有限元分析丨瞬态动力学分析
瞬态动力学分析

第16章瞬态动力学分析第1节基本知识瞬态动力学分析,亦称时间历程分析,是确定随时间变化载荷作用下结构响应的技术。
它的输入数据是作为时间函数的载荷,可以是静载荷、瞬态载荷和简谐载荷的随意组合作用。
输出数据是随时间变化的位移及其它导出量,如:应力、应变、力等。
用于瞬态动力分析的运动方程为:M KJ+ C KJ+ K K}= F (t)}其中:式中[M]为质量矩阵;[C]为阻尼矩阵;[K]为刚度矩阵。
所以在瞬态动力分析中密度或质点质量、弹性模量及泊松比、阻尼等因素均应考虑,在ANSYS分析过程中密度或质量、弹性模量是必须输入的,忽略阻尼时可以选忽略选项。
瞬态动力学分析可以应用于承受各种冲击载荷的结构,如:炮塔、汽车车门等,应用于承受各种随时间变化载荷的结构,如:混凝土泵车臂架、起重机吊臂、桥梁等,应用于承受撞击和颠簸的办公设备,如:移动电话、笔记本电脑等,同时ANSYS在瞬态动力学分析中可以使用线性和非线性单元(仅在完全瞬态动力学中使用)。
材料性质可以是线性或非线性、各向同性或正交各项异性、温度恒定的或温度相关的。
分析结果写入jobname.RST 文件中。
可以用POST1和POST26观察分析结果。
ANSYS在进行瞬态动力学分析中可以采用三种方法,即Full(完全)法、Reduced (缩减)法和Mode Superposition (模态叠加)法。
ANSYS提供了各种分析类型和分析选项,使用不同方法ANSYS软件会自动配置相应选择项目,常用的分析类型和分析选项如表16-1所示。
在瞬态分析中,时间总是计算的跟踪参数,在整个时间历程中,同样载荷也是时间的函 数,有两种变化方式:Ramped :如图16-1(a )所示,载荷按照线性渐变方式变化。
Stepped :如图16-1(b )所示,载荷按照解体突变方式变化。
表16-2常用的分析类型和分析选项 Full (完全)法采用完整的系统矩阵计算瞬态响应。
功能最强大,允许包括非线性的类型。
有限元分析-动力学分析PPT课件

目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。
有限元动力学分析知识点

有限元动力学分析知识点复习目录一、模型输入、建模A 输入几何模型1、两种方法:No defeaturing 和 defeaturing(Merge合并选项、Solid实体选项、Small选项)2、产品接口。
输入IGES 文件的方法虽然很好,但是双重转换过程CAD > IGES > ANSYS 在很多情况下并不能实现100%的转换.ANSYS 的产品接口直接读入“原始”的CAD 文件,解决了上面提到的问题.3、输入有限元模型。
除了实体几何模型外, ANSYS 也可输入由某些软件包生成的有限元单元模型数据(节点和单元)。
B 实体建模1、定义实体建模:建立实体模型的过程。
(两种途径)1)自上而下建模:首先建立体(或面),对这些体或面按一定规则组合得到最终需要的形状.✓开始建立的体或面称为图元.✓工作平面用来定位并帮助生成图元.✓对原始体组合形成最终形状的过程称为布尔运算✓总体直角坐标系 [csys,0] 总体柱坐标系[csys,1]总体球坐标系[csys,2] 工作平面 [csys,4]2)自下而上建模:按照从点到线,从线到面,从面到体的顺序建立模型。
B 网格划分1、网格划分三步骤:定义单元属性、指定网格的控制参数、生成网格2、单元属性(单元类型 (TYPE)、实常数 (REAL)、材料特性(MAT))3、单元类型单元类型是一个重要选项,它决定如下单元特性:自由度(DOF)设置、单元形状、维数、假设的位移形函数。
1)线单元(梁单元、杆单元、弹簧单元)2)壳用来模拟平面或曲面。
3)二维实体用于模拟实体截面4)三维实体✓用于几何属性,材料属性,荷载或分析要求考虑细节,而无法采用更简单的单元进行建模的结构。
✓也用于从三维CAD系统转化而来的几何模型,而这些几何模型转化成二维模型或壳体会花费大量的时间和精力4、单元阶次与形函数•单元阶次是指单元形函数的多项式阶次。
•什么是形函数?–形函数是指给出单元内结果形态的数值函数。
Ansys动力学瞬态动力的分析

将结果以图表或报告的形式输出,便于分析和评 估。
05 案例分析
案例一:桥梁的瞬态动力分析
总结词
复杂结构模型,高精度模拟,长 期稳定性
详细描述
使用ANSYS动力学瞬态分析对大 型桥梁进行模拟,考虑风载、车 流等动态因素,评估桥梁在不同 频率下的振动响应和稳定性。
案例二:汽车碰撞的瞬态动力分析
根据实际系统建立数学模型,包括确定系统的自由度和约束条件, 以及选择合适的单元类型和材料属性。
加载和求解
根据问题的实际情况,施加适当的边界条件和载荷,然后使用 ANSYS等有限元分析软件进行求解。
结果后处理
对求解结果进行后处理,包括查看位移、应力、应变等输出结果, 并进行必要的分析和评估。
瞬态动力学的应用场景
瞬态动力学是研究系统在随时间变化的载荷作用下的动力响应,其基本原理基于牛 顿第二定律和弹性力学的基本方程。
瞬态动力学考虑了时间的因素,因此需要考虑系统的初始条件和边界条件,以及载 荷随时间的变化。
瞬态动力学中,系统的响应不仅与当前时刻的载荷有关,还与之前的载荷历史有关。
瞬态动力学的分析步骤
建立模型
求解设置
选择求解器
01
根据模型特点选择合适的求解器,如直接求解器或迭代求解器。
设置求解参数
02
设置合适的求解参数,如时间步长、积分器等。
开始求解
03
启动求解过程,ANSYS将计算并输出结果。
结果后处理
查看结果
在后处理模块中查看计算结果,如位移、应力、 应变等。
分析结果
对结果进行分析,判断结构的响应和性能。
06 结论与展望
瞬态动力学的未来发展方向
更加精确的模型
ANSYS动力学分析指南——瞬态动力学分析

ANSYS动力学分析指南——瞬态动力学分析§3.1瞬态动力学分析的定义瞬态动力学分析(亦称时间历程分析)是用于确定承受任意的随时间变化载荷结构的动力学响应的一种方法。
可以用瞬态动力学分析确定结构在稳态载荷、瞬态载荷和简谐载荷的随意组合作用下的随时间变化的位移、应变、应力及力。
载荷和时间的相关性使得惯性力和阻尼作用比较重要。
如果惯性力和阻尼作用不重要,就可以用静力学分析代替瞬态分析。
瞬态动力学的基本运动方程是:其中:[M] =质量矩阵[C] =阻尼矩阵[K] =刚度矩阵{}=节点加速度向量{}=节点速度向量{u} =节点位移向量在任意给定的时间,这些方程可看作是一系列考虑了惯性力([M]{})和阻尼力([C]{})的静力学平衡方程。
ANSYS程序使用Newmark时间积分方法在离散的时间点上求解这些方程。
两个连续时间点间的时间增量称为积分时间步长(integration time step)。
§3.2学习瞬态动力学的预备工作瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算,瞬态动力学分析通常要占用更多的计算机资源和更多的人力。
可以先做一些预备工作以理解问题的物理意义,从而节省大量资源。
例如,可以做以下预备工作:1.首先分析一个较简单模型。
创建梁、质量体和弹簧组成的模型,以最小的代价深入的理解动力学认识,简单模型更有利于全面了解所有的动力学响应所需要的。
2.如果分析包括非线性特性,建议首先利用静力学分析掌握非线性特性对结构响应的影响规律。
在某些场合,动力学分析中是没必要包括非线性特性的。
3.掌握结构动力学特性。
通过做模态分析计算结构的固有频率和振型,了解这些模态被激活时结构的响应状态。
同时,固有频率对计算正确的积分时间步长十分有用。
4.对于非线性问题,考虑将模型的线性部分子结构化以降低分析代价。
<<高级技术分指南>>中将讲述子结构。
§3.3三种求解方法瞬态动力学分析可采用三种方法:完全(Full)法、缩减(Reduced)法及模态叠加法。
有限元-动力学分析

1.电路分析的模态分析?
2. 什么是一阶电路、二阶电路?对应于机械的振动的一阶和 阶?
机翼的模态分析
模态分析
一般而言,模态分析就是分析器件的谐振频率。模态分析 是谐响应分析、瞬态动力学分析、谱分析的起点。
任何物体都有自身的固有频率,也称特征频率,用系统方 程描述后就是矩阵的特征值。很多工程问题都要涉及系统特 征频率问题,一个目的是防止共振、自激振荡之类的事故发 生,历史上有名的事件就是,步兵按统一步伐过大桥,结果 把大桥震塌了。
瞬态分析
瞬态动力学分析比静力学分析更复杂,因为按“工程”时间计算, 瞬态动力学分析通常要占用更多的计算机资源和更多的人力。
瞬态动力学分析可采用三种方法:完全(Full)法、缩减 (Reduced)法及模态叠加法。 完全法采用完整的系统矩阵计算瞬态响应(没有矩阵缩减)。它是 三种方法中功能最强的,允许包括各类非线性特性(塑性、大变形、大 应变等)。 缩减法通过采用主自由度及缩减矩阵压缩问题规模。在主自由度处 的位移被计算出来后,ANSYS可将解扩展到原有的完整自由度集上。 缩减法的 优点 是比完全法快且开销小。缩减法的 缺点是初始解只计算 主自由度的位移,第二步进行扩展计算,得到完整空间上的位移、应力 等。 模态叠加法通过对模态分析得到的振型(特征值)乘上因子并求和 来计算结构的响应
并非所有类型的计算都可以分为这几种状态,比如热分析就 有就没有模态分析。
静态分析
结构静力分析是有限元方法中最常用的一个应用领域。在 相当长的一段时间内,机械结构的设计,主要采用经验设计 计算模型非常简单、粗糙,有的还根本无法计算。
航空航天领域的结构动力学分析方法

航空航天领域的结构动力学分析方法在航空航天领域中,结构动力学是一门关键的学科,它研究了飞行器或航天器在飞行过程中受到的各种载荷以及结构的振动响应。
结构动力学分析方法的发展和应用对于设计和优化飞行器结构,提高其可靠性和耐久性具有重要意义。
本文将介绍航空航天领域中常用的结构动力学分析方法。
一、模态分析方法模态分析是结构动力学中最基本和常用的方法之一。
它通过计算结构的固有频率、振型和振幅等参数,来了解结构的振动特性。
在航空航天工程中,模态分析被广泛应用于预测和控制结构的振动问题。
通过模态分析,可以有效地识别结构的主要振型,并设计出相应的控制策略,以减小结构振动引起的破坏。
二、频响分析方法频响分析是指在结构受到谐波激励时,计算结构的频率响应。
在航空航天领域,频响分析被广泛应用于结构在飞行过程中受到的各种载荷的分析。
根据不同频率下的振动响应,可以评估结构的稳定性和性能。
频响分析方法可以帮助工程师确定结构的固有频率、共振频率以及传递函数等参数,从而对结构的设计和优化提供指导。
三、有限元分析方法有限元分析是一种数值分析方法,能够模拟结构的复杂力学行为。
在航空航天工程中,有限元分析广泛应用于各种结构的强度、刚度和振动等方面的分析。
有限元方法将结构划分为多个小区域,通过建立节点和单元之间的关系,建立结构的数学模型。
然后通过求解得到节点的位移、应力等信息,从而分析结构的力学行为。
有限元分析方法可以提供多种载荷情况下结构的响应,为工程师提供了设计和优化结构的依据。
四、瞬态分析方法瞬态分析是指在结构受到突发载荷或者非稳态载荷时,计算结构的响应。
在航空航天领域,由于飞行器或航天器在飞行过程中受到的载荷是时变的,因此瞬态分析方法被广泛应用于结构的疲劳性能和振动响应的分析。
通过瞬态分析,工程师可以了解结构在不同时刻的响应情况,从而对结构的材料和几何参数进行调整,提高结构在复杂载荷下的工作性能。
综上所述,航空航天领域的结构动力学分析方法包括模态分析、频响分析、有限元分析和瞬态分析等多种方法。
ANSYS workbench齿轮啮合瞬态动力学分析

ANSYS workbench齿轮啮合瞬态动力学分析齿轮传动是机械系统传动方式中应用最为广泛的一种,今天给介绍一下如何利用workbench实现齿轮啮合的瞬态动力学分析。
有限元分析流程分为3大步、3小步,如下图所示。
今天将以这种方式介绍使用workbench实现齿轮啮合的分析流程。
图1 有限元分析流程一、前处理1.1 几何模型的构建本文几何模型在SolidWorks中创建,并导入workbench中,如图所示图2 齿轮对几何模型1.2 材料定义材料选用结构钢:密度:7850kg/m3,杨氏模量:2.1e11Pa,泊松比:0.31.3 有限元模型的构建有限元模型的构建包括材料赋予、网格划分以及连接关系的构建1.3.1 材料赋予双击瞬态动力学分析流程中的Model,进入Mechanical界面,单击项目树Geometry 下的两个零件,左下角细节框中,Material处指派steel材料1.3.2 网格划分为便于分析及收敛,对网格进行一个简单的控制:首先在左侧项目树Mesh处插入一个method,选中两个齿轮,划分方法为MultiZone;然后插入两个Size,对几个参与啮合的齿面进行尺寸控制,得到了如图所示的网格模型。
图3 网格模型1.3.3 连接关系的构建连接关系包括两部分:接触和运动副,运动副可以实现齿轮的转动,接触可以实现齿轮的传力。
由于workbench会自动创建向邻近位置之间的接触,但默认接触为绑定接触,不符合实际情况,故直接删除,后续手动创建相应接触。
首先在左侧项目树Connections下插入一个Frictional contact,接触面选择其中一个齿轮参与接触的几个齿面,目标面选择另一个齿轮参与接触的几个齿面。
摩擦系数为0.15,Normal Stiffness为1,Update Stiffness为Each iteration,Time Step Controls为Automatic Bisection。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元分析丨瞬态动力学分析瞬态动力学分析(Transient Structural)是结构有限元分析中非常重要的模块,下文是学习过程的一些积累,仅供参考学习使用,如有错误请指正!目录9.1 瞬态动力学分析简介瞬态动力学分析(Transient Structural)是用于分析载荷随时间变化的结构的动力学响应的方法。
用于确定结构在受到稳态载荷、瞬态载荷和简谐载荷的随意组合下随时间变化的位移、应变和应力。
惯性力和阻尼在瞬态动力学中非常重要,如果惯性力和阻尼可以忽略,则可以用静力学分析代替瞬态动力学分析。
瞬态动态分析比静态分析更复杂,计算消耗和时间消耗较大。
通过做一些初步的工作来理解问题的物理性质,可以节省大量的资源。
9.2 瞬态动力学分析应用承受各种冲击载荷的结构,如:汽车中的门、导弹发射阶段等;承受各种随时间变化载荷的结构,如:桥梁、地面移动装置等;承受撞击和颠簸设备,如:机器设备运输过程。
9.3 瞬态动力学行业标准GB/T 2423.35-1995 电工电子产品环境试验第2部分:试验方法试验Ea和导则:冲击GJB 150-18 军用设备环境试验方法:冲击试验表9.1 脉冲加速度和持续时间(1)半正弦波半正弦形脉冲适用于模拟线性系统的撞击或线性系统的减速所引起的冲击效应,例如弹性结构的撞击。
图半正弦脉冲例:峰值加速度为15G,脉冲持续时间为11ms,Z方向冲击为例图 workbench中输入半正弦波输入载荷类型为加速度(Acceleration)条件,其中Define By选择Components,在Z Component处选择函数(Function),在等号后输入:Asin(ωt),ω=2π/Ta=14700*sin(2π*time/0.022)=14700*sin(2*180*time/0.022)=14700*sin((16363.636*time)^2)^0.5)mm/s2。
注意:单位为角度制,由于此处函数符号不支持绝对值运算符(abs)。
(2)后峰锯齿波后峰锯齿脉冲与半正弦脉冲接近,但是后峰锯齿波在各频率上的功率含量更均匀,易于激起各频率的响应。
图后峰锯齿脉冲例:峰值加速度为15G,脉冲持续时间为11ms,Z方向冲击的后峰锯齿波。
图 workbench中输入后峰锯齿波(3)梯形脉冲梯形脉冲能在较宽的频频上比半正弦形产生更高的响应。
如果试验的目的是为了模拟诸如空间探测器或卫星发射阶段爆炸螺栓所引起的冲击环境效应,便可采用这种冲击波形。
图梯形脉冲注意:最常用的半正弦形脉冲、梯形脉冲基本上不用于元器件型样品,后峰锯齿形脉冲与半正弦脉冲和梯形脉冲相比,具有更均匀的响应谱。
9.4 瞬态动力学分析求解方法ANSYS Mechanical提供了三种瞬态动力学求解方法:完全法(Full) 、模态叠加法和缩减法(Reduced) 。
缩减法我没有使用过,不做介绍。
图完全法(A)图模态叠加法(B+C)图完全法求解设置图模态叠加法求解设置图完全法载荷步图模态叠加法载荷步9.4.1 完全法完全法功能最强,计算消耗大。
可以包含非线性特性(塑性、大变形等),如果分析中不考虑任何非线性特性,可以采用模态叠加法,以减少计算量消耗。
在考虑非线性特性时,建议Auto Time Stepping设置为on,并设置最初(Initial Time Step)、最小(Minimum Time Step)和最大(Maximum Time Step)时间步长。
(1)优点①设置简单;②使用完整的刚度矩阵,质量矩阵和阻尼矩阵;③允许各种类型的非线性:几何、材料和接触;④在一个坐标系下计算位移和应力;⑤支持大多数类型载荷。
(2)缺点计算消耗量(时间、内存)大。
9.4.2 模态叠加法模态叠加法通过对模态分析得到的振型(特征值)乘上因子并求和来计算结构的响应。
(1)优点①求解速度快计算开销小;②在模态分析中可以考虑阻尼对频率的影响。
(2)缺点①不支持自动时间步,只能用固定时间步;②不考虑非线性问题③计算初始条件速度和位移都只能是0。
9.5 Workbench瞬态动力学分析在进行瞬态动力学分析前需要进行的工作:1、模型简化:采用梁、壳、质点等模型代替实体模型可以减少计算量(直接使用不简化的三维工程实体模型进行瞬态动力学分析,是非常foolish的);2、对于非线性问题应先进行静力学分析,了解非线性问题的收敛特征后再进行瞬态动力学分析,以避免在瞬态动力学计算消耗资源及时间;3、如果表现为几何非线性,虽然瞬态动力学分析比静力学分析更容易收敛,但是瞬态动力学在计算结构刚度反转造成软化响应过程中,则不能反映屈服全部现象,因此采用瞬态动力学分析未必强于静力学分析。
4、必须掌握动力学分析方法,固有频率可对Integration Time Step(积分时间步长)设置非常重要。
瞬态动力学分析前处理工作不进行step by step详细介绍,只对瞬态动力学分析中几个常见问题进行说明。
9.5.1 质量点瞬态动力学分析中,对于刚性部件不关注应力分布(刚性部件通常用于模拟具有总运动和部件之间传递载荷的机构,刚性部件的输出是该部件的整体运动加上通过该部件传递到结构其余部分的任何力)。
“刚性”部分的本质是一个质心,通过关节连接到结构的其余部分,在瞬态动力学分析中,刚体上唯一适用的载荷是加速度和转速载荷。
在瞬态动力学中,如果模型中包含非线性问题,如大挠度或超弹性,求解时间设置非常重要,可以使用质量点简化模型。
9.5.2 网格划分通过提高接触面网格精度,使接触应力以平滑方式分布,如果存在非线性问题,网格精度应能够捕捉非线性的影响。
如:具有高塑性变形梯度区域具有精细的网格单元。
在瞬态动力学分析中,网格应足够精细,能够表示关注的最高模态形状。
9.5.3 分析设置在瞬态动力学分析计算消耗资源大,因此合理的分析设置至关重要。
9.5.3.1 步数控制Step Controls步数控制(Step Controls)瞬态动力学分析控制时间步长,还可以创建多个步骤。
用于在不同时间引入新载荷,也可以用于在某些时间点更改分析设置(如时间步长)。
(1)步数Number of Steps该选项主要用于模拟结构的加载顺序或工艺顺序。
例如:一个螺栓连接结构,首先进行预紧,然后再承受其他外载荷,对于这个问题必须使用两个载荷步,第一个载荷步施加螺栓预紧力,第二个载荷步锁定螺栓预紧力,然后正常施加外载荷。
(2)Auto Time Stepping设置为On,可激活自动时间步,包括子步(substeps)和时间(time)两种,二者互为倒数。
例如:设置求解时间为1s,若substeps设置为10,等效time设置为0.1。
(3)Initial Substeps表示初始载荷步,即首次求解的载荷比例。
选项为初始载荷步,即首次求解的载荷比例。
Minimum Substeps选项为最小载荷步;Maximum Substeps选项为最大载荷步。
两个载荷步求解例如:总载荷为1000N,Initial Substeps设为10,Minimum Substeps设为5,Maximum Substeps设为50。
①1000/10=100N;②增量范围:1000/50=20N到1000/5=200N之间,则第二个子步载荷:100+(20~200)=120~300N。
进行静力学分析(线性)中,通过增加子步数提高计算精度。
在瞬态动力学分析中,使用子步可得较小的积分步长,以满足瞬态时间积累法则;在非线性分析中,增加子步数量可解决收敛困难问题。
(4)Time integration时间积分时间积分默认是关闭(Off),计算过程相当于准静态的;如果打开(On),表示考虑时间对计算结果的影响,也就是考虑动力响应。
时间步长越小计算精度越高,但计算周期也会增长造成计算机资源浪费,时间步长设置太大可能会引入误差。
在使用上面的指导原则计算了时间步长之后,您需要使用最小值进行分析。
然而,在整个瞬态动力学分析中使用这个最小的时间步长会非常低效。
例如,在冲击问题中,您可能只需要在冲击期间和冲击后的短时间内计算出较小的时间步长。
在时间历史的其他部分,您可以使用较大的时间步长获得准确的结果。
使用自动时间步长程序可以让求解器决定在求解过程中何时增加或减少时间步长。
9.5.3.2 大挠度Large Deflection打开“大挠度”经验法则:一般适合于细长结构,当细长结构横向位移超过厚度10%,将大挠度设置为“On”。
Workbench大挠度默认设置为“Off”,小挠度和小应变假设位移足够小,导致刚度变化不显著、大挠度设置为“On”,将考虑由于大挠度、大旋转和大应变导致的单元形状和方向变化所导致的刚度变化,因此结果更准确。
然而打开大挠度设置,需要进行迭代计算,在瞬态动力学分析中增加计算量,耗时较长。
对系统稳定性分析、使用超弹性材料时,一定要打开大挠度设置。
9.5.4 初始条件瞬态动力学分析不同于静力学分析,需要定义初始条件。
在默认情况下,初始位移和初始速度均为0,即:静止状态,无特殊说明,建议直接使用默认设置即可。
在瞬态动力学分析中初始条件一般由第一载荷步定义,可定义初始位移和初始速度等不同的组合形式。
①初始位移和初始速度均为0;(默认()②初始位移为0,初始速度不为0;③初始位移不为0,初始速度为0;④初始位移和速度均不为0;⑤初始位移不为0,初始加速度不为0。
初始条件设置方法:(1)采用程序中的Initial Condtions,这个选项可以施加不同结构的初始平动速度,但是不能施加初始转动速度;(2)采用载荷步方法施加,该方法可以设置多种初始条件。
一般采用两个载荷步来施加初始条件:(建议参考ansys workbench帮助文档,详细阅读,可能在补充篇进行说明)9.6 瞬态动力学分析常见问题9.6.1 静力学和瞬态分析中时间步设置区别?图静力学分析设置图瞬态动力学分析设置在静力学和动力学分析设置的Step Controls都需要进行步长设置,如上图:Number of Steps定义为1,Current Step Number定义为1,Step End Time为1s。
静力学和动力学中虽step controls设置是一致的,静力学时间设置与真实时间没有关系,只是计算设置所需。
而瞬态动力学分析设置反映的就是与真实时间的关系,图中时间结束时间为1s,分析1s这个时间段的动力响应。
一般静力学的时间步设置基于Substep(子步),而瞬态动力学分析的时间步设置一般都基于Time(时间)。
静力学不包含惯性力,即便加载了惯性载荷,也是作为体力的形式作用于载荷的平衡,反映的是模型静止或匀速下的变形情况;瞬态动力学分析则包含惯性力,这是一种加速度的表现形式,反映的是模型运动和变形的共同作用。