布; H1:样本所来自的总体分布不服从某特定分布。
三、Q-Q图
Q-Q图是一种散点图,对应于正态分布的Q-Q图,就是由 标准正态分布的分位数为横坐标,样本值为纵坐标的散 点图。要利用QQ图鉴别样本数据是否近似于正态分布, 只需看QQ图上的点是否近似地在一条直线附近,而且该 直线的斜率为标准差,截距为均值。 用QQ图还可获得样 本偏度和峰度的粗略信息。
五、Anderson-Darling检验
是一种最小距离估计方式,也是估计偏离正态性的最有 效的统计量之一,对于样本量小于等于25很有效,大样 本可能被拒绝正态性,样本量大于等于200一般都会通过 Anderson-Darling检验.该检验对与偏态的尾部分布较敏 感。

正态性检验的几种常用的方法

正态性检验的几种常用的方法

作者简介 : 周洪伟 (9 8 ) 男 , 17 一 , 江苏南京 人 , 士 , 师 , 究方 向 : 硕 讲 研 概率 统计 , 金融 数学 , 复杂 网络. m i h zo 12 E a :w hu 2 @ l
y ho c m . n a o. o c

1 — 3
12 正 态 分 布 的 数 字 特 征 .

/ x 4
() 6
引理 4 若 X~ g, r) 则 = , N( o , 0 卢 =3 定义 4 若 随机变量 的分 布 函数 F ) ( 可表示 为 :
F )=( ) 1 ( 1一 F ( )+ ( ) ( ≤ <1 0 )
() 7
() 8
其中F( 为正态分布N g, ) . ) ( 的分布函数,: ) F ( 为正态分布 N g o ) ( ,r 的分布函数, ; 则称 的分布
引 理l若,~ (,。,( 为X 分 函 则F ) f 1 X Nt o)F ) 的 布 数, ( = xr
、 u ,
() 2
由引理可知 , 任何正态分布都可以通过标准正态分布表示.
收 稿 日期 :0 1— 0— 8 2 1 1 0 修 回 日期 :02— 3— 0 2 1 0 2
定义 2 把 三 阶 中心 矩除 以标准 差 的立 方得 到 的标准化 的三阶 中心矩称 为 随机变 量 的偏 度 , 为 , 记
即 卢= () 以方 差 的平方 得到 的标 准化 的四 阶中心矩 称为 随机 变量 的峰度 , 为 , 记 即
21 0 2年 5月
南 京 晓 庄 学 院 学 报
J RNAL OF N OU ANJNG AO HU I XI Z ANG VER IY UNI ST

连续变量正态分布检验

连续变量正态分布检验

连续变量正态分布检验
对连续变量的正态性进行检验可以使用多种方法,以下是一些常见的方法:
1. 直方图或密度图检验:首先可以画出数据的频数分布直方图或概率密度图,通过观察图形来判断数据是否呈现正态分布形态。

2. 正态概率图检验:通过做出正态概率图,将数据的实际分位数和正态分布的理论分位数进行比较,如果点呈现近似直线分布,则表明数据近似正态分布。

3. KS检验:KS检验是常用的分布拟合检验方法之一,可以通过将数据与正态分布进行比较,计算KS统计量,判断数据是
否符合正态分布假设。

4. Shapiro-Wilk检验:Shapiro-Wilk检验也是一种常用的正态
性检验方法,该方法对于样本量较小的数据具有更好的鲁棒性,可以在显著性水平上进行检验,以此来判断数据是否符合正态分布。

需要注意的是,上述方法并非绝对准确,其结果也受样本量和数据分布等因素的影响。

在实际应用中,需要结合多种方法来综合判断数据是否符合正态分布假设。

正态性检验方法的比较

正态性检验方法的比较

兰州商学院论文题目:正态性检验方法的比较学院、系:统计学院专业 (方向):社会统计年级、班:08级一班学生姓名:马晓莉学号:200806012282010 年11 月23 日正态性检验方法的比较正态性检验总共有八中检验方法一.W检验W 适用于小样本 (3≤n ≤50) (1)0:H 总体服从正态分布(2)检验统计量为2()12211[()()]()()ni i i nniii i a a X X Waa XX ===--=--∑∑∑(3)检验原理与拒绝域:当原假设为真时, 的值应接近于1,若其值过小,则怀疑原假设,从而,拒绝域为{}R W c =≤其中,对于给定的 ,有 {}P W c α≤=查表,可得临界值二、偏度、峰度检验法: 1、偏度系数 (1)0:H10β=(2)总体偏度系数331332222()()[()]E X EX E X EX νβν-==-(3)10β>总体分布正偏(右长尾) 10β= 总体分布关于E X 对称 10β<总体分布负偏(左长尾)样本偏度系数SK3322()B S B =2、峰度系数 (1)0:H23β=(2)峰度系数4422222()33()[()]E X EX E X EX νβν-=-=--(3)20β>总体分布高峰态20β= 总体分布正峰态 20β<总体分布低峰态峰度系数KU4223()B K B =-三、Kolmogorov 检验 (1)双侧检验001:()():()()H F x F x xH F x F x x=∀≠∃ 单侧检验 0010:()():()()H F x F x x H F x F x x ≥∀<∃ 0010:()():()()H F x F x xH F x F x x≤∀>∃(2)检验统计量: 双侧检验 0sup |()()|n xD F x F x =-左侧检验 0sup(()())n xD F x F x +=-右侧检验0sup(()())n xDF x F x -=-实际中,应用统计量0101max{max(|()()|,|()()|)}n n i i n i i i nD F x F x F x F x -≤≤=--称为Kolmogorov 统计量(3) 以双侧检验为例,当0H 为真时,由格里汶科定理,n D 的值应较小,若其值过大,则怀疑原假设. 从而,拒绝域 {}n R D d => 其中,对于给定的α{}n P D d α>=又ˆ{}n np P D D =≥ (4) 判断样本所得 是否落入拒绝域,作出结论. 四2χ拟合优度检验(1)0H :总体X 的分布函数为()F X ,即~()XF X1:H 总体X 的分布函数不是()F X(2)检验统计量 22211()()kkii i i i i i if f np np p nnp χ==-=-=∑∑:i f 样本中i A 发生的实际频数——(1,2,...)i k =观察频数0:i np H 为真时iA 应发生的理论频数——(1,2,...)i k =期望频数(3)拒绝域 对于给定的α 令2{}P d χα≥= 则拒绝域为 2{}R d χ=≥五、大样本场合(50≤n ≤1000)的 D 检验: 1、检验统计量及分布:0.28209479)0.02998598D Y -=其中()1()ni n i X D +-=∑当原假设为真时,即当总体正态时,~(0,1),YN但趋于0的速度比较慢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11统计1 201130980122 温汶琪
正态性检验方法
正态分布是许多检验的基础,比如F 检验,t 检验,卡方检验等在总体不是正态分布是没有任何意义。

因此,对一个样本是否来自正态总体的检验是至关重要的。

当然,我们无法证明某个数据的确来自正态总体,但如果使用效率高的检验还无法否认总体是正态的检验,我们就没有理由否认那些和正态分布有关的检验有意义。

一. W 检验
W 适用于小样本 (3≤n ≤50) (1)0:H 总体服从正态分布
(2)检验统计量为2
()12
2
1
1
[()()]()()n
i i i n n
i
i
i i a a X X W a a X
X ===--=
--∑∑∑
(3)检验原理与拒绝域:当原假设为真时, 的值应接近于1,若其值过小,则怀疑原假设,从而,拒绝域为 {}R W c =≤ 其中,对于给定的 ,有
{}P W c α≤=查表,可得临界值 二、偏度、峰度检验法: 1、偏度系数 (1)0:H 10β= (2)总体偏度系数33
13322
2
2()()
[()]
E X EX E X EX νβν-=
=
-
(3) 10β> 总体分布正偏(右长尾)
10β= 总体分布关于EX 对称 10β< 总体分布负偏(左长尾)
样本偏度系数SK
332
2()
B S B =
2、峰度系数 (1)0:H 23β= (2)峰度系数
4
42222
2()33()[()]E X EX E X EX νβν-=-=--
(3) 20β> 总体分布高峰态
20β= 总体分布正峰态 20β< 总体分布低峰态
峰度系数KU 4
2
23()B K B =- 三、Kolmogorov 检验
(1)双侧检验 001
:()():()
()H F x F x x H F x F x
x
=
∀≠∃ 单侧检验 0010:()():()()H F x F x x H F x F x x ≥∀<∃ 0010:()():()()H F x F x x H F x F x x ≤∀>∃
(2)检验统计量:
双侧检验 0s u p |()()|n x
D F x F x =-
左侧检验 0
s u p (()())n x
D F x F x +=- 右侧检验 0s u p (()())n
x
D F x F x -=- 实际中,应用统计量
0101max{max(|()()|,|()()|)}n n i i n i i i n
D F x F x F x F x -≤≤=-- 称为Kolmogorov 统计

(3) 以双侧检验为例,当0H 为真时,由格里汶科定理,n D 的值应较小,若其值过大,则怀疑原假设. 从而,拒绝域 {}n R D d => 其中,对于给定的α {}n P D d α>=
又 ˆ{}n n
p P D D =≥ (4) 判断样本所得 是否落入拒绝域,作出结论. 四2χ拟合优度检验
(1)0H :总体X 的分布函数为()F X ,即~()X F X
1:H 总体X 的分布函数不是()F X
(2)检验统计量 22
2
1
1
()()k
k
i i i i i i i i f f np n p p n np χ==-=-=∑
∑ :i f 样本中i A 发生的实际频数——(1,2,...)i k =观察频数 0:i np H 为真时i A 应发生的理论频数——(1,2,...)i k =期望频数
(3)拒绝域 对于给定的α
令 2{}P d χα≥= 则拒绝域为 2{}R d χ=≥ 五、大样本场合(50≤n ≤1000)的 D 检验: 1、检验统计量及分布:
0.28209479)
0.02998598
D Y -=
其中
()1
()n
i n i X D +-
=
∑当原假设为真时,即当总体正态时,~
(0,1),Y N 但趋于0的速度比较慢。

()0.28209479,E D ≈≈
可见,D 的方差与n 成反比,n 增大,方差接近于0,即D 得取值越来越集中,即Y 为D 的标准变化量。

2、检验原理与拒绝域:
当0H 为真时,0EY ≈ 说明:50n ≥时 ,||Y 取较大值得可能性很小,若
||Y 较大,则怀疑0H 。

从而{||}R Y d =≥。

其中,对于给定的,α有
12
{||},P Y d d u αα
-≥==
六、克拉姆——冯—米泽斯(Gramer ——V on ——Miese )统计量(1928年提出的)
()()2
1
()n CM n F x F x dF x =-⎡⎤⎣⎦⎰
其中()F x 为在0H 成立时,总体的分布函数,及正态分布2(,)N μσ的分
布函数(R
U S
=
=。

()n F x 为经验分布函数。

七、权重式Gramer ——V on ——Miese 统计量(WCM )(1954年提出)
[][]
2
1
()()()()1()n
F x F x WCM n
dF x F x F x -=-⎰
式中().()n F x F x 同六中一样。

八、David 的统计量(μ)(1954年提出的)
R
U S
=
=
总的来说:
一、偏度检验对非对称、长尾巴分布较敏感,峰度检验对对称分布较敏感,W 检验对各种分布,尤其是非对称分布都很敏感。

二、通用的检验方法如2χ拟合优度检验、Kolmogorov 检验及WCM 、CM 等检验的功效都很低。

三、统计量μ适合于检验对称短尾的分布。

四、检验功效随样本量的n 的增加而增大。

五、样本具有中等或大的容量时,D 检验是一种可行的无方向的正态性检验方法。

参考文献百度文库《正态性检验》。

相关文档
最新文档