焊接温度场和应力场的数值模拟
焊接技术培训中焊接变形与残余应力的数值模拟

焊接技术培训中焊接变形与残余应力的数值模拟焊接是一种常见的金属连接方法,广泛应用于各个行业。
然而,在焊接过程中,产生的焊接变形和残余应力往往会对工件的性能和质量造成一定影响。
因此,在焊接技术培训中,对焊接变形和残余应力进行数值模拟分析具有重要意义。
本文将探讨焊接技术培训中焊接变形与残余应力的数值模拟方法,并分析其应用前景。
一、焊接变形数值模拟焊接变形是指在焊接过程中,由于热引起的热应力和相变引起的力学应力而引起的构件变形现象。
为了准确预测焊接变形的情况,可以采用有限元数值模拟方法。
有限元数值模拟方法是一种将实际工程问题离散化为有限个简化的小单元进行计算的方法。
在焊接变形数值模拟中,首先需要建立焊接过程的热力耦合模型。
通过考虑焊接热源的热输入、热传导以及材料的相变特性等因素,可以准确地模拟焊接过程中的温度场变化。
然后,根据热力耦合模型,引入材料的本构关系和相变模型,可以计算得到焊接过程中的变形情况。
在数值模拟中,可以通过调整热源功率、焊缝几何形状以及材料的初始状态等参数,来对焊接变形进行优化。
此外,在数值模拟中还可以分析焊接变形对工件性能的影响,以指导焊接技术的改进和优化。
二、残余应力数值模拟焊接过程中产生的残余应力是指焊接完成后,由于焊缝区域的热胀冷缩差异而引起的应力。
残余应力的存在会降低工件的疲劳寿命和强度,甚至引发裂纹等问题。
因此,对焊接过程中的残余应力进行数值模拟分析是十分重要的。
在焊接残余应力数值模拟中,一般采用后处理方法来分析残余应力的分布和变化。
通过将焊接过程中的温度场和应力场输入到数值模拟软件中,可以得到焊接残余应力的分布情况。
同时,可以通过调整焊接参数和材料性质等因素,来研究焊接残余应力的变化规律。
在实际工程应用中,焊接残余应力数值模拟可以用于评估焊接工艺的可行性,为焊接工艺参数的选择提供依据。
此外,还可以通过优化焊接过程来减小残余应力的产生,提高工件的使用寿命和安全性。
三、数值模拟应用前景焊接技术培训中焊接变形与残余应力的数值模拟方法,在实际应用中具有广阔的前景。
基于ANSYS的焊接温度场和应力的数值模拟研究

基于ANSYS的焊接温度场和应力的数值模拟研究一、本文概述随着现代工业技术的飞速发展,焊接作为一种重要的连接工艺,在航空、汽车、船舶、石油化工等领域的应用日益广泛。
然而,焊接过程中产生的温度场和应力场对焊接结构的性能有着至关重要的影响。
为了深入理解焊接过程中的热-力行为,预测焊接结构的变形和残余应力,进而优化焊接工艺参数和提高产品质量,本文旨在利用ANSYS有限元分析软件,对焊接过程中的温度场和应力场进行数值模拟研究。
本文首先简要介绍了焊接数值模拟的意义和现状,包括焊接数值模拟的重要性、国内外研究现状和存在的问题等。
随后,详细阐述了ANSYS 软件在焊接数值模拟中的应用,包括其基本原理、分析流程、模型建立、参数设置等方面。
在此基础上,本文以某典型焊接结构为例,详细阐述了焊接温度场和应力场的数值模拟过程,包括模型的建立、边界条件的设定、求解参数的选择、结果的后处理等。
对模拟结果进行了详细的分析和讨论,验证了数值模拟方法的准确性和可靠性,为实际工程应用提供了有益的参考。
本文的研究不仅有助于深入理解焊接过程中的热-力行为,为优化焊接工艺参数和提高产品质量提供理论支持,同时也为ANSYS软件在焊接数值模拟领域的应用推广和进一步发展奠定了基础。
二、焊接理论基础焊接是一种通过加热、加压或两者并用,使两块或多块金属在原子层面结合形成永久性连接的工艺过程。
焊接过程涉及复杂的物理和化学变化,包括金属的熔化、凝固、相变以及应力和变形的产生等。
因此,深入了解焊接过程的理论基础对于准确模拟焊接过程中的温度场和应力分布至关重要。
焊接过程中,热源将能量传递给工件,导致工件局部快速升温并熔化。
熔池形成后,随着热源的移动,熔池中的液态金属逐渐凝固形成焊缝。
焊接热源的类型和移动速度、工件的材质和厚度等因素都会影响焊接过程的温度场分布。
为了准确模拟这一过程,需要了解各种热源模型(如移动热源模型、体积热源模型等)及其适用范围,并选择合适的模型进行数值模拟。
焊接过程的数值模拟与优化

焊接过程的数值模拟与优化一、引言焊接是一种常用的工业加工方法,可用于连接和修复金属、塑料、玻璃等各种材料。
然而,由于焊接过程中涉及到高温、气体、化学反应等多种复杂因素,使得焊接工艺参数的选择与优化具有一定的难度。
因此,为了提高焊接效率和质量,数值模拟和优化技术近些年来得到了广泛的应用。
二、数值模拟技术数值模拟技术是利用计算机运算模拟实际物理过程的一种方法。
在焊接过程中,数值模拟技术主要用于预测温度场、扭矩场、应力场、位移场等物理参量,以便优化焊接工艺参数以达到最佳的焊接效果。
1. 焊接过程模拟在焊接过程模拟中,主要涉及到热传递方程、能量守恒方程、动量守恒方程等基本模型。
通过数值求解这些模型,可以得到焊接过程中的温度场、熔池形状、焊缝形状等重要的参量。
2. 焊接残余应力模拟焊接残余应力是指焊接后焊件内部残留的应力状态。
焊接残余应力模拟主要涉及到材料本构关系、应力平衡方程等模型。
通过数值求解这些模型,可以得到焊接后的残余应力分布,进一步判断焊接件的稳定性和持久性等。
三、优化技术对于焊接加工过程而言,焊接质量和性能的优化是关键。
因此,针对焊接工艺参数进行优化是必不可少的。
1. 优化算法在焊接优化过程中,优化算法的选择对结果影响非常大。
常见的优化算法包括模拟退火、遗传算法、粒子群算法等。
这些算法可以根据不同的目标函数进行参数优化,以获得最优的焊接参数设置。
2. 优化目标焊接优化的目标参数有很多,通常包括焊接强度、裂纹敏感性、金属熔池尺寸、焊接速度、温度均匀性等方面。
这些目标量可以通过实验或数值模拟得到,然后通过优化算法进行校准。
四、实例以氩弧焊为例,通过焊接数值模拟和优化技术,得出最佳的焊接参数设置。
1. 模型建立在ANSYS软件中,建立了氩弧焊的热传递和流体模型,计算焊接过程中的热传递和气体流动。
2. 优化参数通过实验和数值模拟,优化了电流、电压、焊接速度和气体流量等参数,以获得最佳的焊接效果。
3. 优化结果最终的优化结果表明,当电流设置为85A、电压设置为20V、焊接速度设置为3mm/s、氩气流量设置为10L/min时,可以获得最优的焊接结果,焊缝质量和机械性能都得到了明显的提升。
钢铝复合轨焊接温度场及应力场数值模拟

102科学技术Science and technology钢铝复合轨焊接温度场及应力场数值模拟黄 倩(中铁建电气化局集团科技有限公司,河北 保定 074000)摘 要:本文分析了钢铝复合轨焊接后温度及残余应力的分布,利用有限元进行仿真分析,采用单元生死技术实现。
数值分析的结果表明:残余应力主要为纵向应力,残余变形主要为纵向变形,最大变形量位于焊缝收弧处,为理论设计提供了指导。
关键词:钢铝复合轨;焊接温度场;焊接变形;残余应力中图分类号:F124 文献标识码:A 文章编号:11-5004(2020)21-0102-2收稿日期:2020-11作者简介:黄倩,女,生于1987年,汉族,河北定州人,硕士研究生,工程师,研究方向:城市轨道交通供电轨的研制。
接触轨是将电能传输到地铁和城市轨道交通系统电力牵引车辆上的装置,电力的输送是通过车辆集电靴与接触轨的接触来实现的。
早期的接触轨主要是低碳钢材料制造的,北京地铁和天津地铁的第三轨采用的是低碳钢导电轨。
随着城市轨道交通的发展,传统的低碳钢导电轨存在导电性差、重量大、腐蚀严重、成本高等缺点,已无法满足更高的使用要求。
为加大导电轨的一次输电距离、改善受流条件、减小机械磨损和电腐蚀,提高经济和社会效应,目前主要应用为钢铝复合形式[1]。
国内钢铝复合轨主要为焊接式、铆接式和共挤式,并在北京、天津、广州和无锡等地铁线路上得到应用[2]。
焊接式钢铝复合轨主要包括铝轨本体和不锈钢,不锈钢通过焊接连接,实现与铝轨本体的包覆。
本文主要对一种焊接型钢铝复合轨进行焊接数值模拟分析,得到其温度场和应力场的分布,为产品设计提供理论指导。
1 有限元模型建立ANASYS 软件是一个融结构、热、流体、电磁、声学等分析于一体的大型、通用的有限元软件。
焊接温度场、应力场的模拟是运用其热、结构及二者耦合分析功能进行计算,即先运用其热分析功能计算整个焊接过程的温度场,然后将温度场的计算结果作为热载荷进行结构的力学分析,得到应力场的整个动态变化过程[3]。
CLAM钢TIG焊接头温度场和应力场数值模拟

m e ttc i u n e hn q e,a d d u l l p od h a o r e we e a p id o e h r i h n me ia i l t n o n o b e el s i e ts u c r p l tg g e n t e u rc lsmu a i f i e o tm p r t r n te sfe d n sn l a e l i g a d t e sn l — i d d u l a e l i g o AM e e au e a d sr s l so i ge l y rwe d n n h i ge sde o b e l y rwe d n fCL i
Nu e i a i u a i n o e pe a ur m rc lsm l to n t m r t e and s r s te s
i lso fed f CLபைடு நூலகம்M t e G l se lTI wed
Li uhn Z uQa g , i h 。 J i e Y ceg , h in YnS a , uX n
( S h o o tr l ce c n n i eig Ja gu U i r t , h n i g J n s 10 3 hn ; 1 c ol f ei i ea d E gn r , i s nv s ? Z e j n , i gu2 2 1 ,C ia 2 Ma a S n e n n ei a a
摘要 : 用 A S S的热 一结构耦 合技 术 , 用 A D 运 NY 采 P L参数化 语 言及 生死单 元技 术 , 以双 椭球 热 源作
为 内热源 , C A 钢 T G焊对接 单层 焊 和 单 面双 层 焊 的 温度 场 进 行 了数 值 模 拟. 不 考虑 焊 接 对 LM I 在
《2024年基于ANSYS的焊接温度场和应力的数值模拟研究》范文

《基于ANSYS的焊接温度场和应力的数值模拟研究》篇一一、引言焊接作为一种重要的工艺方法,广泛应用于各种工程结构中。
然而,焊接过程中产生的温度场和应力分布对焊接结构的质量、性能和使用寿命有着重要的影响。
因此,对焊接温度场和应力的研究具有非常重要的意义。
本文将通过ANSYS软件进行焊接温度场和应力的数值模拟研究,以期为焊接工艺的优化提供理论依据。
二、焊接温度场的数值模拟1. 建模与材料属性设定在ANSYS中建立焊接结构的几何模型,设定材料的热学性能参数,如热导率、比热容等。
同时,设定焊接过程中的热源模型,如高斯热源模型等。
2. 网格划分与边界条件设定对模型进行合理的网格划分,以便更好地捕捉温度场的分布情况。
设定边界条件,包括环境温度、对流换热系数等。
3. 求解与结果分析通过ANSYS的瞬态热分析模块进行求解,得到焊接过程中的温度场分布情况。
分析温度场的变化规律,研究焊接过程中的热循环行为。
三、焊接应力的数值模拟1. 建模与材料属性设定在ANSYS中建立与温度场分析相同的几何模型,设定材料的力学性能参数,如弹性模量、泊松比等。
同时,导入温度场分析的结果作为应力分析的初始条件。
2. 网格划分与约束条件设定对应力分析模型进行网格划分,并设定约束条件,如固定支座等。
这些约束条件将影响应力的分布情况。
3. 求解与结果分析通过ANSYS的结构分析模块进行求解,得到焊接过程中的应力分布情况。
分析应力的变化规律,研究焊接过程中的残余应力分布情况。
同时,结合温度场分析结果,研究温度与应力之间的关系。
四、结果与讨论1. 温度场分析结果通过ANSYS的数值模拟,得到了焊接过程中的温度场分布情况。
结果表明,在焊接过程中,焊缝处的温度较高,随着距离焊缝的增大,温度逐渐降低。
同时,随着时间的变化,温度场呈现出明显的热循环行为。
2. 应力分析结果在应力分析中,我们发现焊接过程中会产生较大的残余应力。
这些残余应力主要分布在焊缝及其附近区域,并呈现出一定的规律性。
焊接热过程数值模拟的主要任务及其意义

焊接热过程数值模拟的主要任务及其意义一、引言焊接技术在现代工业中具有重要的地位,但是焊接过程中存在着许多问题,如焊缝质量不稳定、变形过大等。
为了解决这些问题,研究人员利用数值模拟技术对焊接热过程进行了模拟分析。
本文将介绍焊接热过程数值模拟的主要任务及其意义。
二、任务1. 焊接热源建模在焊接过程中,热源是产生温度场和应力场的主要因素之一。
因此,建立准确的热源模型对于预测温度和应力场分布非常重要。
目前常用的热源模型有高斯函数、双高斯函数和移动点源等。
2. 材料性能建模材料性能是影响焊缝质量和变形度的重要因素之一。
材料性能建模包括材料塑性行为、导热系数、比热容等参数的确定。
通过这些参数的确定可以更准确地预测温度场和应力场分布。
3. 焊接过程仿真根据上述两个步骤得到的数据进行计算机仿真,预测出焊接过程中的温度场和应力场分布。
通过仿真结果可以预测焊缝质量和变形度,并且可以为实际焊接工艺提供参考。
三、意义1. 优化焊接工艺通过数值模拟技术,可以预测出焊接过程中的温度场和应力场分布,从而优化焊接工艺,提高焊缝质量和减小变形度。
2. 减少试验成本传统的焊接工艺设计需要进行大量的试验才能确定最佳方案,这不仅耗费时间而且成本高昂。
而通过数值模拟技术可以在计算机上进行仿真实验,避免了试验成本的浪费。
3. 提高生产效率采用数值模拟技术可以快速地评估不同的焊接工艺方案,从而选择最优方案并加以应用。
这样可以大大提高生产效率。
4. 推动科学研究数值模拟技术在研究领域中有着广泛的应用。
通过对焊接热过程进行数值模拟,可以深入了解材料行为、热传递规律等基础知识,并且为新材料的研究提供了参考。
四、总结焊接热过程数值模拟技术在现代工业中具有重要的地位。
通过建立准确的热源模型和材料性能模型,进行计算机仿真,可以预测出焊接过程中的温度场和应力场分布,优化焊接工艺,减少试验成本,提高生产效率,并且推动科学研究的发展。
Abaqus焊接模拟分析程序(包括应力场和温度场)

【我的硕士论文的一部分】求解温度场!上表面上没有对流换热边界条件!单位制:米、秒、摄氏度!/CLEAR,START/FILNAME,temp,0/COM,ANSYS RELEASE 10.0 UP20050718 00:09:52 11/26/2007/CONFIG, NRES, 5000/PREP7/VIEW,1,1,2,3/ANG,1/REP,FAST!*!===============================================================================================!指定单元ET,1,SOLID70!*!*!===============================================================================================!材料属性!=====================================================================================!316LMPTEMP,,,,,,,,MPTEMP,1,0MPDATA,DENS,1,,7850MPTEMP,,,,,,,,MPTEMP,1,20MPTEMP,2,300MPTEMP,3,900MPTEMP,4,1400MPTEMP,5,2000MPDATA,KXX,1,,18.6MPDATA,KXX,1,,21.4MPDATA,KXX,1,,28.4MPDATA,KXX,1,,33.9MPDATA,KXX,1,,48MPTEMP,,,,,,,,MPTEMP,1,20MPTEMP,2,600MPTEMP,3,800MPTEMP,4,1400MPTEMP,5,2000MPDATA,C,1,,502MPDATA,C,1,,612MPDATA,C,1,,635MPDATA,C,1,,659MPDATA,C,1,,670MPTEMP,,,,,,,,MPTEMP,1,20MPTEMP,2,1300MPTEMP,3,1410MPTEMP,4,1440MPTEMP,5,1550MPTEMP,6,2000MPDATA,ENTH,1,,7.88e7MPDATA,ENTH,1,,6.131e9MPDATA,ENTH,1,,7.347e9MPDATA,ENTH,1,,9.145e9MPDATA,ENTH,1,,1.03e10MPDATA,ENTH,1,,1.272e10!===============================================================================================!定义常量WidthBase=0.025 !宽度HeightBase=0.02 !基底高度Length=0.09 !长度WidthClad=0.0015 !宽度HeightDeposition=0.00375 !覆层高度Layer=15 !层数HeightClad=HeightDeposition/layerdt=0.0001 !小量Temp=20 !环境温度InitTemp=300 !初始温度CoffConv=30 !对流换热系数!===============================================================================================!定义常量Velocity=0.003 !扫描速度StepDis=0.0015 !每个载荷步位移LaserPower=700 !激光功率Radius=0.0015 !激光光斑半径Area=3.14159265*(Radius**2) !激光光斑面积Factor=0.3 !吸收因子StepTime=StepDis/Velocity !每个载荷步时间TotalTime=(Length+Radius*2)/Velocity !载荷持续时间(扫描一层) StepNum=(Length+Radius*2)/StepDis !载荷步数!===============================================================================================!建模BLOCK,0,Length,0,-0.0066,0,WidthClad,BLOCK,0,Length,0,-0.0066,WidthClad,0.0067BLOCK,0,Length,-0.0066,-HeightBase,0,WidthClad,K, ,0,0,WidthBase,K, ,Length,0,WidthBase,K, ,0,-HeightBase,WidthBase,K, ,Length,-HeightBase,WidthBase,V, 16, 13, 27, 25, 15, 14, 28, 26V, 24, 21, 27, 13, 23, 22, 28, 14BLOCK,0,Length,0,HeightDeposition,0,WidthClad,VGLUE,ALLNUMCMP,ALL!===============================================================================================!划分网格LSEL, S, LOC, Y, dt, HeightDeposition-dt, !高度方向LESIZE, ALL, , , Layer,LSEL,S,LOC,Y,-DT,-0.0066+DTLSEL,R,LOC,X,0LESIZE,ALL,,,4,2LSEL,S,LOC,Y,-DT,-0.0066+DTLSEL,R,LOC,X,LengthLESIZE,ALL,,,4,0.5LSEL,S,LOC,Y,-0.0066-DT,-HeightBase+DTLSEL,R, LOC, Z, 0, WidthBase-DT,LESIZE,ALL,,,4,2LSEL,S,LOC,Y,-0.0066-DT,-HeightBase+DTLSEL,R, LOC, Z, WidthBase,LESIZE,ALL,,,4,0.5LSEL, S, LOC, X, dt, Length-dt, !长度方向LESIZE, ALL, , , Length/StepDis,LSEL, S, LOC, Z, dt, WidthClad-dt, !宽度方向LESIZE, ALL, , , 1,LSEL,S,LOC,Z,WidthClad+DT,0.0067-DTLESIZE,ALL,,,4,LSEL,S,LOC,Z,0.0067+DT,WidthBase-DTLSEL,R,LOC,Y,-DT,-HeightBaseLESIZE,ALL,,,4,2LSEL,S,LOC,Z,0.0067+DT,WidthBase-DTLSEL,R,LOC,Y,0LESIZE,ALL,,,4,0.5VSEL,S,LOC,Y,0,HeightDeposition!网格划分TYPE,1MAT,1MSHAPE,0,3DMSHKEY,1VMESH,ALLVSEL,S,LOC,Y,-1,0 !网格划分TYPE,1MAT,1MSHAPE,0,3DMSHKEY,1VMESH,ALLALLSEL,ALL!============================================================================= ==================!基底边界条件、初始条件NSEL, S, LOC, Y, -HeightBase, 0 !基底初始温度IC,ALL,TEMP,InitTempNSEL, S, LOC, Y, -HeightBase, 0 !基底侧面,换热边界条件NSEL, R, LOC, Z, WidthBaseSF, ALL, CONV, CoffConv, TempALLSEL,ALLNSEL, S, LOC, Y, -HeightBase, 0 !基底左端面,换热边界条件NSEL, R, LOC, X, 0SF, ALL, CONV, CoffConv, TempALLSEL,ALLNSEL, S, LOC, Y, -HeightBase, 0 !基底右端面,换热边界条件NSEL, R, LOC, X, LengthSF, ALL, CONV, CoffConv, TempALLSEL,ALLNSEL, S, LOC, Y, 0 !基底上表面,换热边界条件NSEL, R, LOC, Z, WidthClad, WidthBaseSF, ALL, CONV, CoffConv, TempALLSEL,ALLFINISH/SOLU!===============================================================================================!瞬态分析参数设置ANTYPE,4 !分析类型:瞬态!*TRNOPT,FULL !求解方法:完全的N-R方法!*!DELTIM,0.01,0.001,0.05 !载荷子步(默认子步时间步长、最小、最大)——载荷步为0.333NSUBST, 4CNVTOL,HEAT, ,0.01,2,0.000001, !收敛准则:控制热流OUTRES,NSOL,LAST !结果输出:所有!===============================================================================================!杀死单元NSEL, S, LOC, Y, 0, HeightDeposition !杀死熔覆层单元ESLN, S, 1, ALLEKILL,ALLALLSEL,ALLESEL,S,LIVEEPLOTESEL,S,LIVE !激活单元的上表面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Y,0NSEL,R,LOC,Z,0,RadiusSF,ALL,CONV,CoffConv,TempALLSEL,ALL!===============================================================================================!预热*DO, i, 1, 2m=mod(i,2)*IF,m,EQ,1,THEN !如果为奇数层,向右扫描*DO, k, 1, StepNum, 1TIME,TotalTime*(i-1)+StepTime*k !载荷步结束时间KBC, 1 !载荷步内载荷随时间分布:常数LeftX=StepDis*(k-1)RightX=StepDis*kNSEL, S, LOC, Y, 0ESEL, S, LIVEESLN, R, 0NSLE, S, 1NSEL, R, LOC, x, RightX-2*Radius, RightXNSEL, R, LOC, Z, 0, Radius !激活单元的上表面,加热流密度ESLN, S, 1SFE, ALL, 4, HFLUX, , LaserPower*Factor/Area, , ,ALLSEL, ALLSOLVESAVESFEDELE,ALL,4,HFLUX!删除热流密度载荷ALLSEL, ALLESEL,S,LIVE!激活单元的上表面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Y,0NSEL, R, LOC, x, LeftX-2*StepDis, RightX-2*StepDisNSEL, R, LOC, Z, O, RadiusSF,ALL,CONV,CoffConv,TempALLSEL,ALLESEL,S,LIVEEPLOT*ENDDO*ELSE !如果为偶数层,向左扫描*DO, k, 1, StepNum, 1TIME,TotalTime*(i-1)+StepTime*k !载荷步结束时间KBC, 1 !载荷步内载荷随时间分布:常数LeftX=Length-StepDis*kRightX=Length-StepDis*(k-1)NSEL, S, LOC, Y, 0ESEL, S, LIVEESLN, R, 0NSLE, S, 1NSEL, R, LOC, x, RightX-2*Radius, RightXNSEL, R, LOC, Z, 0, Radius !激活单元的上表面,加热流密度ESLN, S, 1SFE, ALL, 4, HFLUX, , LaserPower*Factor/Area, , ,ALLSEL, ALLSOLVESAVESFEDELE,ALL,4,HFLUX!激活单元的上表面,删除载荷ALLSEL, ALLESEL,S,LIVE!激活单元的上表面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Y,0NSEL, R, LOC, x, LeftX-2*StepDis, RightX-2*StepDisNSEL, R, LOC, Z, O, RadiusSF,ALL,CONV,CoffConv,TempALLSEL,ALLESEL,S,LIVEEPLOT*ENDDO*ENDIF*ENDDOESEL,S,LIVEEPLOT!===============================================================================================!熔覆*DO, i, 1, Layer, 1m=mod(i,2)*IF,m,EQ,1,THEN !如果为奇数层,向右扫描*DO, k, 1, StepNum, 1TIME,TotalTime*(i+1)+StepTime*k !载荷步结束时间KBC, 1 !载荷步内载荷随时间分布:常数LeftX=StepDis*(k-1)RightX=StepDis*kNSEL, S, LOC, Y, HeightDeposition/Layer*(i-1),HeightDeposition/Layer*iNSEL, R, LOC, x, LeftX, RightXESLN, S, 1EALIVE,ALLALLSEL, ALLNSEL, S, LOC, Y, HeightDeposition/Layer*(i-1),HeightDeposition/Layer*iNSEL, R, LOC, x, RightX-2*Radius, RightXNSEL, R, LOC, Z, 0, Radius !激活单元的上表面,加热流密度ESLN, S, 1SFE, ALL, 4, HFLUX, , LaserPower*Factor/Area, , ,ALLSEL, ALLESEL,S,LIVE!激活单元的表面,如果包含左端面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,X,0NSEL,R,LOC,Y,HeightDeposition/Layer*(i-1), HeightDeposition/Layer*iSF,ALL,CONV,CoffConv,TempALLSEL,ALLESEL,S,LIVE!激活单元的表面,如果包含右端面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,X,LengthNSEL,R,LOC,Y,HeightDeposition/Layer*(i-1), HeightDeposition/Layer*iSF,ALL,CONV,CoffConv,TempALLSEL,ALLESEL,S,LIVE!激活单元的侧面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Z,WidthCladNSEL,R,LOC,Y,HeightDeposition/Layer*(i-1), HeightDeposition/Layer*iSF,ALL,CONV,CoffConv,TempALLSEL,ALLSOLVESAVESFEDELE,ALL,4,HFLUX!删除热流密度载荷ALLSEL, ALLESEL,S,LIVE!激活单元的上表面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Y,HeightDeposition/Layer*iNSEL, R, LOC, x, LeftX-2*StepDis, RightX-2*StepDisSF,ALL,CONV,CoffConv,TempALLSEL,ALLNSEL,S,LOC,Y,HeightDeposition/Layer*(i-1) !激活单元的下表面,删除对流换热边条ESEL, S, LIVEESLN, R, 0NSLE, S, 1NSEL, R, LOC, x, LeftX-2*StepDis,RightX-2*StepDisNSEL, R, LOC, Z, 0, RadiusNSEL, U, LOC, Y, HeightDeposition/Layer*iESLN, S, 1NSEL, R, LOC, Y,HeightDeposition/Layer*(i-1)SFDELE, ALL, CONVALLSEL,ALLESEL,S,LIVEEPLOT*ENDDO*ELSE !如果为偶数层,向左扫描*DO, k, 1, StepNum, 1TIME,TotalTime*(i+1)+StepTime*k !载荷步结束时间KBC, 1 !载荷步内载荷随时间分布:常数LeftX=Length-StepDis*kRightX=Length-StepDis*(k-1)NSEL, S, LOC, Y, HeightDeposition/Layer*(i-1),HeightDeposition/Layer*iNSEL, R, LOC, x, LeftX, RightXESLN, S, 1EALIVE,ALLALLSEL, ALLNSEL, S, LOC, Y, HeightDeposition/Layer*(i-1),HeightDeposition/Layer*iNSEL, R, LOC, x, LeftX, LeftX+2*RadiusNSEL, R, LOC, Z, 0, Radius !激活单元的上表面,加热流密度ESLN, S, 1SFE, ALL, 4, HFLUX, , LaserPower*Factor/Area, , ,ALLSEL, ALLESEL,S,LIVE!激活单元的表面,如果包含左端面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,X,0NSEL,R,LOC,Y,HeightDeposition/Layer*(i-1), HeightDeposition/Layer*iSF,ALL,CONV,CoffConv,TempALLSEL,ALLESEL,S,LIVE!激活单元的表面,如果包含右端面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,X,LengthNSEL,R,LOC,Y,HeightDeposition/Layer*(i-1), HeightDeposition/Layer*iSF,ALL,CONV,CoffConv,TempALLSEL,ALLESEL,S,LIVE!激活单元的侧面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Z,WidthCladNSEL,R,LOC,Y,HeightDeposition/Layer*(i-1), HeightDeposition/Layer*iSF,ALL,CONV,CoffConv,TempALLSEL,ALLSOLVESAVESFEDELE,ALL,4,HFLUX!激活单元的上表面,删除载荷ALLSEL, ALLESEL,S,LIVE!激活单元的上表面,指定为对流换热边条NSLE,S,1NSEL,R,LOC,Y,HeightDeposition/Layer*iNSEL, R, LOC, x, LeftX+2*StepDis, RightX+2*StepDisSF,ALL,CONV,CoffConv,TempALLSEL,ALLNSEL,S,LOC,Y,HeightDeposition/Layer*(i-1) !激活单元的下表面,删除对流换热边条ESEL, S, LIVEESLN, R, 0NSLE, S, 1NSEL, R, LOC, x, LeftX+2*StepDis,RightX+2*StepDisNSEL, R, LOC, Z, 0, RadiusNSEL, U, LOC, Y, HeightDeposition/Layer*iESLN, S, 1NSEL, R, LOC, Y,HeightDeposition/Layer*(i-1)SFDELE, ALL, CONVALLSEL,ALLESEL,S,LIVEEPLOT*ENDDO*ENDIF*ENDDOESEL,S,LIVEEPLOT!===============================================================================================!冷却!==============================================================================!~100s*DO, k, 1, 2, 1TIME,TotalTime*(Layer+2)+50*k!载荷步结束时间NSUBST, 5KBC, 1SOLVESAVE*ENDDO!==============================================================================!~1000s*DO, k, 1, 9, 1TIME,TotalTime*(Layer+2)+100+100*k!载荷步结束时间NSUBST, 5KBC, 1SOLVESAVE*ENDDO!==============================================================================!~3000s*DO, k, 1, 10, 1TIME,TotalTime*(Layer+2)+1000+200*k!载荷步结束时间NSUBST, 5KBC, 1SOLVESAVE*ENDDO!==============================================================================!~10000s*DO, k, 1, 14, 1TIME,TotalTime*(Layer+2)+3000+500*k!载荷步结束时间NSUBST, 5KBC, 1SOLVESAVE*ENDDO FINISH【我的硕士论文的一部分】求解应力场!修改速度、时间子步步长、载荷文件位置!如果修改基底的热膨胀系数,要修改宏文件!单位制:米、秒、摄氏度/CLEAR,START/FILNAME,stress,0/COM,ANSYS RELEASE 10.0 UP20050718 20:15:52 09/10/2007/CONFIG, NRES, 5000/PREP7/PAGE, 1000, , 1000,/VIEW,1,1,2,3/ANG,1/REP,FAST!*!===============================================================================================!指定单元ET,1,45!*!*!===============================================================================================!材料属性!=====================================================================!316LMPTEMP,,,,,,,,MPTEMP,1,0MPDATA,DENS,1,,7850MPTEMP,,,,,,,,MPTEMP,1,0MPDATA,ALPX,1,,1.75E-005MPTEMP,,,,,,,,MPTEMP,1,20MPTEMP,2,300MPTEMP,3,600MPTEMP,4,900MPTEMP,5,1300 MPDATA,EX,1,,2.0E+11MPDATA,EX,1,,1.7E+11 MPDATA,EX,1,,1.5E+11MPDATA,EX,1,,5.0E+10 MPDATA,EX,1,,0.4E+10MPDATA,PRXY,1,,0.25MPDATA,PRXY,1,,0.25MPDATA,PRXY,1,,0.25MPDATA,PRXY,1,,0.25MPDATA,PRXY,1,,0.25TB,KINH,1,5,4,0TBTEMP,20TBPT,,0,0TBPT,,7E-4,1.4E8TBPT,,0.0012,1.83E8TBPT,,0.1,2.16E9TBTEMP,300TBPT,,0,0TBPT,,5.5E-4,9.35E7TBPT,,0.0012,1.27E8TBPT,,0.1,1.84E9TBTEMP,600TBPT,,0,0TBPT,,3.2E-4,4.8E7TBPT,,0.0012,7.19E7TBPT,,0.1,1.54E9TBTEMP,900TBPT,,0,0TBPT,,2.5E-4,1.25E7TBPT,,0.0012,5.1E7TBPT,,0.1,5.45E8TBTEMP,1300TBPT,,0,0TBPT,,2.5E-4,1E6TBPT,,0.00375,1.13E7TBPT,,0.1,7.05E7!=====================================================================!A3ExpandCoeff=1.75E-005!structural->nonlinear->inelastic->rate independent->kinematic hardeningplasticity->mises plasticity->bilinear!===============================================================================================!定义常量WidthBase=0.025 !宽度HeightBase=0.02 !基底高度Length=0.09 !长度WidthClad=0.0015 !宽度HeightDeposition=0.00375 !覆层高度Layer=15 !层数HeightClad=HeightDeposition/layerdt=0.0001 !小量Temp=20 !环境温度InitTemp=300 !初始温度CoffConv=30 !对流换热系数!===============================================================================================!定义常量Velocity=0.003 !扫描速度StepDis=0.0015 !每个载荷步位移LaserPower=700 !激光功率Radius=0.0015 !激光光斑半径Area=3.14159265*(Radius**2) !激光光斑面积Factor=0.3 !吸收因子StepTime=StepDis/Velocity !每个载荷步时间TotalTime=(Length+Radius*2)/Velocity !载荷持续时间(扫描一层) StepNum=(Length+Radius*2)/StepDis !载荷步数!===============================================================================================!建模BLOCK,0,Length,0,-0.0066,0,WidthClad,BLOCK,0,Length,0,-0.0066,WidthClad,0.0067BLOCK,0,Length,-0.0066,-HeightBase,0,WidthClad,K, ,0,0,WidthBase,K, ,Length,0,WidthBase,K, ,0,-HeightBase,WidthBase,K, ,Length,-HeightBase,WidthBase,V, 16, 13, 27, 25, 15, 14, 28, 26V, 24, 21, 27, 13, 23, 22, 28, 14BLOCK,0,Length,0,HeightDeposition,0,WidthClad,VGLUE,ALLNUMCMP,ALL!===============================================================================================!划分网格LSEL, S, LOC, Y, dt, HeightDeposition-dt, !高度方向LESIZE, ALL, , , Layer,LSEL,S,LOC,Y,-DT,-0.0066+DTLSEL,R,LOC,X,0LESIZE,ALL,,,4,2LSEL,S,LOC,Y,-DT,-0.0066+DTLSEL,R,LOC,X,LengthLESIZE,ALL,,,4,0.5LSEL,S,LOC,Y,-0.0066-DT,-HeightBase+DTLSEL,R, LOC, Z, 0, WidthBase-DT,LESIZE,ALL,,,4,2LSEL,S,LOC,Y,-0.0066-DT,-HeightBase+DTLSEL,R, LOC, Z, WidthBase,LESIZE,ALL,,,4,0.5LSEL, S, LOC, X, dt, Length-dt, !长度方向LESIZE, ALL, , , Length/StepDis,LSEL, S, LOC, Z, dt, WidthClad-dt, !宽度方向LESIZE, ALL, , , 1,LSEL,S,LOC,Z,WidthClad+DT,0.0067-DTLESIZE,ALL,,,4,LSEL,S,LOC,Z,0.0067+DT,WidthBase-DTLSEL,R,LOC,Y,-DT,-HeightBaseLESIZE,ALL,,,4,2LSEL,S,LOC,Z,0.0067+DT,WidthBase-DTLSEL,R,LOC,Y,0LESIZE,ALL,,,4,0.5VSEL,S,LOC,Y,0,HeightDeposition!网格划分TYPE,1MAT,1MSHAPE,0,3DMSHKEY,1VMESH,ALLVSEL,S,LOC,Y,-1,0 !网格划分TYPE,1MAT,1MSHAPE,0,3DMSHKEY,1VMESH,ALLALLSEL,ALLVSEL,S,LOC,Y,-0.0066-DT,-HeightBase+DT!删除热影响区外的单元VSEL,A,LOC,Z,0.0067+DT,WidthBase-DTVCLEAR,ALLVDELE,ALL, , ,1ALLSEL,ALLFINISH!===============================================================================================!瞬态分析参数设置/SOLANTYPE,4 !分析类型:瞬态TRNOPT,FULL !求解方法:对于材料非线性,这是唯一的方法NLGEOM,on !大变形分析LNSRCH, onNSUBST, 4NEQIT,30CNVTOL,U,,0.05,2,, !收敛准则:控制位移CNVTOL,F,,0.01,2, !收敛准则:控制力OUTRES,NSOL,LAST !结果输出:TREF, Temp!===============================================================================================!杀死单元NSEL, S, LOC, Y, 0, HeightDeposition !杀死熔覆层单元ESLN, S, 1EKILL,ALLALLSEL,ALLESEL,S,LIVEEPLOTNSEL,S,LOC,Z,0 !对称边条(相当于三个约束,UZ,ROTX,ROTY)D,ALL,UZ,0NSEL,S,LOC,Y,-0.0066 !固定中心点(增加两个约束,UX,UY)NSEL,R,LOC,Z,0NSEL,R,LOC,X,length/2D,ALL,ALL,0NSEL,S,LOC,Y,-0.0066,0 !固定中心线(增加一个约束,ROTZ)NSEL,R,LOC,Z,0NSEL,R,LOC,X,length/2D,ALL,UX,0ALLSEL,ALLSAVE!===============================================================================================!熔覆*DO,m,1,Layerk=mod(m,2)*IF,K,EQ,1,THEN*DO,n,1,StepNum,KBC,0TIME,TotalTime*(m-1)+StepTime*nLeftX=StepDis*(n-1)RightX=StepDis*nNSEL, S, LOC, Y, HeightDeposition/Layer*(m-1),HeightDeposition/Layer*m !熔覆层生长NSEL, R, LOC, x, LeftX, RightXESLN, S, 1EALIVE,ALLALLSEL, ALLLDREAD,TEMP,StepNum*(m+1)+n,last,, ,'temp','rth','F:\temp\differentvelocity\3' !读取体载荷NSEL,S,BF,TEMP,1300,3000BF, ALL, TEMP, 1300ESEL,S,LIVE!显示生单元EPLOTALLSEL,ALLMyDBC!宏命令ALLSEL,ALLSOLVESAVE*ENDDO*ELSEIF,K,EQ,0,THEN*DO,n,1,StepNum,KBC,0TIME,TotalTime*(m-1)+StepTime*nLeftX=Length-StepDis*(n-1)RightX=Length-StepDis*nNSEL, S, LOC, Y, HeightDeposition/Layer*(m-1),HeightDeposition/Layer*mNSEL, R, LOC, x, LeftX, RightXESLN, S, 1EALIVE,ALLALLSEL, ALLLDREAD,TEMP,StepNum*(m+1)+n,last,, ,'temp','rth','F:\temp\differentvelocity\3'NSEL,S,BF,TEMP,1300,3000BF, ALL, TEMP, 1300ESEL,S,LIVE!显示生单元EPLOTALLSEL,ALLMyDBC!宏命令ALLSEL,ALLSOLVESAVE*ENDDO*ENDIF*ENDDO!===============================================================================================!冷却*DO, k, 1, 35, 1TIME,TotalTime*Layer+0.5*k!载荷步结束时间NSUBST, 4KBC, 0 !载荷步内载荷随时间分布:常数LDREAD,TEMP,StepNum*(Layer+2)+K,last,, ,'temp','rth','F:\temp\different velocity\3'NSEL,S,BF,TEMP,1300,3000BF, ALL, TEMP, 1300ESEL,S,LIVE!显示生单元EPLOTALLSEL,ALLMyDBC!宏命令ALLSEL,ALLSOLVESAVE*ENDDOESEL,S,LIVEEPLOTFINISH【补充】其中的宏命令是加比较复杂的位移边条,可以去掉,然后加上你需要的边界条件即可;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文由老高咯贡献pdf文档可能在WAP端浏览体验不佳。
建议您优先选择TXT,或下载源文件到本机查看。
沈阳工业大学硕士学位论文焊接温度场和应力场的数值模拟姓名:王长利申请学位级别:硕士专业:材料加工工程指导教师:董晓强 20050310沈阳工业大学硕士学位论文摘要焊接是一个涉及电弧物理、传热、冶金和力学的复杂过程。
焊接现象包括焊接时的电磁、传热过程、金属的熔化和凝固、冷却时的相变、焊接应力和变形等。
一旦能够实现对各种焊接现象的计算机模拟,我们就可以通过计算机系统来确定焊接各种结构和材料的最佳设计、最佳工艺方法和焊接参数。
本文在总结前人的工作基础上系统地论述了焊接过程的有限元分析理论,并结合数值计算的方法,对焊接过程产生的温度场、应力场进行了实时动态模拟研究,提出了基于ANSYS软件为平台的焊接温度场和应力场的模拟分析方法,并针对平板堆焊问题进行了实例计算,而且计算结果与传统结果和理论值相吻合。
本文研究的主要内容包括:在计算过程中材料性能随温度变化而变化,属于材料非线性问题;选用高斯函数分布的热源模型,利用函数功能实现热源的移动。
建立了焊接瞬态温度分布数学模型,解决了焊接热源移动的数学模拟问题;通过改变单元属性的方法,解决材料的熔化、凝固问题;对焊缝金属的熔化和凝固进行了有效模拟,解决了进行热应力计算收敛困难或不收敛的问题;对焊接过程产生的应力进行了实时动态模拟,利用本文模拟分析方法,可以对焊接过程的热应力及残余应力进行预测。
本文建立了可行的三维焊接温度场、应力场的动态模拟分析方法,为优化焊接结构工艺和焊接规范参数,提供了理论依据和指导。
关键词:焊接,数值模拟,有限元,温度场,应力场沈阳工业大学硕士学位论文SimulationofweldingtemperaturefieldandstressfieldAbstractWeldingisacomplicatedphysicochemica/processwlfiehinvolvesinelectromagnetism,Mattransferring,metalmeltingandfreezing,phase?changeweldingSOstressanddeformationandon,Inordertogethighquafityweldingstmcttlre,thesefactorshavetobecontrolled.Ifcanweldingprocessbesimulatedwithcomputer,thebestdesign,pmceduremethodandoptimumweldingparametercanbeobtained.BasedOilsummingupother’Sexperience,employingnumericalcalculationmethod,thispaperresearchersystemicallydiscussesthefiniteelementanal删systemoftheweldingprocessbyrealizingthe3Ddynamicsimulationofweldingtemperaturefieldandstressfield,thenusestheresearchresulttosimulatetheweldingprocessofboardsurfacingbyFEMsoftANSYS.Atthetheoryresult.sametime.thecalculationresultaccordswithtraditionalanalysisresultandThemaincontentsofthepaperareasfollowing:thecalculationinweldingprocessisamaterialnonlinearprocedurethatthematerialpropertieschangethefunctionofGaussaswiththetemperature;chooseheatsourcemodel.usethefunctioncommandtoapplyloadofmovingheatS012Ie-2.AmathematicmodeloftransientthermalprocessinweldingisestablishedtosimulatethemovingoftheheatsoBrce.Theeffectsofmeshsize,weldingspeed,weldingcurrentandeffectiveradiuselectricarcontemperaturefielda比discussed.Theproblemofthefusionandsolidificationofmaterialhasbeensolvedbythemethodofchangingtheelementmaterial.Theproblemoftheconvergencedifficultyortheun—convergenceduringthecalculatingofthethermalslTessissolved;throughreal-timedynamicsimulationofthestressproducedinweldingprocess,thethermalstressandresidualSll℃SSinweldingcanbepredictedbyusingthesimulativeanalysismethodinthispaper.Inthispaper,afeasibleslIessdyn黜fiesimulationmethodon3Dweldingtemperaturefield,onfieldhadbeenestablished,whichprovidestheoryfoundationandinstructionoptimizingtheweldingtechnologyandparameters.KEYWORD:Welding,NumericalSimulation,Finiteelement,Temperaturefield,Stressfield.2.独创性说明本人郑重声明:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得沈阳工业大学或其他教育机构的学位或证书所使用过的材料。
与我一同工作的同志对本研究所做的任何贡献均已在论文中做了明确的说明并表示了谢意。
签名:土莨列日期:刀盯.孑.Lr关于论文使用授权的说明本人完全了解沈阳工业大学有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。
(保密的论文在解密后应遵循此规定)签名:量盘垂i导师签名:釜塑幽垒日期:砌乒毒./彳沈阳:L业大学硕士学位论文1绪论1.1前言焊接作为现代制造业必不可少的工艺,在材料加工领域一直占有重要地位。
但焊接是一个涉及到电弧物理、传热、冶金和力学的复杂过程。
焊接现象包括焊接时的电磁、传热过程、金属的熔化和凝固、冷却时的相变、焊接应力和变形等。
焊接过程产生的焊接应力和变形,不仅影响焊接结构的制造过程,而且还影响焊接结构的使用性能。
这些缺陷的产生主要是焊接时不合理的热过程引起的。
由于高集中的瞬时热输入,在焊接过程中和焊后将产生相当大的残余应力(焊接残余应力)和变形(焊接残余变形、焊接收缩、焊接翘曲),而且焊接过程中产生的动态应力和焊后残余应力影响构件的变形和焊接缺陷,而且在一定程度还影响结构的加工精度和尺寸的稳定性。
因此,在设计和施工时必须充分考虑焊接应力和变形的特点。
焊接应力和变形是影响焊接结构质量和生产率的主要问题之一,焊接变形的存在不仅影响焊接结构的制造过程,而且还影响焊接结构的使用性能[1~I。
因此对焊接温度场和应力场的定量分析、预测、模拟具有重要意义。
传统的焊接温度场和应力预测依赖于试验和统计基础上的经验曲线或经验公式。
但仅从实验角度研究焊接热应力和焊后残余应力和变形问题难度很大,无前瞻性,不能全面预测和分析焊接对整个结构的力学特性影响,客观评价焊接质量。
随着差分法、有限元法的不断完善,焊接热应力和残余应力模拟分析技术相应的发展起来。
在研究焊接生产技术时,往往采用试验手段作为基本方法,但大量的试验增加了生产成本,耗费人力物力,尤其在军工、航天、潜艇、核反应堆等大型重要焊接结构制造过程中,任何尝试和失败都将造成重大经济损失,而数值模拟将发挥其独特的能力和优势。
随着有限元技术和计算机技术的飞速发展,为数值模拟技术提供了有力的工具,很多焊接过程可以采用计算机数值模拟。
随着计算机技术发展,20世纪末提出了计算机模拟的手段,为热加工包括焊接技(1)焊接热过程;术的发展创造了有力的条件。
焊接过程数值模拟可包括以下几个方面:(2)焊缝金属凝固和焊接接头相变过程;(3)焊接应力和应变发展过程:(4)zlE均质焊接接沈阳工业大学硕士学位论文头的力学行为;(5)焊接熔池液体流动及形状尺寸;(6)重大结构及其部件的应力分析。
利用这种方法可以展望21世纪热)JlI的研究模式将转变为“理论一计算机模拟.生产”,从而大大提高焊接和材料热加工的科学水平,节约用于实验研究的人力、财力口】。
焊接变形预预8方法大多基于有限元分析。
近年来,随着计算机软、硬件和有限元法的发展,焊接三维数值模拟的研究成为该领域的前沿,三维焊接热应力和残余应力演化虚拟分析技术也逐渐发展起来。
计算机硬件的发展为焊接过程的模拟和工程预测创造了条件,现在PC机的性能已和十几年前的小型机、中型机性能相差无几,对于简单的、结果不是很复杂的焊接结构可以在PC机上实现其模拟过程。
1.2焊接温度场的研究历史和发展焊接温度场的准确计算或测量,是焊接冶金分析和焊接应力、应变热弹塑性动态分析的前提。
关于焊接热过程的分析,苏联科学院的Rykalin院士对焊接过程传热问题进行了系统的研究,建立了焊接传热学的理论基础。
为了求热传导的微分方程的解.他把焊接热源简化为点、线、面三种形式的理想热源。
且不考虑材料热物理性质随温度的变化以及有限尺寸对解的影响。
实际上焊接过程中除了包含由于温度变化和高温引起的材料热物理性能和变化而导致传热过程严重的非线性外,还涉及到金属的熔化、凝固以及液固相传热等复杂现象,因此是非常复杂的。
由于这些假定不符合焊接的实际情况,因此所得到的鳃与实际测定有一定的偏差,尤其是在焊接熔池附近的区域,误差很大,而这里又恰恰是研究者最为关心的部位p’5’6’1‘。