高中自主招生考试数学试卷及参考答案

合集下载

2023年漳州一中高中自主招生考试数学试卷参考答案

2023年漳州一中高中自主招生考试数学试卷参考答案

漳州一中高中自主招生考试 数学参照答案及评分意见11. 且 12. (或 )13.4016 14. 15. 16. 三、解答题(本大题共有7小题, 共86分)17. (8分)原式 …………………………………………6分1-=………………………………………………………………8分 18. (10分)原式 ………………………………2分x x --=4162)4()4)(4(---+=x x x 4--=x ………………………7分∴当 时, 原式 ……………………10分19. (10分)(1)(4分) ………………………………………4分 (2)①(4分)树状图为:或列表法为:(画出树状图或列出表格得4分) ……………………………………………4分 ②(2分)因此411234==的倍数p …………………………………………2分 20. (12分)解法一:设参与 处公共场所旳义务劳动, 则学校派出 名学生^…………………………………………………………………………………2分依题意得: ………………………6分 由(1)得: , 由(2)得: ∴434433≤<x ………………………………………………………………8分 又 为整数, ∴ ……………………………………………………10分∴当 时, ………………………………………………11分答: 这所学校派出55名学生, 参与4处公共场所旳义务劳动 …………12分解法二:设这所学校派出 名学生, 参与 处公共场所旳义务劳动……1分 依题意得: ……………………………6分解得: …………………………………………………………8分 为整数, ∴ ………………………………………………………10分∴当 时, ………………………………………11分答: 这所学校派出55名学生, 参与4处公共场所旳义务劳动 …………12分 21. (14分)证法一:如图, 分别延长 、 相交于点 ………………1分 设 , ∵ ,∴ ,得 ………3分∴322=-=AM BM AB …………4分∵ , ∴ , 且 ,在 中, ………………………………6分 又∵ 、 ,∴)(ASA ECN MDN ∆≅∆……………………………………………………9分 ∴ 、 , ………………………………………11分 ∴ 、 , ∴ …………13分∴MBC NMB ∠=∠…………………………………………………………14分 证法二: 设 , 同证法一 ………………6分如图, 将 绕点 顺时针旋转 得到 , 连结 , ∵ , ∴ 是平角, 即点 三点共线,………………………………………………………………………………… 7分 ∴BEC BMA ∠=∠……………………………8分1==AM CE 、BM BE = …………………9分∴BEM BME ∠=∠…………………………10分 ∵MN CE CN NE ==+=+=25123 ……11分 ∴NEM NME ∠=∠…………………………12分 ∴NEM BEM NME BME ∠+∠=∠+∠ ∴AMB BEC BMN ∠=∠=∠………………13分 又∵MBC AMB ∠=∠∴MBC BMN ∠=∠…………………………14分 22. (16分)(1)(4分)设抛物线旳解析式为89252-⎪⎭⎫ ⎝⎛-=x a y ………………………1分∵抛物线通过 , ∴ , 解得: …………3分∴8925212-⎪⎭⎫ ⎝⎛-=x y (或225212+-=x x y ) …………………………4分(2)(4分)令 得 , ∴ ……………………………………1分 令 得 , 解得 、 ………………………3分∴)0 , 1(C 、) 0, 4(D …………………………………………………………4分(3)(8分)结论: …………………………………1分理由是: ①当点重叠时, 有………………………………2分②当 , ∵直线 通过点 、 , ∴直线 旳解析式为………3分设直线 与 轴相交于点 , 令 , 得 , ∴ ,则)2,0()2,0(B E 与点-有关x 轴对称………………4分 ∴ , 连结 , 则 ,∴ , …………………5分∵在 中, 有 …………………………………………6分∴BC AC AE PE PA PB PA +=>+=+…………………………………7分 综上所得BC AC BP AP +≥+………………………………………………8分 23. (16分)(1)(6分)解法一: 当点 在⊙ 上时, 设 与⊙交于点 ,∵ , ∴ ………………………1分 ∵ ∥ , ∴ ………………2分∴PD AP =…………………………………………3分又 , …………………4分………………………………………5分∴︒︒=⨯⨯=∠⨯=∠3018031213121AOB APE …6分 解法二: 设点 在⊙ 上时, 由已知有 , ……………………1分 ∴△ △ , ……………………………………………2分 ∴ , …………………………………………3分 在 △ 中, ……5分∴︒=∠30APC ……………………………………………………6分(2)(10分)k 值不随点P 旳移动而变化.理由是:∵ 是⊙ 右半圆上旳任意一点, 且 ∥ ,∴ ……………………………1分∵ 是⊙ 旳切线, ∴ ,⌒ ⌒又∵ , ∴ ,∴ABQ ACP ∠=∠ ……………………………2分 ∴ACP ∆∽OBQ ∆ ……………………………3分 ∴QBPCOB AC =……………………………………4分 又∵ 、 ,∴ACF ∆∽ABQ ∆……………………………………………………………6分 ∴BQCFAB AC = …………………………………………………………………7分 又∵ , ∴ 即 …………………………8分∴CF PC 2= 即CF PF = …………………………………………………9分 ∴ ,即 值不随点 旳移动而变化. ………………………10分。

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学试卷(四)及参考答案

2024初升高自主招生数学模拟试卷(四)一、选择题1.将4046减去它的,再减去余下的,再减去余下的,再减去余下的,…依此类推,直至最后减去余下的则最后余下的数为()A.4B.3C.2D.12.若正实数a,b,c满足不等式组则a,b,c的大小关系为()A.b<a<cB.b<c<aC.c<b<aD.c<a<b3.若实数a,b满足等式2a-b=2a2-2则a b=()A. C. D.44.在Rt△ABC中,∠ABC=90°,AB=2,BC=33,点D是平面内一动点,且上ADB=30°,连CD,则CD长的最大值是()A.8B.9C.10D.115.已知三个实数x1,x2,x3它们中的任何一个数加上其余两数积的6倍总等于7,则这样的三元数组(x1,x2,x3)共有组()A.3B.4C.5D.66.如图,在Rt△ABC中,∠BAC=90°,sin B=45,点D是边BC的中点,以AD为底边在其右侧作等腰△ADE,使∠ADE=∠B,连CE,则CEBC ()A.65 B.56 C.58 D.5127.四边形ABCD 中,AC ,BD 是其两对角线,△ABC 是等边三角形,AD =6,BD =10,CD =8,则∠ADC =()A.30°B.45°C.60°D.75°二、填空题8.已知19个连续整数的和为380,则紧接在这19个数后面的21个连续偶数的和是__.9.已知x =54-,则(2x +1)(x +1)(2x +3)(x +2)=.10.在实数范围内因式分解:a 2-2b 2+3c 2-ab +bc +4ca =.11.在平面直角坐标系xOy 中,点A (4,0),B (4,),连OB ,AB ,若线段OB ,AB 分别交双曲线(0k y k x =>,0)x >于点D ,E (异于点B ),若DE 丄OB ,则k 的值为.12.把两个半径为8和一个半径为9的圆形纸片放在桌面上,使它们两两相外切,若要用一个圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.13.在菱形ABCD 中,∠A =60°,点E ,F 分别在边AD ,AB 上,将△AEF 沿着EF 对折,使点A 恰好落在对角线BD 上的点G ,若DG =4,BG =6,则△AEF 的面积等于.14.对于任意不为0的实数a ,b ,c 定义一种新运算“#”:①a #a =1;②a #(b #c )=(a #b )c ,则关于x 的方程(x 2)#2=x +4的根为.三、解答题15.回答下列问题:(1)解方程:x =(x 2+4x 一3)2+4x 2+16x 一15;(2)求所有的实数a ,使得关于x 的方程x 2-(2a -1)x +4a -3=0的两根均为整数.16.如图,点E是正方形ABCD的边CD上一动点(异于C,D),连BE,以BE为对角线作正方形BGEF,EF与BD交于点H,连AF.(1)求证:A,F,C三点共线;(2)若CE:DE=1:2,求DHBH的值.17.在平面直角坐标系xOy中,抛物线C1:y=ax2+bx+c(a>0)经过点(0,-3)和(4,-11),且在x轴上截得的线段长为(1)求抛物线C1的解析式;(2)已知点A在抛物线C1上,且在其对称轴右侧,点B在抛物线C1的对称轴上,若△OAB是以OB为斜边的等腰直角三角形,求点A的坐标;(3)将抛物线C1向左平行移动3个单位得到抛物线C2,直线y=kx(k≠0)与C2交于E,F两点,直线2y xk=-与C2交于G,H两点,若M,N分别为线段EF和线段GH的中点,连接MN.求证:直线MN过定点.18.如图,等边△ABC内有一动点D,△CDE是等边三角形(点B,E在直线AC两侧),直线BD与直线AE交于点F.(1)判断∠AFC的大小是否为定值?若是定值,求出其大小;若不是定值,请说明理由.(2)若AB=5,CD=3,求线段AF长的最小值.参考答案1.答案:C解析:令,第二次余下的数为,,.故选:C.2.答案:B解析:由题意可得,因a ,b ,c 均为正实数,于是因此,故选:B.3.答案:A,根据非负性可知,所以故选:A.4.答案:B解析:要使长取到最大,则点C 与点D 位于直线两侧.延长到点E ,使4046=11211123323a a a ⎛⎫⨯-=⨯= ⎪⎝⎭13111,4434a a ⎛⎫⨯-=⨯= ⎪⎝⎭ 1202211114046220232023202220232023a a ⎛⎫⨯-=⨯==⨯= ⎪⎝⎭117,531326c abc c a a b c a ⎧<++<⎪⎪⎪<++<⎨⎪⎪⎪⎩11753132,6153,4a b c c a b c a c a b b ++⎧<<⎪⎪++⎪<<⎨⎪++⎪<<⎪⎩711133356a b c c ++>>>>>>b c a <<(21)20a b -+-=1,22a b ==b a =CD AB CB BE =连,则,,于是点D 在以为直径的圆上(与E 在直线同侧),设圆心为O ,则,当C ,O ,D 三点共线时,长取到最大,最大值为,故选:B.5.答案:C 解析:由条件知①-②得,,所以或.当时,代入③得,又代入①得,消去得,解得于是,或.当,解得或故选:C.6.答案:D解析:由条件知,,所以,所以,又公共,所以,所以也是等腰三角形,于是发现,故选:D.7.答案:A解析:以为一边在四边形外作等边,连,则可证,所以,又,,于是,所以,故选:A.AE 30AEB ∠=︒4AE =AE AB 7OC ==CD 729+=12321331267,67,,67,x x x x x x x x x +=⎧⎪+=⎨⎪+=⎩①②③()()123160x x x --=12x x =316x =12x x =23267x x +=22367x x x +=3x ()()()222161670x x x --+=2x =()()123,,1,1,1x x x =1141,,666⎛⎫ ⎪⎝⎭777,,666⎛⎫--- ⎪⎝⎭3x =121274136x x x x +==1216416x x ⎧=⎪⎪⎨⎪=⎪⎩12x x ⎧=⎪⎪⎨⎪⎪⎩AD BD DC ==B BAD ADE ∠=∠=∠//DE AB CDE B ADE ∠=∠=∠DE ADE CDE ≌△△CDE △CDE BAD ∽△△11552236BC CD AB AB ===⨯=15226CE BD ==⨯=CD ABCD CDE △AE BCD ACE ≌△△10BD AE ==6AD =8DE =222AD DE AE +=90ADE ∠=︒906030ADC ∠=-=︒︒︒8.答案:1050解析:设19个连续整数中最小的整数是,则最大的整数是,,解得,所以紧接在这19个数后面的21个连续偶数分别为30,32,34,,70,.9.答案:42解析:由条件得,又.10.答案:解析:利用待定系数法或双十字相乘法.解析:由条件知,设,则,,又,,所以,,于是于,所以(舍)或12.答案:18解析:要使大圆形纸片的半径最小,只需这个大圆形纸片与三个小圆形纸片均内切,设最小半径大小为r ,则,解得.解析:作于点P ,设,则,,,,n 18n +380=11n = 1050=22540x x +-=()()()()()()()()211232212123x x x x x x x x ⎡⎤⎡⎤++++=++++⎣⎦⎣⎦()()222522536742x x x x =++++=⨯=()()23a b c a b c ++-+:OB y =()D t 2k =2OD t =8OB =60AOB ∠=︒82BD t =-60BED ∠=︒DE =BE =AE ==E ⎛ ⎝k =2=4=t =k =222(8)8(915)r r -=++-18r =FP BD ⊥BP x =PF =2BF x =PF =102AF GF x ==-在中,,即,解得所以14.答案:4或-2解析:令,因,由得,令,由得,于是,所以,解方程得两根分别为4或-2.15.答案:(1)解析:(1)原方程可化为令,则原方程可化为,于是,整理得,所以于是或,当时,,解得当时,,解得综上,原方程的根为(2)不妨设两根为,,则根据韦达定理可知,,于是,所以6PG x=-Rt PFQ △222PF PG GF +=2223(6)(102)x x x +-=-x =AF =AE =AEF △b c a ==#1a a =()()###a b c a b c =#1a a =c b =()()###a b c a b c =()()###a b b a b b =()##1a b b a a ==#a b =)2#2x x =+4x =+x ==()()222434433x x x x x =+-++--243x x t +-=243x t t =+-()224343x t t t x x -=+--+-()2250x t x t -+-=()()50x t x t -++=x t =50x t ++=x t =2330x x +-=x =50x t ++=2520x x ++=x =x =x =1x ()212x x x ≤1221x x a +=-1243x x a =-()121221x x x x -+=-()()12223x x --=因,为整数,,于是,也为整数,且,所以或,当时,解得,此时当时,解得,此时16.答案:(1)见解析解析:证明:(1)在正方形和正方形中,所以,即,所以,所以,又,所以A ,F ,C 三点共线(2)因,设,则,,因,,公共,所以,于是即,解得所以17.答案:(1)(2)或1x 2x 12x x ≤12x -22x -1222x x -≤-122123x x -=⎧⎨-=⎩122321x x -=-⎧⎨-=-⎩122123x x -=⎧⎨-=⎩1235x x =⎧⎨=⎩a =122321x x -=-⎧⎨-=-⎩1211x x =-⎧⎨=⎩12a =ABCD BGEF 45ABD FBE ∠=∠=BE BF==ABD DBF FBE DBF ∠-∠=∠-∠ABF DBE ∠=∠ABF DBE ∽△△45BAF BDC ∠=∠=︒45BAC ∠=︒:1:2CE DE =CE t =2DE t =BD =BE =45BEH BDE ∠=∠=︒DBE ∠BEH BDE ∽△△=2BE BD BH =⋅210t BH =⋅BH =DH BD BH =-=-==263y x x =--()7,4()6,3-(3)解析:(1)由条件可知又,解得所以抛物线的解析式为.(2)当点A 在x 轴上方时,过点A 作轴于点P ,过点B 作直线的垂线,垂足为点Q ,因,,所以,又,,所以,于是.设,则,所以,解得,所以点同理当点A 在x 轴下方时,可求得,综上所述,点A 的坐标为或.(3)由条件知,联立得,于是点,同理可得,设,则,解得所以,其过定点.18.答案:(1)的大小是定值,定值大小为,理由见解析()0,1316411,c a b c ⎧⎪=-⎪⎪++=-⎨=0a >163a b c =⎧⎪=-⎨⎪=-⎩1C 263y x x =--AP x ⊥AP 90OAP BAQ ∠+∠=︒90OAP AOP ∠+∠=︒AOP BAQ ∠=∠OA AB =90OPA AQB ∠=∠=︒OAP ABQ ≌△△AP BQ =()2,63A m m m --3m >2633m m m --=-7m =()7,4A ()6,3A -()7,4()6,3-22:12C y x =-212y kx y x =⎧⎨=-⎩2120x kx --=2,22k k M ⎛⎫ ⎪⎝⎭212,N k k ⎛⎫- ⎪⎝⎭:MN y px q =+222221k k p q p q kk ⎧=+⎪⎪⎨⎪=-+⎪⎩p q ⎧=⎪⎨⎪=⎩22:1k MN y x k-=+()0,1AFC ∠120︒(2)解析:(1)的大小是定值,定值大小为,理由如下:在等边和等边中,,,,于是,即,所以,所以,所以C ,D ,F ,E 四点共圆,所以,于是(2)由(1)知,所以A,F ,C ,B 四点共圆.若最大,则最小.当时,最大,因,,所以,由(1)得,,于是在和中,,所以,所以,于是所以线段长的最小值为.4AFC ∠120︒ABC △CDE △AC BC =CE CD =60ACB DCE CDE ∠=∠=∠=︒ACB ACD DCE ACD ∠-∠=∠-∠ACE BCD ∠=∠ACE BCD ≌△△BDC AEC ∠=∠60CFE CDE ∠=∠=︒180********AFC CFE ∠=-∠=︒-=︒︒︒12060180AFC ABC ︒∠+︒+∠==︒CBF ∠AF CD BF ⊥CBF ∠5AB =3CD =4BD ==ACE BCD ≌△△4AE BD ==90AEC BDC ∠=∠=︒Rt CEF △Rt CDF △CE CD =CF CF=Rt Rt CEF CDF ≌△△30ECF DCF ∠=∠=︒EF =4AF AE EF =-=-AF 4。

2024年浙江省温州市重点高中自主招生数学试卷+答案解析

2024年浙江省温州市重点高中自主招生数学试卷+答案解析

2024年浙江省温州市重点高中自主招生数学试卷一、选择题:本题共8小题,每小题4分,共32分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.对正整数n,记n!…,则1!!!…!的末尾数为()A.0B.1C.3D.52.在分别标有号码2、3、4、…10的9个球中,随机取出两个球,记下它们的标号,则较大标号被较小标号整除的概率是()A. B. C. D.3.已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A.1B.2C.3D.44.函数与的图象可能是()A. B.C. D.5.十进制数278,记作,其实,二进制数有一个为整数进制数,把它的三个数字顺序颠倒得到的k进制数是原数的3倍,则()A.10B.9C.8D.76.正方形ABCD,正方形BEFG和正方形PKRF的位置如图所示,点G在线段DK上,正方形BEFG的边长为2,则的面积为()A.4B.2C.3D.7.两个等腰直角、如图放置,,,,DE与AC交于点H,连接BH,若,下列结论错误的是()A.≌B.为等边三角形C.D.8.如图,在圆内接四边形ABCD中,,,为圆心,,,,,则此四边形的面积为用含a、b、c、d表示四边形ABCD的面积A.B.C.D.二、填空题:本题共8小题,每小题4分,共32分。

9.已知a是64的立方根,是a的平方根,则的算术平方根为______.10.关于x的函数符合以下条件:函数在处无意义;当x取非零实数时都有如当时,有,可以求得则的函数表达式是______.11.如图,在“镖形”ABCD中,,,,则点D到AB的距离为______.12.已知正整数a,b,c满足,,则abc的最大值为______.13.AB为半圆O的直径,C为半圆弧的一个三等分点,过B,C两点的半圆O的切线交于点P,则______.14.矩形ABCD的边长,,E为AB的中点,F在线段BC上,F在线段BC上,且BF::2,AF分别与DE,DB交于点M,N,则______.15.实数a,b,c,d满足:一元二次方程的两根为a,b,一元二次方程的两根为c,d,则所有满足条件的数组为______.16.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了______支圆珠笔.三、解答题:本题共4小题,共56分。

高中自主招生数学试题及答案

高中自主招生数学试题及答案

高中自主招生数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. πB. √2C. 0.33333(无限循环)D. 1/32. 已知函数f(x) = 2x^2 + 3x - 5,求f(-2)的值。

A. -15B. -9C. -3D. 13. 一个圆的半径为5,求其面积。

A. 25πB. 50πC. 75πD. 100π4. 已知等差数列的前三项分别为1,4,7,求第10项的值。

A. 26B. 27C. 28D. 295. 一个三角形的内角和为多少度?A. 180°B. 360°C. 540°D. 720°二、填空题(每题2分,共10分)6. 若a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是_________三角形。

7. 一个函数的导数f'(x) = 3x^2 - 2x,当x=1时,其导数的值为_________。

8. 已知等比数列的首项为2,公比为3,求其第5项的值是_________。

9. 一个正方体的体积为27,它的边长是_________。

10. 圆的周长公式为C = 2πr,若半径r=4,则周长为_________。

三、解答题(共75分)11. 解一元二次方程:x^2 - 5x + 6 = 0。

(10分)12. 证明:若a,b,c是实数,且a + b + c = 0,则(1/a) + (1/b) + (1/c) ≥ 9。

(15分)13. 已知函数f(x) = x^3 - 3x^2 + 2,求其导数并讨论其在x=1处的单调性。

(20分)14. 解不等式:|x - 2| + |x + 3| ≥ 5。

(15分)15. 已知一个圆的圆心在原点,半径为1,求圆上任意一点到直线y = x的距离。

(15分)四、结束语本试题旨在考察学生对高中数学基础知识的掌握情况和解题能力。

希望同学们在解答过程中能够认真思考,仔细作答,展现出自己的数学素养。

自主招生数学试题及答案

自主招生数学试题及答案

自主招生数学试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = x^2 - 4x + 4 \),求\( f(x) \)的最小值。

A. 0B. 1C. 2D. 42. 若\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \),求\( \theta \)的值。

A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{2} \)C. \( \frac{3\pi}{4} \)D. \( \pi \)3. 已知等差数列\( \{a_n\} \)的首项为3,公差为2,求第10项的值。

A. 23B. 25C. 27D. 294. 一个圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共20分)5. 若\( a \)和\( b \)是方程\( x^2 + 4x + 4 = 0 \)的两个根,则\( a + b \)的值为______。

6. 已知\( \cos(\alpha) = \frac{3}{5} \),\( \alpha \)在第一象限,求\( \sin(\alpha) \)的值。

7. 若一个等比数列的首项为2,公比为3,求该数列的第5项。

8. 一个长方体的长、宽、高分别是\( a \)、\( b \)、\( c \),求长方体的体积。

三、解答题(每题30分,共60分)9. 已知函数\( g(x) = \ln(x) + 2x - 6 \),求\( g(x) \)的导数。

10. 一个工厂生产某种产品,每件产品的成本为\( C(x) = 50 + 20x \),销售价格为\( P(x) = 120 - 0.5x \),其中\( x \)表示生产数量。

求工厂的盈亏平衡点。

答案:一、选择题1. B. 1(因为\( f(x) = (x-2)^2 \),当\( x = 2 \)时,\( f(x) \)取得最小值1)2. A. \( \frac{\pi}{4} \)(根据二倍角公式)3. A. 23(第10项为\( a_{10} = 3 + 9 \times 2 = 23 \))4. B. 50π(圆的面积公式为\( A = \pi r^2 \))二、填空题5. -4(根据韦达定理)6. \( \frac{4}{5} \)(根据勾股定理)7. 162(第5项为\( a_5 = 2 \times 3^4 = 162 \))8. \( abc \)(长方体体积公式)三、解答题9. \( g'(x) = \frac{1}{x} + 2 \)(对\( g(x) \)求导)10. 盈亏平衡点为\( x = 40 \)。

省级重点高中自主招生数学真题8套(含答案)

省级重点高中自主招生数学真题8套(含答案)

省重点高中自主招生数学真题8套(含答案)第1套一、选择题(每小题5分,满分30分。

以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填得0分。

)1、已知实数a 、b 、c 满足0254=-+-+++a b c b a ,那么bc ab +的值为( ) A 、0B 、16C 、-16D 、-32 2、设βα、是方程02322=--x x 的两个实数根,则βααβ+的值是( )A 、-1B 、1C 、32-D 、32 3、a 、b 、c 均不为0,若0<=-=-=-abc cxz b z y a y x ,则),(bc ab p 不可能在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4、在ABC ∆中,C B ∠=∠2,下列结论成立的是( ) A 、AB AC 2= B 、AB AC 2< C 、AB AC 2> D 、AC 与AB 2大小关系不确定5、已知关于x 的不等式7<a x 的解也是不等式12572->-aa x 的解,则a 的取值范围 是( )A 、910-≥aB 、910->a C 、0910<≤-a D 、0910<<-a 6、如图,□ DEFG 内接于ABC ∆,已知ADE ∆、EFC ∆、DBG ∆的面积为1、3、1,那么□ DEFG 的面积为( ) A 、32B 、2C 、3D 、4 第6题图二、填空题(每小题5分,共30分)1、已知质数x 、y 、z 满足5719=-yz x ,则z y x ++= 。

2、已知点A (1,3),B (4,-1),在x 轴上找一点P ,使得AP -BP 最大,那么P 点的坐标是 。

3、已知AB 是⊙O 上一点,过点C 作⊙O 的切线交直线AB 于点D ,则当△ACD 为等腰三解形时,∠ACD 的度数为 。

2024年高中自主招生素质检测数学试题及参考答案

2024年高中自主招生素质检测数学试题及参考答案

学校姓名考场座位号2024年自主招生素质检测数学试题注意事项:1.本试卷满分为150分,考试时间为120分钟㊂2.全卷包括 试题卷 (4页)和 答题卡 (2页)两部分㊂3.答题一律要求用0.5m m 黑色签字笔在答题卡上规定的地方答卷,作图题使用2B 铅笔作答,考试不使用计算器㊂4.考试结束后,请将 试题卷 和 答题卡 一并交回㊂一㊁选择题:共10小题,每小题5分,共50分㊂在每小题给出的四个选项中,只有一项是符合题目要求的㊂1.由5个相同的小立方体搭成的几何体如图所示,现拿走一个小立方体,得到几何体的主视图与左视图均没有变化,则拿走的小立方体是A .①B .②C .③D .④2.黄山景色绝美,景观奇特. 五一 假期,黄山风景区进山游客近13万人,黄山景区门票旺季190元/人,以此计算, 五一 假期黄山景区进山门票总收入用科学计数法表示为A .0.247ˑ107B .2.47ˑ107C .2.47ˑ108D .247ˑ1053.下列因式分解正确的是A .2x 2+y 2+4x y =(2x +y )2B .x 3-2x y +x y 2=x (x -y )2C .x 2-(3y -1)2=(x -1+3y )(x +1-3y )D .a x 2-a y 2+1=a (x +y )(x -y )+14.已知点A (x 1,y 1),B (x 2,y 2)是抛物线y =a x 2-3x +3上两点,当a -x 1-x 2=2时,y 1=y 2,则该抛物线与坐标轴的交点个数为A .3个或0个B .3个或1个C .2个或0个D .2个5.若关于x 的不等式组x +2a <03x +a <15的解集中的任意x 的值,都能使不等式x -4<0成立,则实数a 的取值范围为A .a <-3B .a <-2C .a ȡ-2D .a ȡ36.如图,已知әA B C 中,A D 为øB A C 的平分线,A B =8,B C =6,A C =10,则D C 的值为A .10B .2C .5D .17.如图,B (-2,0),C (4,0),且B E 所在的直线与A C 垂直,øA C B -øB A O =45ʎ,连接O D ,若射线O D 上有一点M ,横坐标为6,则әB O M 的面积为A .3B .6C .23D .728.定义:用M a ,b ,c 表示这三个数的中位数,用M i n {a ,b ,c }表示这三个数的最小数.例如:M {-1,12,0}=0,M i n {-1,12,0}=-1.如果M {4,x 2,2x -1}=M i n {4,x 2,2x -1},则x 的值为A .2或-2B .1或12C .2或12D .1或529.如图,әA B C 中,A B =B C ,øB =120ʎ,E 为平面内一点,若A E =3,C E =2,则B E 的值可能为A .2.5B .3C .0.3D .0.510.如图,直线A B :y =13x +b 与反比例函数y =kx相交于点A (3,5),与y 轴交于点B ,将射线A B 绕点A 逆时针旋转45ʎ,交反比例函数图象于点C ,则点A ㊁B ㊁C 构成的三角形面积为A .12B .1110C .232D .554二㊁填空题:共4小题,每小题5分,共20分㊂11.某市为改善市容,绿化环境,计划经过两年时间,绿地面积增加44%,则这两年平均绿地面积的增长率为.12.若x 9+x 8+ +x 2+x +1=0,则x 的值为.13.定义:对于函数y =l g x (x >0),y 随x 的增大而增大,且l g 10=1,l g xy=l g x -l g y ,l g x y =l g x +l g y .若1a +5b =5,则l g a +l g b 的最大值为.14.已知二次函数y =2x 2+b x +c 图象的对称轴为直线x =34,且过点(3,10),若其与直线y =3交于A ㊁B 两点,与直线y =x +5交于P ㊁Q 两点,则P Q 2A B值为.三㊁解答题:共5题,共80分㊂解答应写出文字说明,证明过程和解题步骤㊂15.(12分)(1)若13a +25b =1,23a +35b =3,求a 2-b 2+8b -172025;(2)先化简再求值:m +2m -m -1m -2ːm -4m 2-4m +4,其中m =2s i n 30ʎ㊃t a n 45ʎ-32t a n 30ʎ.16.(12分)请按以下要求完成尺规作图.(1)如图1,菱形A B C D 中,点P 在对角线B D 上,请作出一对以B D 所在直线为对称轴的全等三角形,使交B A 于点M ,交B C 于点N ,әP B M ɸәP B N .你有几种解法?请在下图中完成;(保留必要作图痕迹,不写作法)(2)如图2,点P 是菱形A B C D 内部一点,请作出一条过点P 的直线,交射线B A ㊁射线B C 于点M ㊁N ,且B M =B N ,聪明的你肯定有多种不同作法?请在下图中完成两种作法,并选择其中一种证明:B M =B N .(保留必要作图痕迹,不写作法)17.(15分)如图,直角三角形A B C中,以直角边A B为直径作圆交A C于点D,过点D作D MʅA B于点M,E为D M的中点,连接A E并延长交B C于点F,B F=E F.(1)求证:C F=B F;(2)求t a nøD E F;(3)若D F=2,求圆的面积.18.(19分)已知四边形A B C D,A B=4,点P在射线B C上运动,连接A P.(1)若四边形A B C D为正方形,点M在A P上,且øA D M=øA P D.请判断A M㊁A P㊁A C之间数量关系,并说明理由;(2)若四边形A B C D为菱形呢?øB=60ʎ,其他条件与(1)同,则(1)中的结论还成立吗?并说明理由;(3)若四边形A B C D为正方形,将线段A P绕点P顺时针旋转90ʎ于P Q,此时D Q的最小值为多少?A Q+D Q的最小值呢?并说明理由.19.(22分)已知抛物线y=a x2+b x+c的顶点坐标为A(1,4),与x轴交点分别为点B㊁C(点B在点C 左侧),与y轴交点为D,一次函数y=k x+4(k>0)与x轴所形成的夹角的正切值为4,方程k x+4=a x2+b x+c有两个相等的实数根.(1)求该抛物线的解析式;(2)点M是该抛物线上一动点,则在抛物线对称轴上是否存在点N,使得以A㊁B㊁M㊁N为顶点的四边形为平行四边形?若存在,请求出所有满足条件的点N坐标及该平行四边形的面积;若不存在,请说明理由;(3)若将该抛物线向左平移1个单位,再向下平移4个单位得到抛物线y',点D关于x轴的对称点为D',若过点D'的直线与y'交于P㊁Q两点(点P在点Q左侧),点Q关于y轴的对称点为Q',若әP Q O与әP Q Q'面积相等,求直线P Q的解析式.2024年自主招生素质检测数学参考答案选择题:共10小题,每小题5分,满分50分㊂题号12345678910答案CBCBCABDAD填空题:共4小题,每小题5分,满分20分㊂11.20% 12.-1 13.1 14.2654.ʌ解析ɔ x 1+x 2=a -2,抛物线的对称轴x =--32a,ʑ32a =a -22⇒a 2-2a -3=0⇒(a +1)(a -3)=0⇒a 1=-1,a 2=3,ʑ①当a 1=-1时,y =-x 2-3x +3,Δ=9+12>0,与坐标轴的交点个数为3个;②当a 2=3时,y =3x 2-3x +3,Δ=9-4ˑ3ˑ3<0,与坐标轴的交点个数为1个.5.ʌ解析ɔ x <-2a ,x <15-a 3,①-2a >15-a 3,解得a <-3,ʑx <15-a 3,ȵx <4,ʑ15-a 3ɤ4,解得a ȡ3(舍去);②-2a ɤ15-a 3,解得a ȡ-3,ʑx <-2a ,ȵx <4,ʑ-2a ɤ4,解得a ȡ-2.6.ʌ解析ɔ 由角平分线定理S әA B D S әA C D =A B ㊃h A C ㊃h =45=B D D C ,ʑ45=6-D C D C ,解得D C =103.7.ʌ解析ɔ øB E O =øB A E +øA B E ,øA C B =øB A O +45ʎ,R t әB O E ʐR t әB D C ,ʑøB E O =øA C B ,ʑøA B D =45ʎ,则әA B D 为等腰直角三角形,A D =B D ,ʑR t әA E D ɸR t әB C D ,ʑA E =B C ,S әA E D =S әB C D ,ʑh 1=h 2,ʑ点D 在øA O C 的角平分线上,M (6,6),S әB O M =2ˑ62=6.8.ʌ解析ɔ 由图像知x 2=2x -1,解得x =1;或2x -1=4,解得x =52.9.ʌ解析ɔ 设B E =x ,将әA B E 绕B 点顺时针旋转120ʎ到әC B E ',C E '=A E =3,øE B E '=120ʎ,B E =B E '=x ,易得E E '=3x ,在әC E E '中,C E '-C E <E E '<C E '+C E ,即3-2<3x <2+3,解得33<x <533.10.ʌ解析ɔ 由题知,直线y =13x +b 与反比例函数y =k x相交于点A(3,5),则13ˑ3+b =5,解得b =4,k =15,法一:直线A C 与y 轴交于点M ,从M 点作直线A B 的垂线,垂足为N ,A M =(m -5)2+32,MN =(4-m )s i n θ=(4-m )310,A M =2MN ,ʑ(m -5)2+9=95(m -4)2⇒5(m -5)2+45=9(m -4)2,2m 2-11m -13=0⇒(2m -13)(m +1)=0,ʑm =132(舍)或m =-1,直线A C 的方程为y =2x -1.2x -1=15x ⇒2x 2-x -15=0⇒(2x +5)(x -3)=0,解得x 1=-52,x 2=3,ʑ点C (-52,-6),S әA B C =5ˑ(3+52)2=554.法二:易知l A B :y =13x +4,设l A C :y =k 2x +b ,由倒角公式得t a n 45ʎ=k 2-k 11+k 1k 2=k 2-131+13k 2=1,k 2-13=13k 2+1,两边平方得k 2=2或k 2=-12(舍),又l A C 过点A ,ʑl A C :y =2x -1(与y 轴交点为M ),与y =15x 联立得x C =-52,ʑS әA B C =12BM |x A -x C |=554.12.ʌ答案ɔ -1ʌ解析ɔ 若x =0,等式不成立,则x ʂ0,等式两边同乘x ,ʑx 10+x 9+x 8+ +x 2+x =0⇒x 10-1=0⇒x 10=1,解得x =ʃ1.当x =1时,等式不成立;当x =-1时,等式成立.13.ʌ解析ɔ l g a +l g b =l ga b ,即求a b 的最大值,12a +54b ȡ212a ㊃54b =258a b ,258a b ɤ5⇒a b ɤ10.14.ʌ解析ɔ 由题知,-b 4=34,解得b =-3,抛物线过点(3,10),代入数据解得c =1,抛物线y =2x 2-3x +1,当y =3时,2x 2-3x +1=3,解得x 1=-12,x 2=2,A B =52,当y =x +5时,2x 2-3x +1=x +5⇒x 2-2x -2=0⇒x 3+x 4=2,x 3x 4=-2,(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=12,P Q =(1+k 2)(x 3-x 4)2=26,P Q 2A B =265.15.(12分)ʌ解析ɔ (1)13a +25b =1, ①23a +35b =3, ②①+②得a +b =4,(2分) a 2-b 2+8b -17=(a +b )(a -b )+8b -17=4a -4b +8b -17=4a +4b -17=-1,(4分)a 2-b 2+8b -17 2025=-1.(6分)(2)原式=m +2m -m -1m -2㊃(m -2)2m -4=m 2-4-(m 2-m )m (m -2)㊃(m -2)2m -4=m -4m (m -2)㊃(m -2)2m -4=m -2m,(8分)m =2ˑ12-32ˑ33=12,(10分) ʑ原式=12-212=-3.(12分) 16.(12分)ʌ解析ɔ (1)提示:作P M ㊁P N 分别垂直于A B ㊁A C ,如图1;(2分)过P 点作MN 垂直于B D ,如图2;(4分)P 作E F ʊB C A B 于点E C D 于点F E M =E P M P 交B C 于点N作法二:先作B M '=B N ',交A B 于点M ',交B C 于点N ',连接M 'N ',将直线M 'N '平移过点P ,交A B 于点M ,交B C 于点N ,即MN 为所求直线,如图4;(8分)选择作法一证明:ȵE M =E P ,ʑøE M P =øE P M ,ȵE F ʊB C ,ʑøE P M =øB NM ,ʑøE M P =øB NM ,ʑB M =B N .(12分)选择作法二证明:ȵB M '=B N ',ʑøB M 'N '=øB N 'M ',M 'N 'ʊMN ,ʑøB MN =øB M 'N ',øB NM =øB N 'M ',ʑøB MN =øB NM ,ʑB M =B N .(12分)(作法不限,合理即可)17.ʌ解析ɔ (1)ȵD M ʊB C ,ʑәA D E ʐәA C F ,әA E M ʐәA F B ,ʑA E A F =D E C F ,A E A F =E M B F,(2分) ȵD E =E M ,ʑC F =B F ;(4分)(2)取A B 的中点O ,即为圆心,连接O F ,设圆O 的半径为r ,延长A B 交D F 延长线于G ,由(1)知,F 为R t әB C D 中斜边B C 的中点,ʑD F =B F =E F ,ʑøF D E =øD E F =øA E M ,ȵøG +øG D M =øE A M +øA E M =90ʎ,则øG =øE A M ,ʑA F =F G ,在әA F G 中,F B ʅA G ,则A B =B G =2r ,A O =r ,O G =3r ,(6分)ȵO F ʊA C ,ʑO G A O =F G D F=3,即F G =3D F ,(8分) ȵD F =B F ,ʑF G =3B F ,ʑc o s øB F G =B F F G =13,ʑt a n øD E F =t a n øE D F =t a n øB F G =B G B F=22;(10分)(3)ȵD F =B F ,ʑB F =2,由(2)知,t a n øB F G =B G B F=22,ʑB G =42,(12分)ȵB G =2r ,ʑr =22.(13分)S 圆O =πr 2=8π.(15分)18.ʌ解析ɔ (1)A C 2=2A M ㊃A P .(2分)理由如下:如图1,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D ,ʑA D 2=A M ㊃A P ,在正方形A B C D 中,A D =22A C,ʑ(22A C )2=A M ㊃A P ,ʑA C 2=2A M ㊃A P .(6分)(2)(1)中的结论不成立.(7分) 理由如下:如图2,ȵøA D M =øA P D ,øD A M =øP A D ,ʑәA D M ʐәA P D ,ʑA D A P =A M A D,ʑA D 2=A M ㊃A P ,ȵ在菱形A B C D 中,øB =60ʎ,则B C =A B =A C =A D ,ʑA C 2=A M ㊃A P .(11分)(3)如图3,过点Q 分别作Q E ʅB C 的延长线于点E ,Q F ʅC D 于点F ,ʑQ F =C E ,设B P =m ,A P =Q P ʑR t әA B P ɸR t әP E Q ,则B P =Q E =m ,A B =P E =4,ȵC E +P C =B P +P C =4,ʑC E =B P =m ,在R t әD F Q 中,Q F =C E =m ,D F =C D -C F =4-m ,(15分) D Q 2=D F 2+Q F 2=(4-m )2+m 2=2m 2-8m +16=2(m -2)2+8,当m =2时,D Q 取得最小值,D Q m i n =22,(17分) 分析易知Q 在C D '上运动,作D 关于C D '的对称点C ',连接Q C ',则(A Q +D Q )m i n =(A Q +Q C ')m i n =A C '=42+82=45.(19分) 19.ʌ解析ɔ (1)由题可知k =4,ʑy =4x +4(2分) 2的顶点坐标为A y =a x -12即4x +4=a (x -1)2+4⇒a x 2-(2a +4)x +a =0有两个相等的实数根,ʑΔ=(2a +4)2-4a 2=0,解得a =-1,ʑ抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3;(5分)(2)设M 点坐标为(m ,-m 2+2m +3),N 点坐标为(1,n ),A (1,4),令-x 2+2x +3=0,解得x 1=-1,x 2=3,所以B (-1,0),C (3,0),(7分)若A B 为对角线,1-12=m +12,解得m =-1(舍去);若A M 为对角线,m +12=1-12,解得m =-1(舍去);若A N 为对角线,1+12=m -12,解得m =3;(9分) 4+n 2=0-m 2+2m +32,解得n =-4,此时M (3,0),N (1,-4),(10分)S ▱A B M N =4ˑ82=16;(12分) (3)由题可知,抛物线y '=-x 2,点D (0,3)关于x 轴的对称点D '(0,-3),直线P Q 过点D ',设直线P Q 的解析式为y P Q =k x -3,若k >0,如图1,S әP Q O =S әP Q Q ',则Q 'O ʊP Q ,则әQ 'H O ɸәQ H D ',所以O H =12O D '=32,H (0,-32),所以Q (62,-32),Q '(-62,-32),直线P Q 的解析式为y P Q =62x -3;(16分)若k <0,如图2,过点Q '作直线l ʊP Q ,取l 与y 轴交点M ,作O L ʅP Q 于点L ,MH ʅP Q 于点H ,所以O L ʊHM ,S әP Q O =S әP Q O ',所以O L =HM ,所以四边形O L MH 为平行四边形,则对角线互相平分,所以M (0,-6),同理,әD 'K Q ɸәM K Q ',所以D 'K =K M =12D 'M =32,所以K (0,-92),(20分) 因为点Q 的纵坐标为-92,所以Q (322,-92),直线P Q 的解析式为y P Q =-22x -3.(21分)综上,直线P Q 的解析式为y P Q =6x -3或y P Q =-2x -3.分)。

2024年重点中学自主招生模拟试卷(2)参考答案

2024年重点中学自主招生模拟试卷(2)参考答案

2024年重点中学自主招生模拟试卷(2)数学参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)(2024•宁海县校级自主招生)在Rt△ABC中,∠BAC=90°,AB=6,AC=8,点P是△ABC所在平面内一点,则PA2+PB2+PC2取得最小值时,下列结论正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条内角平分线的交点C.点P是△ABC三条高的交点D.点P是△ABC三条中线的交点【分析】过P作PD⊥AC于D,过P作PE⊥AB于E,延长CP交AB于M,延长BP交AC于N,设AD=PE=x,AE=DP=y,则AP2+CP2+BP2=3(x﹣)2+3(y﹣2)2+,当x=,y=2时,AP2+CP2+BP2的值最小,此时AD=PE=,AE=PD=2,由=,得AM=3,M是AB的中点,同理可得AN=AC,N为AC中点,即P是△ABC三条中线的交点.【解答】解:过P作PD⊥AC于D,过P作PE⊥AB于E,延长CP交AB于M,延长BP交AC于N,如图:∵∠A=90°,PD⊥AC,PE⊥AB,∴四边形AEPD是矩形,设AD=PE=x,AE=DP=y,Rt△AEP中,AP2=x2+y2,Rt△CDP中,CP2=(8﹣x)2+y2,Rt△BEP中,BP2=x2+(6﹣y)2,∴AP2+CP2+BP2=x2+y2+(8﹣x)2+y2+x2+(6﹣y)2=3x2﹣16x+3y2﹣12y+100=3(x﹣)2+3(y﹣2)2+,∴x=,y=2时,AP2+CP2+BP2的值最小,此时AD=PE=,AE=PD=2,∵∠A=90°,PD⊥AC,∴PD∥AB,∴=,即=,∴AM=3,∴AM=AB,即M是AB的中点,同理可得AN=AC,N为AC中点,∴P是△ABC三条中线的交点,故选:D.2.(4分)(2024•达州)如图,△ABC是等腰直角三角形,∠ABC=90°,AB=4,点D,E 分别在AC,BC边上运动,连结AE,BD交于点F,且始终满足AD=CE,则下列结论:①=;②∠DFE=135°;③△ABF面积的最大值是4﹣4;④CF的最小值是2﹣2.其中正确的是()A.①③B.①②④C.②③④D.①②③④【分析】①先求出,,则,由此可证△CAE∽△ABD,然后根据相似三角形性质可对结论①进行判断确;②根据△CAE∽△ABD得∠CAE=∠ABD,再根据三角形外角性质得∠BFE=45°,由此可对结论②进行判断确;③以AB为斜边在△ABC外侧构造等腰Rt△OAB,作△OAB的外接圆⊙O,过点O作OK⊥AB于K,OK的延长线交⊙O于H,连接AH,BH,过点O作OM⊥CB交CB的延长线于M,连接OC交⊙O于P,证明点F在弧AB上运动,则当点F与点H重合时,△ABF的面积为最大,最大值为△ABH的面积,然后求出△ABH的面积即可对结论③进行判断确;④根据点F在弧AB上运动,得当点F与点P重合时,CF为最小,最小值为线段CP的长,然后求出线段CP的长即可对结论④进行判断确,综上所述即可得出答案.【解答】解:①∵△ABC是等腰直角三角形,∠ABC=90°,AB=4,∴∠BCA=∠BAC=45°,AB=BC=4,由勾股定理得:AC==,∴,∵AD=CE,∴,∴,又∵∠ECA=∠DAB=45°,∴△CAE∽△ABD,∴,故结论①正确;②∵△CAE∽△ABD,∴∠CAE=∠ABD,∴∠BFE=∠BAF+∠ABD=∠BAF+∠CAE=∠BAC=45°,∴∠DFE=180°﹣∠BFE=180°﹣45°=135°,故结论②正确;③以AB为斜边在△ABC外侧构造等腰Rt△OAB,作△OAB的外接圆⊙O,过点O作OK ⊥AB于K,OK的延长线交⊙O于H,连接AH,BH,过点O作OM⊥CB交CB的延长线于M,连接OC交⊙O于P,如图所示:∴∠AOB=90°,∴∠AHB=180°﹣∠AOB=180°﹣×90°=135°,∵∠DFE=135°,∴点F在上运动,∵AB=4,∴当点F与点H重合时,△ABF的面积为最大,最大值为△ABH的面积,根据等腰直角三角形的性质得:AK=BK=AB=2,∠AOH=45°,∴AK=OK=2,在Rt△AOK中,由勾股定理得:OA==,∴OA=OH=OB=OP=,∴KH=OH﹣OK=,∴SABH=AB•KH==,△故结论③正确;④∵点F在上运动,∴当点F与点P重合时,CF为最小,最小值为线段CP的长,∵OM⊥CB,OK⊥AB,∠ABM=∠ABC=90°,∴四边形OMBK为矩形,∴OM=BK=2,BM=OK=2,∴CM=BC+BM=4+2=6,在Rt△COM中,由勾股定理得:CO==,∴CP=CO﹣OP=,即CF的最小值是,故结论④正确,综上所述:正确的结论是①②③④.故选:D.3.(4分)(2023•鄞州区校级一模)如图是由四个全等的三角形和一个正方形组成的大正方形,连结EC与BG交于M,射线BH交EC于点N,交EF于点Q,交AD于点K,连接KE,则与△DKE面积相等的图形是()A.△MEF B.△HNEC.四边形MNQF D.△CGM【分析】通过边长设元计算直接求出△DKE的面积,及选项中可求面积,得到面积相等的图形.计算中利用含有等角的直角三角形相似得到边长比例及边长,再利用基本的三角形面积等于底乘高的一半,得到目标三角形面积,最后四配选项中图形面积得到答案.【解答】解:作HP垂直CD于P,作HQ垂直CB于Q,作ET垂直AD于T,如图,设DH=a,HG=b,DC=c,由四个直角三角形全等、正方形ABCD、正方形EFGH,可知:DH=GC=AE=BF=a,AB=BC=CD=AD=c,HG=GF=EF=HE=b,ET=HP=CQ,在Rt△DHC中,根据勾股定理得,c2=a2+(a+b)2,∵△HCQ∽△CDH,∴,∴.∴,∴BQ=CB﹣CQ=c﹣,∵△KBA∽△BHQ,∴,∴AK=AB×=c×=,∴DK=AD﹣AE=c﹣=,∴SDKE=,△∵ET=HP=CQ=,∴SDKE===,△∵△CGM∽△EFM,∴,∴GM=,CG=a,∴,∴SGMC=S△DKE,故选项D正确;△同理FM=,,故A错误;∵△HEC≌△GHB,∴∠HCE=∠GBH,∴∠GBH+∠GHB=∠HCE+∠GHB=90°,∴△HEN∽△CEH,∴,∴,故B错误;同理,,∵△HEQ∽△BFQ.∴,∴,∴梯形HGFQ的面积=,∴四边形HGMN的面积=SHCN﹣S△GMC=,△四边形MNQF的面积=梯形HGFQ的面积﹣四边形HGMN的面积==≠,故C错误;故选:D.4.(4分)(2023秋•洛江区期中)设,利用等式(n≥3),则与A最接近的正整数是()A.18B.20C.24D.25【分析】利用等式(n≥3),代入原式得出数据的规律性,从而求出.【解答】解:利用等式(n≥3),代入原式得:=48×(++…+﹣)=12×(1﹣+﹣+﹣+…+)=12×[(1++…+)﹣(+…+)]=12×(1+)而12×(1+)≈25故选:D.5.(4分)(2023•泰安)如图,在平面直角坐标系中,Rt△AOB的一条直角边OB在x轴上,点A的坐标为(﹣6,4);Rt△COD中,∠COD=90°,OD=4,∠D=30°,连接BC,点M是BC中点,连接AM.将Rt△COD以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段AM的最小值是()A.3B.6﹣4C.2﹣2D.2【分析】由点M是BC中点,想到构造中位线,取OB中点,再利用三角形两边之差的最值模型.【解答】解:取OB中点N,连接MN,AN.在Rt△OCD中,OD=4,∠D=30°,∴OC=4,∵M、N分别是BC、OB的中点,∴MN=OC=2,在△ABN中,AB=4,BN=3,∴AN=5,在△AMN中,AM>AN﹣MN;当M运动到AN上时,AM=AN﹣MN,∴AM≥AN﹣MN=5﹣2=3,∴线段AM的最小值是3,故选:A.6.(4分)(2023•安徽)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.PA+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,PA+PB=PA'+PB最小,即可得PA+PB最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF最小,最小值为MF的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得SABCD=四边形(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B 共线时,PA+PB=PA'+PB最小,此时PA+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,∴SADK=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣△2m+2,SDKTC=(m+2﹣m)•2=2,梯形∴SABCD=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣四边形1)2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.7.(4分)(2023•宁波自主招生)如图所示,半径为r的圆O内切于正△PQR,M为边PQ 上一点,N为边PR上一点,且直线MN与圆O相切于点E,△PMN的内切圆C与MN相切于点F.若圆C的半径为,则的值为()A.B.C.D.【分析】设PQ、PR、MN分别与⊙C相切于点D、G、F,PQ、PR分别与⊙O相切于T、K,连接PC、PO、CD、CG、CF、OE、OT,利用等边三角形的性质、切线长定理、解直角三角形等即可求得答案.【解答】解:如图1,设PQ、PR、MN分别与⊙C相切于点D、G、F,PQ、PR分别与⊙O相切于T、K,连接PC、PO、CD、CG、CF、OE、OT,则CD⊥PQ,CG⊥PR,PD=PG,MD=MF,NF=NG,ME=MT,NE=NK,PT=PK,∵CD=CG,∴PC平分∠QPR,同理,PO平分∠QPR,∴P、C、O三点共线,∵△PQR是等边三角形,∴∠QPR=60°,∴∠OPQ=∠QPR=30°,∴PD===r,CP=2CD=r,∵PD=PG=,∴=r①,在Rt△POT中,PT===r,OP=2OT=2r,∵PT=PK,PT+PK=PM+MT+PN+NK=PM+ME+PN+NE=PM+PN+MN,∴PT=,∴=r②,∴②﹣①得:MN=r,如图2,过点C作CL⊥OE,交OE的延长线于L,则∠L=∠CFE=∠FEL=90°,∴EL=CF=r,CL=EF,∴OL=OE+EL=r+r=r,OC=OP﹣CP=2r﹣r=r,在Rt△OCL中,CL===r,∴EF=r,∴==.故选:D.8.(4分)(2023•自贡)如图,分别经过原点O和点A(4,0)的动直线a,b夹角∠OBA =30°,点M是OB中点,连接AM,则sin∠OAM的最大值是()A.B.C.D.【分析】作△AOB的外接圆⊙T,连接OT,TA,TB,取OT的中点K,连接KM.证明KM=TB=2,推出点M在以K为圆心,2为半径的圆上运动,当AM与⊙K相切时,∠OAM的值最大,此时sin∠OAM的值最大.【解答】解:如图,作△AOB的外接圆⊙T,连接OT,TA,TB,取OT的中点K,连接KM.∵∠ATO=2∠ABO=60°,TO=TA,∴△OAT是等边三角形,∵A(4,0),∴TO=TA=TB=4,T(2,2),K(1,),∵OK=KT,OM=MB,∴KM=TB=2,∴点M在以K为圆心,2为半径的圆上运动,当AM与⊙K相切时,∠OAM的值最大,此时sin∠OAM的值最大,∵△OTA是等边三角形,OK=KT,∴AK⊥OT,∴AK===2,∵AM是切线,KM是半径,∴AM⊥KM,∴AM===2,过点M作ML⊥OA于点L,KR⊥OA于点R,MP⊥RK于点P.∵∠PML=∠AMK=90°,∵∠P=∠MLA=90°,∴△MPK∽△MLA,∴====,设PK=x,PM=y,则有ML=y,AL=x,∴y=+x①,y=3﹣x,解得,x=,y=,∴ML=y=,∴sin∠OAM===.故选:A.9.(4分)(2022•常州自主招生)如图,在矩形ABCD中,对角线AC,BD相交于点O,AB =6,∠DAC=60°,点F在线段AO上从点A至点O运动,连接DF,以DF为边作等边△DFE,点E和点A分别位于DF两侧,下列结论:①∠BDE=∠EFC;②ED=EC;③∠ADF=∠ECF;④点E运动的路程是2;其中正确结论的序号为()A.①④B.①②③C.②③D.①②③④【分析】①根据∠DAC=60°,OD=OA,得出△OAD为等边三角形,再由△DFE为等边三角形,得∠EDF=∠EFD=∠DEF=60°,即可得出结论①正确;②如图,连接OE,利用SAS证明△DAF≌△DOE,再证明△ODE≌△OCE,即可得出结论②正确;③通过等量代换即可得出结论③正确;④如图,延长OE至E′,使OE′=OD,连接DE′,通过△DAF≌△DOE,∠DOE=60°,可分析得出点F在线段AO上从点A至点O运动时,点E从点O沿线段OE′运动到E′,从而得出结论④正确;【解答】解:①∵∠DAC=60°,OD=OA,∴△OAD为等边三角形,∴∠DOA=∠DAO=∠ODA=60°,AD=OD,∵△DFE为等边三角形,∴∠EDF=∠EFD=∠DEF=60°,DF=DE,∵∠BDE+∠FDO=∠ADF+∠FDO=60°,∴∠BDE=∠ADF,∵∠ADF+∠AFD+∠DAF=180°,∴∠ADF+∠AFD=180°﹣∠DAF=120°,∵∠EFC+∠AFD+∠DFE=180°,∴∠EFC+∠AFD=180°﹣∠DFE=120°,∴∠BDE=∠EFC,故结论①正确;②如图,连接OE,在△DAF和△DOE中,,∴△DAF≌△DOE(SAS),∴∠DOE=∠DAF=60°,∵∠COD=180°﹣∠AOD=120°,∴∠COE=∠COD﹣∠DOE=120°﹣60°=60°,∴∠COE=∠DOE,在△ODE和△OCE中,,∴△ODE≌△OCE(SAS),∴ED=EC,∠OCE=∠ODE,故结论②正确;③∵∠ODE=∠ADF,∴∠ADF=∠OCE,即∠ADF=∠ECF,故结论③正确;④如图,延长OE至E′,使OE′=OD,连接DE′,∵△DAF≌△DOE,∠DOE=60°,∴点F在线段AO上从点A至点O运动时,点E从点O沿线段OE′运动到E′,∵OE′=OD=AD=AB•tan∠ABD=6•tan30°=2,∴点E运动的路程是2,故结论④正确;故选:D.10.(4分)(2022•九龙坡区自主招生)如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处,折痕为AP.再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.当AD=CP时,则的值为()A.B.2C.2D.【分析】根据折叠的性质和平角定义,证明∠DAB=90°,四边形APCD是平行四边形,根据平行四边形的性质和含30度角的直角三角形即可解决问题.【解答】解:由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,∵AD∥BC,AD=CP,∴四边形APCD是平行四边形,∴AR=PR,∵∠AQP=90°,∴QR=AP,∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故选:A.二.填空题(共6小题,满分30分,每小题5分)11.(5分)(2024•九龙坡区自主招生)如图,四边形ABCD为矩形,AB=,BC=,点E为AB边上一点,将△BCE沿CE翻折,点B的对应点为点F,过点F作FG∥CE交DC于点G,若DG:GC=1:4,则FG的长为.【分析】设EF与CG的交点为M,可得△CEM和△GFM是等腰三角形,设GM=x,则CM=2﹣x,在Rt△CFM中,根据勾股定理可建立方程,求出x的值,表达GM和CM 的值,进而可得BE的长;再根据勾股定理可得CE的长,由平行可得△GFM和△CEM 相似,根据相似比可得最终结果.【解答】解:设EF与CG的交点为M,在矩形ABCD中,AB=CD=,AD=BC=,AB∥CD,∴∠DCE=∠BEC,由折叠可知,∠BEC=∠FEC,BE=EF,BC=CF=,∴∠FEC=∠DEC,∴EM=CM,∵FG∥CE,∴△GFM∽△CEM,∴GM:FM=CM:EM=1:1,FG:CE=GM:EM,∴GM=FM,EF=CG=2,∵DG:GC=1:4,AB=,∴DG=,CG=EF=2,∴CE==,设GM=x,则CM=2﹣x;∴FM=GM=x,CM=EM=2﹣x,在Rt△CFM中,∠CFM=∠B=90°,由勾股定理可得CF2+FM2=CM2,即()2+x2=(2﹣x)2,解得x=,∴GM=FM=,CM=EM=,∴GF:=:,∴GF=.故答案为:.12.(5分)(2024•重庆)我们规定:若一个正整数A能写成m2﹣n,其中m与n都是两位数,且m与n的十位数字相同,个位数字之和为8,则称A为“方减数”,并把A分解成m2﹣n的过程,称为“方减分解”.例如:因为602=252﹣23,25与23的十位数字相同,个位数字5与3的和为8,所以602是“方减数”,602分解成602=252﹣23的过程就是“方减分解”.按照这个规定,最小的“方减数”是82.把一个“方减数”A进行“方减分解”,即A=m2﹣n,将m放在n的左边组成一个新的四位数B,若B除以19余数为1,且2m+n=k2(k为整数),则满足条件的正整数A为4564.【分析】设m=10a+b,则n=10a+8﹣b(1≤a≤9,0≤b≤8),根据最小的“方减数”可得m=10,n=18,即可求解;根据B除以19余数为1,且2m+n=k2(k为整数),得出为整数,30a+b+8是完全平方数,在1≤a≤9,0≤b≤8,逐个检验计算,即可求解.【解答】解:①设m=10a+b,则n=10a+8﹣b(1≤a≤9,0≤b≤8),由题意得:m2﹣n=(10a+b)2﹣(10a+8﹣b),∵1≤a≤9,∴要使“方减数”最小,需a=1,∴m=10+b,n=18﹣b,∴m2﹣n=(10+b)2﹣(18﹣b)=100+20b+b2﹣18+b=82+b2+21b,当b=0时,m2﹣n最小为82;②设m=10a+b,则n=10a+8﹣b(1≤a≤9,0≤b≤8),∴B=1000a+100b+10a+8﹣b=1010a+99b+8,∵B除以19余数为1,∴1010a+99b+7能被19整除,∴=53a+5b+为整数,又2m+n=k2(k为整数),∴2(10a+b)+10a+8﹣b=30a+b+8是完全平方数,∵1≤a≤9,0≤b≤8,∴30a+b+8最小为49,最大为256,即7≤k≤16,设3a+4b+7=19t,t为正整数,则1≤t≤3,(Ⅰ)当t=1时,3a+4b=12,则b=3﹣a,30a+b+8=30a+3﹣a+8是完全平方数,又1≤a≤9,0≤b≤8,此时无整数解,(Ⅱ)当t=2时,3a+4b=31,则b=,30a+b+8=30a++8是完全平方数,又1≤a≤9,0≤b≤8,此时无整数解,(Ⅲ)当t=3时,3a+4b=50,则,是完全平方数,若a=6,b=8,则3a+4b+7=57=19×3,30×6+8+8=196=142,∴t=3,k=14,此时m=10a+8=68,n=10a+8﹣a=60,∴A=682﹣60=4564,故答案为:82,4564.13.(5分)(2024•成都)如图,在Rt△ABC中,∠C=90°,AD是△ABC的一条角平分线,E为AD中点,连接BE.若BE=BC,CD=2,则BD=.【分析】连接CE,过E作EF⊥BC于F,设BD=x,则BC=x+2,由∠ACB=90°,E为AD中点,可得CE=AE=DE=AD,有∠CAE=∠ACE,∠ECD=∠EDC,证明△ECD∽△BCE,可得=,∠CED=∠CBE,故CE2=CD•BC=2(x+2)=2x+4,再证△ABC∽△BEF,得=,而AC=2EF,即得2EF2=(x+1)(x+2),从而=(2x+4)﹣12,即可解得答案.【解答】解:连接CE,过E作EF⊥BC于F,如图:设BD=x,则BC=BD+CD=x+2,∵∠ACB=90°,E为AD中点,∴CE=AE=DE=AD,∴∠CAE=∠ACE,∠ECD=∠EDC,∴∠CED=2∠CAD,∵BE=BC,∴∠ECD=∠BEC,∴∠BEC=∠EDC,∵∠ECD=∠BCE,∴△ECD∽△BCE,∴=,∠CED=∠CBE,∴CE2=CD•BC=2(x+2)=2x+4,∵AD平分∠CAB,∴∠CAB=2∠CAD,∴∠CAB=∠CED,∴∠CAB=∠CBE,∵∠ACB=90°=∠BFE,∴△ABC∽△BEF,∴=,∵CE=DE,EF⊥BC,∴CF=DF=CD=1,∵E为AD中点,∴AC=2EF,∴=,∴2EF2=(x+1)(x+2),∵EF2=CE2﹣CF2,∴=(2x+4)﹣12,解得x=或x=(小于0,舍去),∴BD=.故答案为:.14.(5分)(2024•宁海县校级自主招生)如图,等腰直角△ABC的斜边AB下方有一动点D,∠ADB=90°,BE平分∠ABD交CD于点E,则的最小值是.【分析】如图,取AB的中点O,连接OC,OD,AE.想办法证明CE=CA,当CD是直径时的值最小.【解答】解:如图,取AB的中点O,连接OC,OD,AE.∵∠ACB=∠ADB=90°,OA=OB,∴OC=OD=AB,∴A,C,B,D四点共圆,∵CA=CB,∴∠CBA=∠CAB=45°,∴∠CDA=∠CBA=45°,∠CDB=∠CAB=45°,∴∠CDB=∠CDA,∴DE平分∠ADB,∵BE平分∠ABD,∴点E是△ABD的角平分线的交点,∴AE平分∠BAD,∴∠BAE=∠DAE,∵∠CAE=∠CAB+∠BAE=45°+∠BAE,∠CEA=∠EDA+∠EAD=45°+∠DAE,∴∠CAE=∠CEA,∴CA=CE=定值,∴当CD的值最大时,的值最小,∴CD是直径时,的值最小,最小值==,故答案为.15.(5分)(2024•渝中区校级自主招生)如图所示,平面直角坐标系中,四边形OABC是矩形,点A在第一象限,点B、C在第二象限,SOAB=,将△OAB沿OB翻折至△△OA′B,反比例函数恰好经过点B和点A′,连接A′C交x轴于点M,则点M的坐标为.【分析】过点A'作A'D⊥x轴于D,A'G⊥OB于G,过点B作BE⊥x轴于E,BF⊥DA'交DA'的延长线于F,过C作CH⊥OB于H,根据矩形及翻折的性质得∠BA'O=90°,SOA'B=S△OAB=S△OBC=,再根据反比例函数比例系数的几何意义得:S△OBE=S△OA'D △=,由此可得SOA'B=S△OBE+S梯形A'BED﹣S△OA'D=S梯形A'BED=,△设A',B,其中a<b<0,则,OD=﹣a,BE=﹣12√2/b,OE=b,DE=OD﹣OE=b﹣a,则SA'BED=(A'D+BE)•DE=梯形,整理得2a2﹣2b2+3ab=0,即(2a+b)(a﹣2b)=0,据此可得a=2b,则点A',设直线OB的表达式为y=mx,将B代入y=mx,得,直线OB的表达式为,再证四边形A'CHG为矩形得A'C∥OB,可设直线A'C的表达式为,将点A'代入,得,则直线A'C的表达式为,进而得点,证△A'OD和△BA'F相似得BF:A'D=A'F:OD,根据A',B得BF=﹣b,,,OD=a=﹣2b,则由此解出b即可得点M的坐标.【解答】解:过点A'作A'D⊥x轴于D,A'G⊥OB于G,过点B作BE⊥x轴于E,BF⊥DA'交DA'的延长线于F,过C作CH⊥OB于H,如图所示:∵四边形OABC为矩形,且SOAB=,△∴SOBC=S△OAB=,△∵将△OAB沿OB翻折至△OA′B,∴SOA'B=S△OAB=,∠BA'O=90°,△∴SOA'B=S△OAB=S△OBC=,△根据反比例函数比例系数的几何意义得:SOBE=S△OA'D=,△∵A'D⊥x轴,BE⊥x轴,∴四边形A'BED为梯形,∵SOA'B=S△OBE+S梯形A'BED﹣S△OA'D=S梯形A'BED=,△设A',B,其中a<b<0,则,OD=﹣a,BE=﹣12√2/b,OE=b,DE=OD﹣OE=b﹣a,∴SA'BED=(A'D+BE)•DE=,梯形∴,整理得:2a2﹣2b2+3ab=0,即(2a+b)(a﹣2b)=0,∵a<b<0,∴2a+b<0,∴a﹣2b=0,∴a=2b,∴点A'.设直线OB的表达式为:y=mx,将B代入y=mx,得:,∴直线OB的表达式为:,∴SOA'B=OB•A'G=,S△OAC=OB•CH=,△∴OB•A'G=OB•CH,∴A'G=CH,又∵A'G⊥OB,CH⊥OB,∴四边形A'CHG为矩形,∴A'C∥OB,设直线A'C的表达式为:y=tx+n,则,∴直线A'C的表达式为:入,将点A'代入,得:,∴直线A'C的表达式为:,对于,当y=0时,,∴点M的坐标为,∵A'D⊥x轴,BF⊥DA',∴∠A'DO=∠BFA'=90°,∠FBA'+∠FA'B=90°,∵∠BA'O=90°,∴∠FA'B+∠DA'O=90°,∴∠DA'O=∠FBA',∴△A'OD∽△BA'F,∴BF:A'D=A'F:OD,∵A',B,∴BF=﹣b,,,OD=a=﹣2b,∴,整理得:b4=36,∴,(不合题意,舍去),∴,∴点M的坐标为.故答案为:.16.(5分)(2022•成都自主招生)在平面直角坐标系xOy中有两点A,B,若在y轴上有一点P,连接PA,PB,当∠APB=45°时,则称点P为线段AB关于y轴的“半直点”.例:如图,点A(﹣3,1),B(﹣3,﹣2),则点P(0,1)就是线段AB关于y轴的一个“半直点”,线段AB关于y轴的另外的“半直点”的坐标为(0,﹣2);若点C(3,3),点D(6,﹣1),则线段CD关于y轴的“半直点”的坐标为(0,2)或(0,﹣3).【分析】观察直接可得线段AB关于y轴的另外的“半直点”P'的坐标,以CD为斜边,在CD左侧作等腰直角三角形CDE,过E作GF∥y轴,过C作CG⊥GF于G,过D作DF⊥GF于F,设E(m,n),由△DEF≌△ECG(AAS),得EF=CG,DF=GE,可得,解得E(,﹣),以E为圆心,CE的长为半径作⊙E,交y轴于M、N,过E作EH⊥y轴于H,由∠CND=∠CED=×90°=45°,知N是线段CD关于y 轴的“半直点”,同理M也是线段CD关于y轴的“半直点”,根据E(,﹣),C(3,3),得NH==,N(0,2),同理MH=,M(0,﹣3).【解答】解:如图:∵A(﹣3,1),B(﹣3,﹣2),∴线段AB关于y轴的另外的“半直点”P'的坐标为(0,﹣2),以CD为斜边,在CD左侧作等腰直角三角形CDE,过E作GF∥y轴,过C作CG⊥GF 于G,过D作DF⊥GF于F,如图:设E(m,n),∵∠CED=90°,∴∠DEF=90°﹣∠CEG=∠GCE,又∠F=∠G=90°,DE=CE,∴△DEF≌△ECG(AAS),∴EF=CG,DF=GE,∵点C(3,3),点D(6,﹣1),∴,解得,∴E(,﹣),以E为圆心,CE的长为半径作⊙E,交y轴于M、N,过E作EH⊥y轴于H,如图:∵∠CND=∠CED=×90°=45°,∴N是线段CD关于y轴的“半直点”,同理M也是线段CD关于y轴的“半直点”,∵E(,﹣),C(3,3),∴CE==EN,HE=,∴NH==,∴N(0,2),同理MH=,M(0,﹣3),∴线段CD关于y轴的“半直点”坐标是(0,2)或(0,﹣3),故答案为:(0,﹣2),(0,2)或(0,﹣3).三.解答题(共8小题,满分80分,每小题10分)17.(10分)(2024•福建)已知实数a,b,c,m,n满足,.(1)求证:b2﹣12ac为非负数;(2)若a,b,c均为奇数,m,n是否可以都为整数?说明你的理由.【分析】(1)根据题意,可得b=a(3m+n),c=amn,将其代入原式中,再利用公式法与提公因式法进行因式分解,可得原式=a2(3m﹣n)2,根据a,m,n是实数,可知a2(3m﹣n)2≥0,即可证b2﹣12ac为非负数.(2)m,n不可能都为整数.理由如下:若m,n都为整数,其可能情况有:①m,n都为奇数;②m,n为整数,且其中至少有一个为偶数,分别进行论证讨论即可.【解答】解:(1)证明:∵,∴b=a(3m+n),c=amn,则b2﹣12ac=[a(3m+n)]2﹣12a2mn=a2(9m2+6mn+n2)﹣12a2mn=a2(9m2﹣6mn+n2)=a2(3m﹣n)2,∵a,m,n是实数,∴a2(3m﹣n)2≥0,∴b2﹣12ac为非负数.(2)m,n不可能都为整数.理由如下:若m,n都为整数,其可能情况有:①m,n都为奇数;②m,n为整数,且其中至少有一个为偶数,①当m,n都为奇数时,则3m+n必为偶数,又∵,∴b=a(3m+n),∵a为奇数,∴a(3m+n)必为偶数,这与b为奇数矛盾;②当m,n为整数,且其中至少有一个为偶数时,则mn必为偶数,又∵,∴c=amn,∵a为奇数,∴amn必为偶数,这与c为奇数矛盾;综上所述,m,n不可能都为整数.18.(10分)(2024•广东)【知识技能】(1)如图1,在△ABC中,DE是△ABC的中位线.连接CD,将△ADC绕点D按逆时针方向旋转,得到△A′DC′.当点E的对应点E′与点A重合时,求证:AB=BC.【数学理解】(2)如图2,在△ABC中(AB<BC),DE是△ABC的中位线.连接CD,将△ADC绕点D按逆时针方向旋转,得到△A′DC′,连接A′B,C′C,作△A′BD的中线DF.求证:2DF•CD=BD•CC′.【拓展探索】(3)如图3,在△ABC中,tan B=,点D在AB上,AD=.过点D作DE⊥BC,垂足为E,BE=3,CE=.在四边形ADEC内是否存在点G,使得∠AGD+∠CGE=180°?若存在,请给出证明;若不存在,请说明理由.【分析】(1)利用等腰三角形+平行线证明∠DAE=∠BCA即可得证;(2)先证△ADA′∽△CDC得到,再证AA'=2DF,代入变形即可得证;(3)利用特殊点,∠AGD=90°,∠CGE=90°,则G就是以AD为直径的圆和以CE 为直径的圆的交点,根据题意证G在内部即可.【解答】(1)证明:∵△ADC绕点D按逆时针方向旋转,得到△A′DC',且E'与A重合,∴AD=DE,∴∠DAE=∠DEA,∵DE是△ABC的中位线,∴DE∥BC,∴∠DEA=∠BCA,∴∠DAE=∠BCA,∴AB=BC.(2)证明:连接AA',∵旋转,∴∠ADA′=∠CDC′,AD=A'D,CD=C'D,∴,∴△ADA′∽△CDC′,∴,∵DE是△ABC的中位线,DF是△A'BD的中线,∴AD=BD,BF=A'F,∴DF是△AA'B的中位线,∴AA'=2DF,∴,∴2DF•CD=BD•CC'(3)解:存在,理由如下,解法一:取AD中点M,CE中点N,连接MN,∵AD是⊙M直径,CE是⊙N直径,∴∠AGD=90°,∠CGE=90°,∴∠AGD+∠CGE=180°,∵tan B=,BE=3,∴BD=5,∵CE=,∴EN=CE=,∴BN=BE+EN=,∵DE⊥CE,∴DE是⊙N的切线,即DE在⊙N外,作NF⊥AB,∵∠B=∠B,∠BED=∠BFN=90°,∴△BDE∽△BNF,∴,∴NF=>,即NF>r n,∴AB在⊙N外,∴G点在四边形ADEC内部.作MH⊥BC,∵BM=,tan B=,∴BH=,MH=,∴NH=,∴MN=≈7.4<AM+CN∴⊙M和⊙N有交点.故四边形ADEC内存在点G,使得∠AGD+∠CGE=180°.解法二:相似互补弓形,分别以AD,CE为弦作⊙O2和⊙O,使得△O2AD∽△OEC,两圆的交点即为所求.作图步骤:①在四边形ADEC内任取一点F,作△EFC得外接圆,圆心为O,连接OE,OC,②作AD的中垂线,③以D为圆心,OC为半径画圆交AD中垂线于点O2,④以O2为圆心,O2A为半径画圆,交⊙O于点G,点G即为所求.证明:∵==,∴△O2AD∽△OEC,∴∠AO2D=∠EOC,∵∠AGD=(360°﹣∠AO2D)=180°﹣∠AO2D,∠EGC=∠EOC,∴∠AGD+∠EGC=180°.故四边形ADEC内存在点G,使得∠AGD+∠CGE=180°.19.(10分)(2023•鼓楼区校级自主招生)已知a+b+c=2023,,求的值.【分析】依据题意,设,从而a=k(x2﹣yz),b=k(y2﹣xz),c=k(z2﹣xy),再代入式子中进行计算可以得解.【解答】解:由题意,设,∴a=k(x2﹣yz),b=k(y2﹣xz),c=k(z2﹣xy).∴原式=====k(x2﹣yz)+k(y2﹣xz)+k(z2﹣xy)=a+b+c=2023.20.(10分)(2023•安徽自主招生)如图,在平面直角坐标系xOy中,一次函数y=x+m 的图象与x轴交于A(﹣1,0),与y轴交于点C.以直线x=2为对称轴的抛物线C1:y =ax2+bx+c(a≠0)经过A,C两点,并与x轴正半轴交于点B.(1)求m的值及抛物线C1:y=ax2+bx+c(a≠0)的函数表达式;(2)设点D(0,),若F是抛物线C1:y=ax2+bx+c(a≠0)对称轴上使得△ADF 的周长最小值的点,过F任意作一条与y轴不平行的直线交抛物线C1于M1(x1,y1),M2(x2,y2)两点,试探究是否为定值?请说明理由;(3)将抛物线C1作适当平移,得到抛物线C2:y2=﹣(x﹣h)2,h>1,若当1<x ≤m时,y2≥﹣x恒成立,求m的最大值.【分析】(1)只需将A点坐标代入一次函数关系式即可求出m值,利用待定系数法和二次函数的图象与性质列出关于a、b、c的方程组求出a、b、c的值就可求出二次函数关系式;(2)先运用轴对称的性质找到点F的坐标,再运用一元二次方程根与系数的关系及平面直角坐标系中两点之间的距离公式求出M1M2、M1F、M2F,证出M1F•M2F=M1M2,最后可求+=1;(3)设y2与y=﹣x的两交点的横坐标分别为x0,x1,因为抛物线C2:y2=﹣(x﹣h)2可以看成由y=﹣x2左右平移得到,观察图象可知,随着图象向右移,x0,x1的值不断增大,所以当1<x≤m,y2≥﹣x恒成立时,m最大值在x0处取得,根据题意列出方程求出x0,即可求解.【解答】解:(1)∵一次函数y=x+m的图象与x轴交于A(﹣1,0)∴0=﹣+m,∴m=.∴一次函数的解析式为y=x+.∴点C的坐标为(0,).∵y=ax2+bx+c(a≠0)经过A、C两点且对称轴是直线x=2,代入得:,解得,∴y=﹣x2+x+.∴a的值为,抛物线C1的函数表达式为y=﹣x2+x+.(2)+为定值;理由如下:要使△ADF的周长取得最小,只需AF+DF最小连接BD交x=2于点F,因为点B与点A关于x=2对称,根据轴对称性质以及两点之间线段最短,可知此时AF+DF最小.令y=﹣x2+x+中的y=0,则x=﹣1或5,∴B(5,0),∵D(0,),∴直线BD解析式为y=﹣x+,∴F(2,).令过F(2,)的直线M1M2解析式为y=kx+b1,则=2k+b1,∴b1=﹣2k则直线M1M2的解析式为y=kx+﹣2k.解法一:由,得x2﹣(4﹣4k)x﹣8k=0,∴x1+x2=4﹣4k,x1x2=﹣8k,∵y1=kx1+﹣2k,y2=kx2+﹣2k,∴y1﹣y2=k(x1﹣x2),∴M1M2======4(1+k2),M1F===,同理M2F=,∴M1F•M2F=(1+k2)=(1+k2)=(1+k2)=4(1+k2)=M1M2,∴+===1;解法二:∵y=﹣x2+x+=﹣(x﹣2)2+,∴(x﹣2)2=9﹣4y,设M 1(x 1,y 1),则有(x 1﹣2)2=9﹣4y 1.∴M 1F ===﹣y 1;设M 2(x 2,y 2),同理可求得:M 2F =﹣y 2.∴+===①.直线M 1M 2的解析式为y =kx +﹣2k ,即:y ﹣=k (x ﹣2).联立y ﹣=k (x ﹣2)与抛物线(x ﹣2)2=9﹣4y ,得:y 2+(4k 2﹣)y +﹣9k 2=0,∴y 1+y 2=﹣4k 2,y 1y 2=﹣9k 2,代入①式,得:+==1.(3)设y 2与y =﹣x 的两交点的横坐标分别为x 0,x 1,∵抛物线C 2:y 2=﹣(x ﹣h )2可以看成由y =﹣x 2左右平移得到,观察图象可知,随着图象向右移,x 0,x 0′的值不断增大,∴当1<x ≤m ,y 2≥﹣x 恒成立时,m 最大值在x 1处取得∴当x 0=1时,对应的x 1即为m 的最大值将x 0=1代入y 2=﹣(x ﹣h )2=﹣x 得(1﹣h )2=4,∴h =3或﹣1(舍),将h =3代入y 2=﹣(x ﹣h )2=﹣x 有:﹣(x ﹣3)2=﹣x ,∴x 0=1,x 1=9.∴m 的最大值为9.21.(10分)(2022•宣城自主招生)如图,△ABC中,AB=AC,D,E在边BC上,延长AD,AE与△ABC的外接圆分别交于P,Q两点.(1)求证:D,E,Q,P四点共圆;(2)若AD=BD=3,AE=4,DC=5,求弦AQ的长度.【分析】(1)连接BQ,根据同弧所对圆周角相等可得∠C=∠AQB,∠BAP=∠BQP,由∠ADB+∠ABC+∠BAD=180°结合等腰三角形性质可证∠PDE+∠EQP=180°,最后得证∠P+∠DEQ=180°即可;(2)先证明△ABC∽△DAB,根据相似三角形的性质求得,再证明△ABE∽△AQB,最后根据相似三角形的性质即可求解.【解答】(1)证明:如图,连接BQ,∴∠C=∠AQB,∠BAP=∠BQP,∵AB=AC,∴∠ABC=∠C,∴∠ABC=∠AQB,∵∠ADB+∠ABC+∠BAD=180°,∴∠PDE+∠AQB+∠BQP=180°,∴∠PDE+∠EQP=180°,∵∠PDE+∠DEQ+∠EQP+∠P=360°,∴∠P+∠DEQ=180°,∴D,E,Q,P四点共圆;(2)解:∵AD=BD=3,DC=5∴∠ABD=∠BAD,BC=8,由(1)知∠ABC=∠C,∴∠ABD=∠BAD=∠C,∴△ABC∽△DAB,∴,即,∴,由(1)可知∠ABE=∠AQB,∵∠BAE=∠QAB,∴△ABE∽△AQB,∴,即,解得AQ=6.22.(10分)(2022•南京自主招生)已知a,b为方程x2﹣2x+t﹣3=0的两根,求(2a+5﹣t)(b2+2)的最小值.【分析】利用根与系数的关系及方程根的定义,利用整体的思想方法,用含t的代数式表示要求代数式的积得结论.【解答】解:∵a,b为方程x2﹣2x+t﹣3=0的两根,∴a+b=2,ab=t﹣3,b2﹣2b+t﹣3=0.∴b2=2b+3﹣t.∴(2a+5﹣t)(b2+2)=(2a+5﹣t)(2b+3﹣t+2)=(2a﹣t+5)(2b﹣t+5)=4ab﹣2bt+10b﹣2at+t2﹣5t+10a﹣5t+25=t2+4ab﹣2t(a+b)+10(a+b)﹣10t+25.把a+b=2,ab=t﹣3代入得t2+4(t﹣3)﹣2t×2+10×2﹣10t+25=t2+4t﹣12﹣4t+20﹣10t+25=t2﹣10t+25+8=(t﹣5)2+8.∵a,b为方程x2﹣2x+t﹣3=0的两根,∴Δ=(﹣2)2﹣4×1×(t﹣3)=4﹣4t+12=﹣4t+16≥0,∴t≤4.∵(t﹣5)2≥0,∴当t=4时,(t﹣5)2+8=(4﹣5)2+8=1+8=9.∴(2a+5﹣t)(b2+2)的最小值是9.23.(10分)(2022•成都自主招生)如图,抛物线y=﹣x2+2mx+m+2与x轴负半轴交于点A,与x轴正半轴交于点B,与y轴交于点C,OB=3OA.(1)求抛物线的解析式;(2)设D是第四象限内抛物线上的点,连接AD、OD、CD,SCOD:S△AOD=12:5.△①求点D的坐标;②连接BD,若点P,Q是抛物线上不重合的两个动点,在直线x=a(a>0)上是否存在点M,N(点A,P,M按顺时针方向排列,点A,Q,N按顺时针排列),使得△APM≌△AQN且△APM∽△ABD?若存在,求出a的值;若不存在,请说明理由.【分析】(1)设A坐标(﹣x0,0)B(3x0,0),x0≠0且x0>0,把A、B代入抛物线解析式得到关系式:8﹣8mx0=0,由两根的积等于,所以可得m的值和解析式;(2)①设D(x0,y0),已知S△COD:S△AOD=12:5,S△COD=CO×x0,S△AOD=AO•(﹣y),可得出x0,y0关系式y0=﹣x0,D在抛物线上,把D代入抛物线,可得D的坐标;②由题意知△APM≌△AQN,所以AM=AN,即M、N关于x轴对称,假设存在这样的P、Q,根据题意可得出△APQ∽△AMN,△AMN的中线在x轴上且与△APQ中线夹角为45°,可得出△APQ的中线在y=x+1上,同时,P、Q关于y=x+1对称,设P、Q解析式为y=﹣x+b,PQ中点为(m,n)解方程组得到AR的长度,即x=a与x轴交于H,由△APQ∽△AMN,可得到a的值.【解答】解:(1)由题设A坐标(﹣x0,0),则B为(3x0,0),x0≠0且x0>0,则有,①﹣②得8﹣8mx0=0,又∵﹣x0•3x0==﹣m﹣2,则解得m=1或﹣(舍去),即m=1,所以抛物线解析式为y=﹣x2+2x+3;(2)如图所示:①设D(x0,y0),则SCOD=×CO•x0=x0,△SAOD=×AO×(﹣y0)=﹣y0,△又∵SCOD:S△AOD=12:5,△∴=①,又∵点D在抛物线上,∴y0=﹣+2x0+3②,联立①②解得:x0=4或x0=﹣(舍去),则x0=4,y0=﹣5,即点D的坐标为(4,﹣5),②由(1)得B(3,0),如图2,∵△APM≌△AQN,∴AM=AN,又∵P、Q不重合,则M、N不重合,且MN都在x=a上,∴M、N关于x轴对称,假设存在这样的P、Q,∵△APM∽△ABD,∴△AQN∽△ABD,且相似比相同,∴△APQ∽△AMN,且∠NAQ=∠DAB=45°,∴△AMN的中线与△APQ中线夹角也为45°,而△AMN的中线在x轴上,∴△APQ的中线在y=x+1上,∴P、Q关于y=x+1对称,PQ垂直y=x+1.设PQ解析式为:y=﹣x+b,PQ中点为R(m,n),联立,∴x2﹣3x+b﹣3=0,x1+x2=3,∴m=,将R(,n)代入y=x+1得n=,∴R(,),∴AR=,设x=a与x轴交于H,则由△APQ∽△AMN可得,===,∴AH=,∴a=.24.(10分)(2022•洪山区校级自主招生)如图,在平面直角坐标系xOy中,直线y=x+6与x轴,y轴的交点分别为P,Q,且经过P,Q两点的抛物线y=x2+mx+n与x轴的另外一个交点为点M.(1)求抛物线的解析式;(2)已知E是直线PQ下方的抛物线上的一动点(不包括P,Q两点).①过点E作与x轴垂直的直线EF交直线PQ于点F,若点N为y轴上的一动点,当线段EF的长度最大时,求的最小值;②当tan∠EPM=tan∠MQP时,求点E的坐标.【分析】(1)用待定系数法即可求解;(2)①过点N作NH⊥OH于点H,则NH=ON•sin45°=ON,E、N、H共线时,=EN+HN=EH最小,进而求解;②求出tan∠PQM==,得到tan∠EPM=1,进而求解.【解答】解:(1)对于y=x+6,当x=0时,y=6,令y=x+6=0,则x=﹣6,故点P、Q的坐标分别为(﹣6,0)、(0,6),将点P、Q的坐标代入抛物线解析式得:,解得:,故抛物线的解析式为:y=x2+7x+6;(2)①设点F(x,x+6),则点E(x,x2+7x+6),则EF=(x+6)﹣(x2+7x+6)=﹣x2﹣6x,∵﹣1<0,故EF有最大值,此时x=﹣3,即点E(﹣3,﹣6),过点O作OH,使OH和y轴负半轴的夹角为45°,过点N作NH⊥OH于点H,则NH=ON•sin45°=ON,则=EN+HN,则E、N、H共线时,=EN+HN=EH最小,则直线OH和x轴的夹角为45°,故OH的解析式为:y=﹣x,直线EH的解析式为:y=(x+3)﹣6=x﹣3,联立y=﹣x和y=x﹣3并解得:x=,则点H(,﹣),由点E、H的坐标得,EH==;②过点M作MH⊥PQ于点H,由PQ的表达式知,∠QPO=∠PQO=45°,由点P、Q的坐标得,PQ=6,则HM=HP=PM=,则HQ=PQ﹣PH=6=,则tan∠PQM==,∵tan∠EPM=tan∠MQP,则tan∠EPM=1,即直线PE和x轴正半轴的夹角为45°,故直线PE的解析式为:y=﹣(x+6)=﹣x﹣6,联立y=﹣x﹣6和y=x2+7x+6并解得:,即点E(﹣2,﹣4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

罗田一中自主招生考试数学试卷一、填空题(4085=⨯分)1、方程组⎪⎩⎪⎨⎧=+=-++2621133y x y x 的解是2、若对任意实数x 不等式b ax >都成立,那么a 、b 的取值范围为3、设21≤≤-x ,则2212++--x x x 的最大值与最小值之差为 4、两个反比例函数x y 3=,x y 6=在第一象限内的图象点1P 、2P 、3P 、…、2007P 在反比例函数xy 6=上,它们的横坐标分别为1x 、2x 、3x 、…、2007x ,纵坐标分别是1、3、5…共2007个连续奇数,过1P 、2P 、3P 、…、2007P 分别作y 轴的平行线,与xy 3=的图象交点依次为)','(111y x Q 、、…、),('2007'20072007y x Q ,则=20072007Q P5、如右图,圆锥的母线长是3,底面半径是1,A 是底面圆周上一点,从A 点出发绕侧面一周,再回到A 点的最短的路线长是6、有一张矩形纸片ABCD ,9=AD ,12=AB ,将纸片折叠使A 、C 两点重合,那么折痕长是7、已知3、a 、4、b 、5这五个数据,其中a 、b 是方程0232=+-x x 的两个根,则这五个数据的标准差是8、若抛物线1422++-=p px x y 中不管p 取何值时都通过定点,则定点坐标为 二、选择题(4085=⨯分)9、如图,ABC ∆中,D 、E 是BC 边上的点,1:2:3::=EC DE BD ,M 在AC 边上,2:1:=MA CM ,BM 交AD 、AE 于H 、G ,则GM HG BH ::等于 ( )A 、1:2:3B 、1:3:5C 、5:12:25D 、10:24:5110、若一直角三角形的斜边长为c ,内切圆半径是r ,则内切圆的面积与三角形面积之比是( )A 、r c r 2+π B 、r c r +π C 、r c r +2π D 、22rc r+π 11、抛物线2ax y =与直线1=x ,2=x ,1=y ,2=y 围成的正方形有公共点,则实数a 的取值范围是 ( )A 、141≤≤a B 、221≤≤a C 、121≤≤a D 、241≤≤a 12、有铅笔、练习本、圆珠笔三种学习用品,若购铅笔3支,练习本7本,圆珠笔1支共需15.3元;若购铅笔4支,练习本10本,圆珠笔1支共需2.4元,那么,购铅笔、练习本、圆珠笔各1件共需( )A 、2.1元B 、05.1元C 、95.0元D 、9.0元13、设关于x 的方程09)2(2=+++a x a ax ,有两个不相等的实数根1x 、2x ,且1x <<12x ,那么实)','(222y x Q数a 的取值范围是 ( )A 、112-<a B 、5272<<-a C 、52>a D 、0112<<-a 14、如图,正方形ABCD 的边1=AB ,和都是以1为半径的圆弧,则无阴影部分的两部分的面积之差是 ( )A 、12-πB 、41π- C 、13-π D 、61π-15、已知锐角三角形的边长是2、3、x ,那么第三边x 的取值范围是 ( )A 、51<<x B 、135<<x C 、513<<x D 、155<<x16、某工厂第二季度的产值比第一季度的产值增长了%x ,第三季度的产值又比第二季度的产值增长了%x ,则第三季度的产值比第一季度增长了 ( )A 、%2xB 、%21x +C 、%%)1(x x •+D 、%%)2(x x •+ 三、解答题17、(15分)设m 是不小于1-的实数,关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x ,(1)若21x 622=+x ,求m r 值;(2)求22212111x mx x mx -+-的最大值。

18、(15分)如图,开口向下的抛物线a ax ax y 1282+-=与x 轴交于A 、B 两点,抛物线上另有一点C 在第一象限,且使OCA ∆∽OBC ∆,(1)求OC 的长及ACBC的值;(2)设直线BC 与y 轴交于P 点,点C 是BP 的中点时,求直线BP 和抛物线的解析式。

19、(15分)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调器、彩电、冰箱共360台,且冰箱至少生产60台,已知生产这些家电产品每台所需工家电名称 空调彩电冰箱工 时 2131 41 产值(千元)432问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少(以千元为单位)?20、(10分)一个家庭有3个孩子,(1)求这个家庭有2个男孩和1个女孩的概率;(2)求这个家庭至少有一个男孩的概率。

21、(15分)如图,已知⊙O 和⊙'O 相交于A 、B 两点,过点A 作⊙'O 的切线交⊙O 于点C ,过点B作两圆的割线分别交⊙O 、⊙'O 于E 、F ,EF 与AC 相交于点P ,(1)求证:PF PC PE PA •=•;(2)求证:PB PFPCPE =22;(3)当⊙O 与⊙'O 为等圆时,且5:4:3::=EP CE PC 时,求PEC ∆与FAP ∆的面积的比值。

数学试卷参考答案一、 1、⎩⎨⎧==02611y x 或⎩⎨⎧=-=28222y x 2、0=a 0<b 3、1 45、336、47、2 8、)33,4(二、9~16 DBDB DABD三、17、(15分)解: 方程有两个不相等的实数根∴044)33(4)2(422>+-=+---=∆m m m m 1<∴m由题意知:11<≤-m(1)610102)33(2)2(42)(222212212221=+-=+---=-+=+m m m m m x x x x x x 2175±=∴m 11≤≤-m 2175-=∴m (2)22212111x mx x mx -+-mm m m m m x x x x x x x x m --+-=--+-+=2232121212221)2882()1)(1()]([25)23(2)13(2)1()13)(1(2222--=+-=-+--=m m m m m m m m m )11(<≤-m1-=∴m y 取最大值为1018、(15分)解:(1)由题设知0<a ,且方程01282=+-a ax ax 有两二根6,221==x x 于是6,2==OB OAOCA ∆∽OBC ∆即32=OC 而322===∆∆OC OBS S AC BC OCA OBC 故 3=AC BC (2)因为C 是BP 的中点 BC OC =∴ 从而C 点的横坐标为3 又32=OC )3,3(C ∴设直线BP 的解析式为b kx y +=,因其过点)0,6(B ,)3,3(C ,则有⎩⎨⎧+=+=b k bk 33603233+-=∴x y 又点)3,3(C 在抛物线上 a a a 122493+-=∴ 33-=∴a ∴抛物线解析式为:34338332-+-=x x y 19、(15分)解:设每周应生产空调、彩电、冰箱的数量分别为x 台、y 台、z 台,则有总产值x x y x y x z y x z y x A -=-++=++++=++=1080)3(720)2()(223460≥z 300≤+∴y x 而3603=+y x 3003360≤-+∴x x 30≥∴x1050≤∴A 即 30=x 270=y 60=z20、(10分)解:用B 和G 分别代表男孩和女孩,用“树状图”列出所有结果为:∴这个家庭有2个男孩和1个女孩的概率为83。

这个家庭至少有一个男孩的概率87。

21、(15分)解:(1)证明:连结ABCA 切⊙'O 于A ∴F CAB ∠=∠∴F E ∠=∠ CE AF //∴PF PC PE PA •=•∴ ①(2)证明:在⊙O 中,PC PA PE PB •=• ②①×②得 PF PC PA PB PE PA ••=••22PBPFPC PE =∴22 (3)连结AE ,由(1)知PEC ∆∽PFA ∆,而5:4:3::=EP CE PC 5:4:3::=∴PF FA PA 设x EP x CE x PC 5,4,3===222CE PC EP +=∴ 222FA PA PF += 090=∠=∠∴CAF CAE ∴为⊙O 的直径,AF 为⊙'O 的直径 ⊙O 与⊙'O 等圆 y AF AE 4==∴222AE CE AC =+ 222)4()4()33(y x y x =++∴ 即 07182522=-+y xy x 即0))(725(=+-y x y x257=∴y x。

相关文档
最新文档