控制论常用的矩阵不等式
%80%a7矩阵不等式及其在控制工程中的应用

[=] 。 以很好 地 弥 补 H5II905 方 程 方 法 的 上 述 不 足 在解线性矩阵不等式时, 不需要预先调整任何参
[
]
( ") 是 0 . 0 维的。 假定 ’%% ( ") 是非奇异 式中,’%%
% 1( 的, 则 ’!! ( " ) 1 ’!% ( ") ( " )称 为 是 ’%% ") ’%! ( ") 在’ ( ") 中的 ,I8K1 补。下面不加证明地 ’%%
- 基于 !"# 的不确定系统鲁棒控制器与 滤波器的设计
不确定系统的鲁棒控制与滤波问题的提出基 于如下考虑。 !被控对象不是由一个确定的模型来描述 的, 仅仅知道模型属于某个已知的模型集合; "外部信号包括干扰信号和传感器噪声等不 万方数据 是具有已知特性的信号, 仅仅知道其属于某个已
第4期
高金凤等:线性矩阵不等式及其在控制工程中的应用
时域、 从定常系统到时变系统、 从线性系统到非线 性系统、 从连续系统到离散系统、 从无时滞系统到 时滞系统以及从单目标到多目标的控制等发展历 程。 随着不确定系统鲁棒二次镇定和 ! E 状态空 间理论研究所取得的突破性进展, 保成本控制引 起许多学者的极大兴趣并得到了不少成果。一个 实际控制系统仅仅具有稳定性是不够的, 还必须 考虑其他的一些性能。线性二次型最优控制理论 揭示了一个适当的二次型性能指标, 能反映系统
《鲁棒控制》-6-线性矩阵不等式

(≤ 0)
为线性矩阵不等式(LMI)。
当存在实向量 x ,使得 F ( x) < 0(≤ 0) ,则称 LMI F ( x) < 0(≤ 0) 可行或存在可
行解。
LMI 的可行解全体构成一凸集。
令 X 是一实对称矩阵,对于任意给定实数矩阵 A 和实对称矩阵 Q ,则矩阵
不等式
AT X + XA + Q < 0
⎢ ⎣
0
⎡I ⎢⎣0
−S12 I
S −1 22
⎤ ⎥ ⎦
⎡ ⎢⎣
S11 S21
S12 S22
⎤ ⎥⎦
⎡I ⎢⎣0
−S12 I
S −1 22
⎤T ⎥ ⎦
0
⎤
S22
−
S21S1−11S12
⎥ ⎦
=
⎡ ⎢
S11
⎣
−
S12
S −1 22
S21
S21
0 ⎤⎡ I
S22
⎥ ⎦
⎢⎣−
S −1 22
S
21
0⎤
I
⎥ ⎦
x (t ) = Ax (t ) + Bu (t ) y (t ) = Cx (t ) + Du (t )
假设 D + DT > 0 。 令
H (s) = C (sI − )A −1 B + D
系统无源(passive): 当 x (0) = 0 时,
∫T 0
uT
(t
)y
(t
)
dt
≥
0
● 系统无源 iff
ALQ
⎤ ⎥
⎥
0 ⎥<0
#
⎥ ⎥
用线性矩阵不等式方法求解控制理论问题_张怡

(a)包覆不完全
(b)形成间隙
图 1 粘结剂对炸药的润湿状况
(2)对于水悬浮法,造粒过程有水存在,此时发生 自动铺展的条件为:△G= γEB+ γBW- γEW< 0。 式中:γEB、γBW、γEW 分别为炸药- 粘结剂、粘结剂- 水、炸 药- 水界面张力。如果粘结剂满足在空气中能够完全 润湿炸药的条件,则上式可整理为:
- 1/2 - 1/2
其中,λmax (X,Y) 表示矩阵Y XY 的最大特征值。
GEVP是半凸(quasiconvex) 优化问题。
-1
(4)凸问题 (CP):minlodet A(X) , s.t A(X) > 0,
B(X) > 0。
(9)
这里A、B是仿射依赖于变量X的对称矩阵,注意当A>0
-1
等式问题。
在非线性矩阵不等式转化为线性矩阵不等式的许
多问题中,常常用到矩阵的Schur补性质定理。
# $ 定理(Schur补)线性矩阵不等式:
Q(X) S(T X)
S(X) R(X)
(3)
其中Q(X)=Q(X)T,R(X)=R(X)T,S(X)是等价于非线性矩阵
不等式: R(X) > 0,Q(X)- S(X)R(X)-1S(X)T> 0。 (4)
该步骤,直至收敛到问题的最优解。该算法虽简单,但
ห้องสมุดไป่ตู้
效率不高,仅适用于较小规模问题。
1988年,Nesterov和Nemirovskii提出了内点法,用
来求解具有线性矩阵不等式约束的凸优化问题,取得
了良好的效果。其基本思想是:运用约束集定义一个
凸的障碍函数,将其附加到原问题的目标函数中,以
一个无约束优化问题代替原有的约束优化问题,运用
线性矩阵不等式

则应用引理 2.1.2,可以将矩阵不等式(2.1.6)的可行性问题转化成一个等价的矩阵不等 式
AT P PA Q PB
BT P
R0
(2.1.7)
的可行性问题,而后者是一个关于矩阵变量P的线性矩阵不等式。
2.3一些标准的线性矩阵不等式问题
例2.1.1 稳定性问题 考虑线性自治系统
x(t) Ax(t)
setlmis([]) X=lmivar(1,[61]) S=lmivar(1,[20;21]) ﹪lst LMI lmiterm([111x],1,A,’s’) lmiterm([111s],c’,c) lmiterm([112x],1,B) lmiterm([122s],-1,1) ﹪2nd LMI lmiterm([-211X],1,1) ﹪3rd LMI lmiterm([-311s],1,1) lmiterm([3110],1) lmisys=getlmis
m 是一组给定的实对称矩阵,(2.1.1)中的不等号“<”指的是矩阵 F(x)是负定的,即对所有
非零的向量 v Rm , vT F (x)v0 或者 F(x)的最大特征值小于零。
在许多系统与控制问题问题中,问题的变量是以矩阵的形式出现的。例如 Lyapunov 矩阵 不等式:
F ( X ) AT X XA Q0
lmivar 函数lmivar用来描述出现在线性矩阵不等式系
统中的矩阵变量,每一次只能描述一个矩阵变 量。矩阵变量的描述包括该矩阵变量的结构。 该函数的一般表达是:
X=lmivar(type,struct) 这一函数定义了一个新的矩阵变量X。函数中
的第一个输入量type确定了矩阵变量X的类型, 第二个输入量struct进一步根据变量X的类型给 出该变量的结构。变量的类型分成三类:
矩阵不等式理论及其在控制理论中的应用

矩阵不等式理论及其在控制理论中的应用矩阵不等式理论是现代数学中的一个重要分支,其在控制理论领域中扮演着重要角色。
本文将介绍矩阵不等式理论的基本概念,讨论其在控制理论中的应用,并探讨相关研究的前沿发展。
一、矩阵不等式理论的基本概念1.1 矩阵基础知识在讨论矩阵不等式理论之前,我们首先需要了解一些矩阵的基础知识。
矩阵是由一些数构成的矩形阵列,可以表示为$m\times n$的矩阵$A$:$A=[a_{ij}]_{m\times n}$,其中$a_{ij}$表示第$i$行第$j$列元素。
1.2 矩阵不等式定义矩阵不等式是对矩阵中元素的一种约束条件。
常见的矩阵不等式有大于等于不等式、小于等于不等式、严格大于不等式和严格小于不等式。
比如对于两个矩阵$A$和$B$,$A\geq B$表示对应元素满足$a_{ij}\geq b_{ij}$。
二、矩阵不等式理论在控制理论中的应用2.1 线性矩阵不等式线性矩阵不等式是矩阵不等式理论的重要应用之一。
在控制理论中,通过线性矩阵不等式可以描述线性系统的性能和稳定性。
线性矩阵不等式的求解可以通过线性矩阵不等式方法或凸优化方法来实现。
2.2 非线性矩阵不等式除了线性矩阵不等式,非线性矩阵不等式也在控制理论中起到关键作用。
非线性矩阵不等式可以描述非线性系统的性能和稳定性。
然而,非线性矩阵不等式的求解相较于线性矩阵不等式更加复杂,需要运用数值计算和最优化等方法。
2.3 随机矩阵不等式随机矩阵不等式是指矩阵不等式中包含随机变量的情况。
在控制理论中,随机矩阵不等式可用于描述带有随机干扰的系统的性能和鲁棒稳定性问题。
随机矩阵不等式的求解方法包括最优化方法和随机矩阵计算方法。
三、矩阵不等式理论的前沿发展矩阵不等式理论在控制理论中的应用仍在不断发展。
近年来,针对矩阵不等式理论的研究趋势主要体现在以下几个方面:3.1 非线性矩阵不等式的求解算法改进由于非线性矩阵不等式的求解复杂度较高,需要运用数值计算和最优化等方法。
矩阵不等式

(5.1.3) (5.1.4)
推论: Hermite 矩阵的特征值都是实数; 反 Hermite 矩阵的特征值为零或纯虚数。 事实上,当 A 为 Hermite 矩阵时,由式(5.1.4) 知 Im( )=0,即 为实数; 当 A 为反 Hermite 矩阵时,由式(5.1.3)知 Re( )=0,即为 为零或纯虚数。 定义.5.1 设 A (ars ) C
a1
h
p O q ak
定理 5.5 (Schur’s inequality) 设 A=(ars)Cn×n 的特征值为1,…,n,则有
| r |2
r 1
n
r ,s 1
| a
n
rs
|2 || A ||2 F
(5.1.9)
证明:根据定理 1.43,存在酉矩阵 U 使得 A=UTUH 其中 T 为上三角矩阵。因此 T 的对角元素为 A 的特征值,且有
b
i 1 j i
n 1
ij
( xi y j x j yi ) |2
2
n (2M) | xi y j x j yi | i 1 j i
2
(利用(a1+a2+…+an)2 n((a1)2+(a2)2+…+(an)2)
n 2 (2M) (n(n1)/2) | xi y j x j yi | i 1 j i
xT x yT x
(求等式两边矩阵的对角元之和,可得 (xTx+yTy)=xTAx+yTAy (1) 等式两边矩阵的左上角单元减去右下角单元 可得: (xTx+yTy)=xT(AAT)y 1). 记 B=AAT,则 |xTBy|||x||2 ||B||2||y||2 从而 ||||x||2 ||B||2||y||2 /((||x||2)2 +(||y||2)2) 利用 ab/(a2+b2)1/2 可得 ||||B||2 /2. 2). 由于|xTBy|||Bx||1 ||y||||B||1||x||1 ||y|| 从而 ||||B||1 ||x||1 ||y|| /((||x||2)2 +(||y||2)2) 易证明 ||x||1 ||y|| /((||x||2)2 +(||y||2)2) n /2. (显然,不妨假设(||x||2)2 +(||y||2)2=1, 设||y||=t=cos(), 则 y 必为 t ej 的形式(为什么?) , 从而极值转化为求解如下最大值问题: max ||x||1, 满足约束(||x||2)2=1t2 这样有均值不等式||x||1 n ||x||2=
矩阵不等式

如果A按行严格对角占优,则
(5.1.5)
且当ars=0(s>r)时,式(5.1.5)中等号成立。
证明:由于A按对角占优,所以det(A)0.
考虑方程组
因为A按行对角占优,因此A1也按行对角占优。
从而A1可逆。上述线性方程组有唯一解
x(1)=(2,…,n)T.
可以证明|k|=max {|2|,…,|n|} <1,
则|yHBy| .
定理5.2设ACn×n,则A的任一特征值 满足
| | ||A||
(5.1.3)
(5.1.4)
推论:Hermite矩阵的特征值都是实数;
反Hermite矩阵的特征值为零或纯虚数。
事实上,当A为Hermite矩阵时,由式(5.1.4)
知Im( )=0,即 为实数;
当A为反Hermite矩阵时,由式(5.1.3)知
4). |xTBy|=| |
而 (xTx)1/2(yTy)1/2
由此可以有||(1/2)
思考题:对于(1)式,利用定理特征值都是实数。
事实上,当A这实对称矩阵时,M=0.
由定理5.1可得Im( )=0,即 为实数。
引理1设BCn×n,列向量yCn满足||y||2=1,
易证明||x||1||y||/((||x||2)2+(||y||2)2) /2.
(显然,不妨假设(||x||2)2+(||y||2)2=1,
设||y||=t=cos(),则y必为tej的形式(为什么?),
从而极值转化为求解如下最大值问题:
max||x||1,满足约束(||x||2)2=1t2
这样有均值不等式||x||1 ||x||2= (1t2)1/2,
线性矩阵不等式2

应用Schur 补,即得定理3.3成立。
y w
2 2
即得闭环系统(3-3)的L2增益小于γ。 再由
V x yT y 2wT w 0
知,当闭环系统(3-3)满足H∞性能指标γ时, V x 0.
定理得证。
Question
为什么考虑零初始条件?若非零初始 条件,系统H∞性能指标不满足。 V x 0 的证明太过牵强。
(3-3)
y Cx
A = A BK MF t E1 E2 K 系统(3-2)的L2 增益定义为:
Tyw s
sup
w 2 0
y w
2 2
定理3.2 针对闭环系统(3-3)和给定的一个常数γ >0,若 存在对称矩阵P>0,使得如下矩阵不等式成立
AT P PA C T C DT P PD 0 2 I
M , E1 和 E 2
是反映不确定性结构的常数矩阵,
。
F t 是时变的不确定矩阵,且满足 F T t F t I
设计状态反馈控制律
ห้องสมุดไป่ตู้
u t Kx t
闭环系统可写为 x A BK MF t E1 E 2 K x Dw = Ax + Dw
记X=γP CT T D 0 I
AT X XA XB BT X 2 I C D
CT T D 0 I
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制论常用的矩阵不等式
控制论是一门研究如何通过控制手段来实现系统稳定、优化和鲁棒性的学科,而矩阵不等式则是控制论中常用的数学工具之一。
本文将介绍控制论中常用的几种矩阵不等式,并讨论其在控制系统设计中的应用。
1. 线性矩阵不等式(LMI)
线性矩阵不等式是控制论中最常用的矩阵不等式之一。
它的形式为:
$$A(x)X+B(x)Y+C^{T}(x)YC(x)<0$$
其中,$A(x)$、$B(x)$、$C(x)$均为实系数矩阵函数,$X$、$Y$均为矩阵变量。
该不等式表示的是矩阵函数$A(x)$、$B(x)$、$C(x)$构成的线性系统对应的闭环系统是渐进稳定的,即对任意的初值$x_0$,系统的输出$y(t)$都会收敛到零。
2. Lyapunov矩阵不等式
Lyapunov矩阵不等式是控制论中另一种常用的矩阵不等式。
它的形式为:
$$A^{T}P+PA<-Q$$
其中,$A$为系统的状态转移矩阵,$P$为对称正定矩阵,$Q$为对称正定矩阵。
该不等式表示的是系统的Lyapunov函数
$V(x)=x^{T}Px$满足$V(x)leqslant-alpha x^{T}x$,其中$alpha$是正常数。
3. Riccati矩阵不等式
Riccati矩阵不等式也是控制论中常用的矩阵不等式之一。
它的形式为:
$$A^{T}P+PA-PBR^{-1}B^{T}P<-Q$$
其中,$A$、$B$为系统的状态转移矩阵和输入矩阵,$P$为对称正定矩阵,$R$为对称正定矩阵。
该不等式表示的是系统的最优控制输入满足线性方程$u=-R^{-1}B^{T}Px$。
4. Schur矩阵不等式
Schur矩阵不等式是控制论中最基本的矩阵不等式之一。
它的形式为:
$$Mprec N$$
其中,$M$、$N$为两个对称矩阵,$prec$表示矩阵的部分序。
该不等式表示的是矩阵$N-M$是正定的。
总之,矩阵不等式在控制论中具有广泛的应用,可以用于系统稳定性分析、最优控制设计和鲁棒性分析等领域。
掌握矩阵不等式的基本理论和方法,对于控制系统设计和分析具有重要的意义。