高等数学(下)期末复习指导
高数下册期末复习指导

x x(t)
y y(t), t :
z z (t)
P[x (t),
y (t), z (t)]
x(t )
Q[x (t), y (t), z (t)] y(t )
R[x (t), y (t), z(t)] z(t) d t
5.第二型曲面积分
时,
R(x, y, z) d x d y R(x, y, z(x, y)) d x d y
偏导数, 则
向量场通过有向曲面 的通量为
A n d S ( n 为 的单位法向量)
G 内任意点处的散度为 div A A P Q R x y z
四:常微分方程
1. 一阶标准类型方程求解 可分离变量方程
三个标准类型 齐次方程 线性方程
关键: 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解
4.第二型线积分
• 对有向光滑弧
C
x:y源自x (t ) ,y (t )
t
:
P [x (t),
y(t)] x(t)
Q [ x(t ),
y (t)]
y(t)d t
• 对有向光滑弧 C : y f ( x) , x : a b
b a
P [ x,
f
( x)] Q[x,
f
( x)]
f
( x)dx
• 对空间有向光滑弧C :
• 2、 多元向量值函数积分
(1)定义(分,匀,合,精,注意方向) (2)性质(线性,区域可加性,方向性,闭曲线(面)的性质,中
值定理) (3)类型: 第二型(对坐标)的线积分和第二型(对坐标)面积分
3. 多元数量值函数积分的计算
(1)二重积分 计算方法:直角坐标系(X型域,Y型域,注意积分次序),极坐标系(先ρ 后,注意面积微元) ,换元法(简单的掌握,以书中例题为例) 应用:平面薄片的质量,平面区域的面积,曲顶柱体的体积
高等数学下册复习资料

高等数学下册复习资料高等数学下册是一门重要的大学数学课程,也是有挑战性的一门课程。
学生们需要透彻地掌握这门课程的基本概念、理论和实际应用,才能够为以后的学习和工作做好充分的准备。
因此,复习高等数学下册是非常必要的。
一、复习重点1.微分方程微分方程是高等数学下册中比较难理解和掌握的知识点之一。
在这个部分中,学生们需要掌握常微分方程及其解法、初始值问题、高阶微分方程、齐次方程和非齐次方程等。
2.多元函数微积分学多元函数微积分学是高等数学下册的另一个难点,包括多重积分、曲线积分、曲面积分、矢量场的线积分和面积分等。
3.线性代数线性代数是高等数学下册另一个重要的知识点。
这个部分需要学生们掌握线性空间、矩阵、行列式和特征值及其应用、线性方程组及其应用等。
二、复习方法1.理解基本概念和理论高等数学下册有很多基本的概念和理论,这些知识点是这门课程的基础。
学生们需要花费足够的时间来学习和理解这些概念和理论,从而能够透彻地掌握整个课程。
2.做题巩固知识点在学习中,做题是非常重要的一部分。
学生们需要选择一些代表性和难度适当的例题和习题来练习,从而加深对知识点的理解和掌握。
同时,做题也可以帮助学生们检查自己的学习效果。
3.查阅资料和参考书籍在复习过程中,学生们可以查阅相关资料和参考书籍,例如高等数学下册的教材、辅读书和网上资料等。
通过阅读和学习这些资料,学生们可以更深入地了解和掌握相关知识点。
4.参加辅导课和讨论小组参加辅导课和讨论小组,可以让学生们更好地交流和学习。
在这个过程中,学生们可以和老师和同学们一起讨论和解决问题,不断提高自己的学习能力。
三、总结复习高等数学下册需要花费足够的时间和精力,但是这个过程是非常重要的。
通过理解基本概念和理论、做题巩固知识点、查阅资料和参考书籍、参加辅导课和讨论小组等方法,学生们可以逐渐掌握高等数学下册的知识点,为以后的学习和工作打下坚实的基础。
高数下期末考复习资料

高数下期末考复习资料高数是在大学阶段非常重要的一门学科,也是很多学生最备受挑战的科目之一。
为了更好地备考高数下期末考试,学校和老师一般都会提供一些相应的复习资料,下面将给大家介绍一些高数下期末考复习资料。
一、教材及其配套习题在备考过程中,重点掌握教材中各章节的知识点及其应用,这样可以更好地应对考试。
另外,每本教材的后面都附有大量的习题,这些习题是考试中最常见的考点,所以切记要吃透每一道习题。
二、模拟题及其解析除了教材习题,各种模拟题也是备考中不可或缺的一部分,它们能够帮助我们更好地了解考试难度和考试范围,有效的提高考试的成功率。
当然,不仅考试前需要进行模拟考试,考试后也应该倒推做题思路并找出解题技巧。
三、复习指南在备考过程中,官方或是学生会均通常会推出复习指南,复习指南包含了每章节所要掌握的知识点和应该掌握的重点难点,这些指南对于考生备考都是很有帮助的。
四、解题思路学生在备考过程中需要了解纷繁复杂的解题思路。
因为求解解题的不同策略,定量意义的计算和几何图形的解析可以根据某些原则有得到较好的通行证。
略微了解和熟悉这些解题策略会在考试中得到极大的优势,并且有助于作为问题应对考场上严峻的求解气氛。
五、求助老师在真正的备考过程中,遇到难题,总要找人问问比较好。
老师总是学生的第一选择,他们有深厚的学术背景,拥有丰富的解题经验和思考技巧。
在遇到困难的时候,老师的指导和鼓励传递正能量并且能鼓励学生更快速更通畅地准备自己的学习。
六、同学互助学生帮助学生的传统自助重要性在高数考试备考过程中显得尤为重要。
有理性引导和友善的氛围,能够让我们在微信、QQ群等通讯工具里获取班上其他同学的经验和学习材料,更加奏效和加速我们的思维和工作效率。
以上就是我们校内外和学生所推荐的一些高数下期末考复习资料,希望能够对即将参加考试的学生有用。
学习无论何时,准备和复习的及时性和科学性是很重要的,为了能够更好地掌握高数内容,我们应该做好相应计划,认真备考,提高成绩。
高等数学-下期末复习提纲 PPT课件

易得最大值、最小值分别为 f (3, 0) 9, f (0, 0) 0 .
第四章 多元函数积分学
重 点 二重积分计算(直角系与极坐标)、三重积分计算 (直角系、柱坐标系、球坐标系)、利用三重积分 求物体体积与质量.
再见!
x0
ln(
y
x)
y 1
y 1
x
ln(1
0)
1
1 02
1.
例8、设
z
4x3
3x2
y
3xy 2
x
y
,
求
2z x2
,
2z .
yx
解 z 12x2 6xy 3y 2 1,
x
z 3x2 6xy 1;
例7、求下列函数的极限
(1)
lim (x2
x0
y2
)sin
x2
1
y2
;
y0
解
lim( x 2
x0
y2 ) sin
x2
1
y2
lim u sin 1
u0
u
0,
其中u
=
x2
y2;
y0
(2) limln( y x)
y
.
xy01
1 x2
解
lim
与球面
所围立体.
高数下册复习提纲

第7章:微分方程一、微分方程的相关概念1. 微分方程的阶数:方程中所含未知函数导数的最高阶数叫做微分方程的阶.2. 微分方程的解:使微分方程成为恒等式的函数称为微分方程的解.通解:所含独立的任意常数的个数与方程的阶数相同的解称为微分方程的通解. 特解:确定了任意常数的通解称为微分方程的特解.3. 特解与通解的关系:可通过初始条件确定通解中的常数而得到满足条件的特解; 也可通过方程的表达式直接观察得到特解,因此特解不总包含在通解中. 二、微分方程的常见类型及其解法 1. 可分离变量的微分方程及其解法 (1).方程的形式:dx x f dy y g )()(=.(2). 方程的解法:分离变量法(3). 求解步骤①. 分离变量,将方程写成dx x f dy y g )()(=的形式;②. 两端积分:⎰⎰=dx x f dy y g )()(,得隐式通解C x F y G +=)()(;③. 将隐函数显化. 2. 齐次方程及其解法 (1).方程的形式:⎪⎭⎫ ⎝⎛=x y dx dy ϕ. (2).方程的解法:变量替换法 (3). 求解步骤①.引进新变量x y u=,有ux y =及dxdux u dx dy +=; ②.代入原方程得:)(u dxdux u ϕ=+;③.分离变量后求解,即解方程xdxu u du =-)(ϕ;④.变量还原,即再用xy代替u . 3. 一阶线性微分方程及其解法 (1).方程的形式:)()(x Q y x P dxdy=+. 一阶齐次线性微分方程:0)(=+y x P dxdy.一阶非齐次线性微分方程:0)()(≠=+x Q y x P dxdy. (2).一阶齐次线性微分方程0)(=+y x P dxdy的解法: 分离变量法. 通解为⎰-=x d x P Ce y )(,(R C ∈).(公式)(3).一阶非齐次线性微分方程0)()(≠=+x Q y x P dxdy的解法: 常数变易法. 对方程)()(x Q y x P dxdy=+,设⎰-=x d x P e x u y )()(为其通解,其中)(x u 为未知函数, 从而有 ⎰---'=⎰x d x P x d x P e x P x u x u dxdy)()()()(e )(,代入原方程有 )()()()()(e)()()()(x Q e x u x P e x P x u x u x d x P x d x P xd x P =+-'⎰-⎰--⎰,整理得 ⎰='x d x P x Q x u )(e )()(,两端积分得 C dx e x Q x u x d x P +=⎰⎰)()()(,再代入通解表达式,便得到一阶非齐次线性微分方程的通解))(()()(C dx e x Q e y x d x P x d x P +=⎰⎰⎰-dx e x Q e Ce x d x P x d x P x d x P ⎰⎰⎰-⎰-+=)()()()(,(公式)即非齐次线性方程通解=齐次线性方程通解+非齐次线性方程特解.三、可降阶的高阶微分方程1. )()(x f y n =型接连n 次积分,可得此方程的含有n 个相互独立的任意常数的通解. 2. ),(y x f y '=''型令p y =',则dxdpy ='',代入原方程,并依次解两个一阶微分方程便可得此方程的通解. 3. ),(y y f y '=''型令p y =',则dy dp p dx dy dy dp dx dp y =⋅=='',代入原方程,得到一阶微分方程),(p y f dydp p =.解此一阶微分方程,得到),(1C y p y ϕ==',然后分离变量并积分便可得此方程的通解.第8章 向量与解析几何222cos A C A θ=+⋅第9章 多元函数微分法及其应用一、基本概念 1.多元函数(1)知道多元函数的定义n 元函数:),,,(21n x x x f y = (2)会求二元函数的定义域1°:分母不为0; 2°:真数大于0;3°:开偶次方数不小于0; 4°:u z arcsin =或u arccos 中||u ≤1 (3)会对二元函数作几何解释 2.二重极限A y x f y y x x =→→),(lim 0这里动点),(y x 是沿任意路线趋于定点),(00y x 的.(1) 理解二重极限的定义(2) 一元函数中极限的运算法则对二重极限也适用,会求二重极限; (3) 会证二元函数的极限不存在(主要用沿不同路径得不同结果的方法). 3.多元函数的连续性(1)理解定义:)()(lim 00P f P f P P =→.(2)知道一切多元初等函数在其定义域内连续的结论;(3)知道多元函数在闭区域上的最大最小值定理、介值定理。
高数下册复习知识点总结

高数下册复习知识点总结高数下册复习知识点总结高数下册复习知识点总结:8空间解析几乎与向量代数1.给定向量的坐标表达式,如何表示单位向量、方向数与方向余弦、投影。
2.向量的数量积、向量积的定义式与坐标式,掌握两个向量垂直和平行的条件。
3.了解常用二次曲面的方程及其图形,以坐标轴为旋转轴的旋转曲面方程。
空间曲线在坐标平面上的投影方程。
4.平面方程和直线方程及其求法。
5.平面与平面、平面与直线、直线与直线之间的夹角,利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。
6.点到直线以及点到平面的距离。
9多元函数微分法及其应用1.有关偏导数和全微分的求解方法,偏导要求求到二阶。
2.复合函数的链式法则,隐函数求导公式和方法。
3.空间曲线的切线和法平面方程,空间曲面的切平面与法线方程;函数沿着一条直线的方向导数与梯度。
4.利用充分条件判断函数的极值问题;利用拉格朗日乘子法(即条件极值)分析实际问题或给定函数的最值问题。
10重积分1.二重积分直角坐标交换积分次序;选择合适的坐标系计算二重积分。
2.选择合适的坐标系计算三重积分。
3.利用二重积分计算曲面的面积;利用三重积分计算立体体积;4.利用质心和转动惯量公式求解问题。
11曲面积分与曲线积分1.两类曲线积分的计算与联系;2.两类曲面积分的计算与联系;3.格林公式和高斯公式的应用。
12曲面积分与曲线积分1.常数项积分的敛散性判别:(1)正项级数;(2)交错级数;(3)一般级数2.幂级数的收敛域(1)标准型(2)非标准型幂级数的和函数,幂级数展开3.傅里叶级数的和函数以及展开式扩展阅读:高数下册总复习知识点归纳(1)高等数学(一)教案期末总复习第八、九章向量代数与空间解析几何总结向量代数定义与运算的几何表达定义向量模有大小、有方向.记作a或AB向量a的模记作a在直角坐标系下的表示aaxiayjazk(ax,ay,az)axprjxa,ayprjya,azprjzaaax2ay2az2和差cabca-b 单位向量cabaxbx,ayby,azbzaa0,则eaa设a与x,y,z轴的夹角分别为,,,则方向余弦分别为cos,cos,cosea(ax,ay,az)axayaz222方向余弦aaacosx,cosy,coszaaaea(cos,cos,cos)cos2+cos2cos21点乘(数量积)ababcos,为向量a与b的夹角abaxbxaybyazbziabaxbxjaybykazbzcabsin叉乘(向量积)为向量a与b的夹角cab向量c与a,b都垂直定理与公式垂直平行abab0abaxbxaybyazbz0a//bcosa//bab0axayazbxbybz2222交角余弦ab两向量夹角余弦cosab向量a在非零向量b上的投影axbxaybyazbzaxayazbxbybz22投影prjbaacos(ab)abbprjbaaxbxaybyazbzbxbybz222平面法向量n{A,B,C}点M0(x0,y0,z0)方程名称一般式点法式方程形式及特征直线方向向量T{m,n,p}点M0(x0,y0,z0)方程名称一般式点向式方程形式及特征A1xB1yC1zD10A2xB2yC2zD20AxByCzD0A(xx0)B(yy0)C(zz0)0xx0yy0zz0mnp高等数学(一)教案期末总复习xx1三点式yy1y2y1y3y1zz1z2z10z3z1两点式线线垂直线线平行线面平行参数式x2x1x3x1截距式面面垂直面面平行线面垂直xyz1abcA1A2B1B2C1C20A1B1C1A2B2C2ABCmnpxx0mtyy0ntzzpt0xx0yy0zz0x1x0 y1y0z1z0m1m2n1n2p1p20m1n1p1m2n2p2AmBnCp0点面距离M0(x0,y0,z0)AxByCzD0面面距离AxByCzD10AxByCzD20dAx0By0Cz0DABC222dD1D2ABC222面面夹角n1{A1,B1,C1}n2{A2,B2,C2}cos|A1A2B1B2C1C2|A1B1C1A2B2C2222222线线夹角s1{m1,n1,p1}s2{m2,n2,p2}线面夹角s{m,n,p}n{A,B,C}AmBnCpA2B2C2m2n2p2cosm1m2n1n2p1p2222m12n12p12m2n2p 2sinx(t),y(t),z(t),切“线”方程:切向量xx0yy0zz0(t0)(t0)(t0)空间(t)曲线:T((t0),(t0),(t0))法平“面”方程:(t0)(xx0)(t0)(yy0)(t0)(zz0)0切“线”方程:y(x)切向量z(x)T(1,(x),(x))xx0yy0zz01(x0)(x0)法平“面”方程:(xx0)(x0)(yy0)(x0)(zz0)0法向量切平“面”方程:Fx(x0,y0,z0)(xx0)Fx(x0,y0,z0)(yy0)F(x,y,z)0空间曲面:n(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))n(fx(x0,y0),fy(x0,y0),1)F x(x0,y0,z0)(zz0)0法“线“方程:xx0yy0zz0Fx(x0,y0,z0)Fy(x0,y0,z0)Fz(x0,y0,z0)切平“面”方程:fx(x0,y0)(xx0)fy(x0,y0)(yy0)(zz0)0法“线“方程:zf(x,y)或n(fx(x0,y0),fy(x0,y0),1)xx0yy0zz0fx(x0,y0)fy(x0,y0)1高等数学(一)教案期末总复习第十章总结重积分计算方法(1)利用直角坐标系X型Y型积分类型二重积分典型例题f(x,y)dxdydxDab2(x)1(x)f(x,y)dyf(x,y)dxP141例1、例3f(x,y)dxdyDdcdy2(y)1(y)Ifx,ydD(2)利用极坐标系使用原则(1)积分区域的边界曲线易于用极坐标方程表示(含圆弧,直线段);(2)被积函数用极坐标变量表示较简单(含(x2y2),平面薄片的质量质量=面密度面积为实数)P147例5f(cos,sin)ddDd2()1()f(cos,sin)d0202(3)利用积分区域的对称性与被积函数的奇偶性当D关于y轴对称时,(关于x轴对称时,有类似结论)0I2f(x,y)dxdyD1计算步骤及注意事项f(x,y)对于x是奇函数,即f(x,y)f(x,y)f(x,y)对于x是偶函数,即f(x,y)f(x,y)D1是D的右半部分P141例2应用该性质更方便1.画出积分区域2.选择坐标系标准:域边界应尽量多为坐标轴,被积函数关于坐标变量易分离3.确定积分次序原则:积分区域分块少,累次积分好算为妙4.确定积分限方法:图示法先积一条线,后扫积分域5.计算要简便注意:充分利用对称性,奇偶性高等数学(一)教案期末总复习三重积分(1)利用直角坐标投影投影法截面法bay2(x)f(x,y,z)dVdxy1(x)dyz2(x,y)z1(x,y)f(x,y,z)dzP159例1P160例2xrcos(2)利用柱面坐标yrsinzz相当于在投影法的基础上直角坐标转换成极坐标适用范围:1积分区域表面用柱面坐标表示时方程简单;如旋转体○If(x,y,z)dvP161例3空间立体物的质量质量=密度面积22222被积函数用柱面坐标表示时变量易分离.如f(xy)f(xz)○f(x,y,z)dVdzdabr2()r1()f(cos,sin,z)dxcosrsincos(3)利用球面坐标ysinrsinsinzrcosdvr2sindrdd适用范围:1积分域表面用球面坐标表示时方程简单;如,球体,锥体.○P16510-(1)2222被积函数用球面坐标表示时变量易分离.如,f(xyz)○Idd11222(,)1(,)f(sincos,sinsin,cos)2sind(4)利用积分区域的对称性与被积函数的奇偶性高等数学(一)教案期末总复习第十一章总结曲线积分与曲面积分积分类型参数法(转化为定积分)第一类曲线积分(1)L:y(x)IIf(x,y)ds计算方法典型例题(t)Iaf(x,y(x))1y"(x)dx曲形构件的质量(2)L:y(t)质量=线密度xr()cos弧长(3)rr()()L:f((t),(t))b"2(t)"2(t)dt2Lx(t)P189-例1P190-3yr()sinIf(r()cos,r()sin)r2()r"2()d平面第二类曲线积分(1)参数法(转化为定积分)x(t)L:(t单调地从到)y(t)P196-例1、例2、例3、例4LPdxQdy{P[(t),(t)](t)Q[(t),(t)](t)}dt(2)利用格林公式(转化为二重积分)条件:①L封闭,分段光滑,有向(左手法则围成平面区域D)②P,Q具有一阶连续偏导数结论:LPdxQdy(DQP)dxdyxy满足条件直接应用IPdxQdy应用:有瑕点,挖洞L不是封闭曲线,添加辅助线变力沿曲线所做的功P205-例4P214-5(1)(4)(3)利用路径无关定理(特殊路径法)等价条件:①QP②xy③PdxQdy0LLPdxQdy与路径无关,与起点、终点有关P211-例5、例6、例7④P dxQdy具有原函数u(x,y)(特殊路径法,偏积分法,凑微分法)(4)两类曲线积分的联系IPdxQdy(PcosQcos)dsLL空间第二类曲线积分(1)参数法(转化为定积分)PdxQdyRdz{P[(t),(t),(t)](t)Q[(t),(t),(t)](t)R[(t),(t),(t)](t)}dtIP dxQdyRdz(2)利用斯托克斯公式(转化第二类曲面积分)L条件:①L封闭,分段光滑,有向②P,Q,R具有一阶连续偏导数PdxQdyRdzL变力沿曲线所做结论:的功QpRQPR()dydz()dzdx()dxdyyzzxxyP240-例1 高等数学(一)教案期末总复习应用:满足条件直接应用不是封闭曲线,添加辅助线第一类曲面积分投影法:zz(x,y)投影到xoy面If(x,y,z)dv曲面薄片的质量Dxy质量=面密度类似的还有投影到yoz面和zox面的公式面积(1)投影法Pdydzp(x(y,z),y,z)dydz1○Dyz:zz(x,y),为的法向量与x轴的夹角前侧取“+”,cos0;后侧取“”,cos0Qdzdxp(x,y(x,z),z)dzdx2第二类曲面积分○Dyz:yy(x,z),为的法向量与y轴的夹角右侧取“+”,cos0;左侧取“”,cos02If(x,y,z)dvf(x,y,z(x,y))1zx2zydxdyP217-例1、例2P226-例2IPdydzQdzdxR3QdxdyQ(x,y,z(x,y))dxdy○Dyz流体流向曲面一侧的流量:xx(y,z),为的法向量与x轴的夹角上侧取“+”,cos0;下侧取“”,cos0(2)高斯公式右手法则取定的侧条件:①封闭,分片光滑,是所围空间闭区域的外侧②P,Q,R具有一阶连续偏导数结论:PdydzQdzdzRdxdy(PQR)xyzP231-例1、例2应用:满足条件直接应用不是封闭曲面,添加辅助面(3)两类曲面积分之间的联系PdydzQdzdxRdxdy(PcosQcosRcos)dSP228-例3转换投影法:dydz( 所有类型的积分:z)dxdyxdzdx(z)dxdyy1定义:四步法分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
高数下册期末考试复习总结ppt课件

设 A f ( x , y ), B f ( x , y ), C f ( x , y ) 2、 xx 0 0 xy 0 0 yy 0 0
2 ( 1 ) AC B 0 , 且 A 0 ( A 0 ), f ( x , y ) 为极 ( 大 ) 值 0 0
2 ( 2 ) AC B 0 ,f( x ,y ) 不是极值 0 0
a b b b a a b b a a
五、无穷限的反常积分
( x ) dx F ( x ) C f ( x ) dx F ( x ) | lim F ( x ) F ( a ) f
a a x
b f ( x ) dx F ( x ) | F ( b ) lim F ( x ) x
高数下册期末考 试复习总结
在 [ a , b ] 上 f ( x ) g ( x ), 则 f ( x ) dx g ( x ) dx
b
b
f ( x ) dx f ( ) ( b a ) ( a b ) 积分中值定理 ) dx 0 ; 当f ( x)是奇函数时, f(x x ) dx 2 x ) dx . 当f ( x)是偶函数时, f( f(
f ( x ) dx F ( x ) | lim F ( x ) lim F ( x ) x x
b
六、定积分的应用 ຫໍສະໝຸດ 、微元法2、平面图形的面积 (1)直角坐标情形 (2)极坐标情形 3、体积 (1)平行截面面积为已知的立体体积 (2)旋转体体积
2 ( 3 )AC B 0 , f(x 可能是也可能 。 不 0, y 0)
八、二元函数的最值
高数下期末复习课件(兴湘下)

VS
在定积分的应用中,需要注意定积分 的几何意义和物理意义,以及定积分 与不定积分之间的关系。同时,需要 掌握各种定积分的计算技巧和方法, 例如换元法、分部积分法等。
常微分方程的求解方法
常微分方程是微分方程中的一类重要方程,其应用包括解决各种实际问题中的动态问题、控制系统等。常微分方程的求解需 要掌握各种求解方法和技巧。
01
02
03
解下列一阶微分方程
04
答案:y = e^(-x) + C*e^x (其中C是积分常 数)
向量代数与空间解析几何复习题及答案
单击此处添加正文,文字是您思想的提炼,为了最终呈现发布的良好效果单击此 处添加正文单击此处添加正文,一二三四五六七八九十一二三四的的委一二三四 五六七八九十一二三四五六七八九十一二三四五六七八九十一二三四五六七八九 十添加正文单击此处添加正文,文字是您思想的提炼,为了最终呈现发布的良好 效果单击此处添加正文单击此处添加正文,文字是您思想的提炼单击此处添加正 文,文字是您思想的提炼,为了最终呈现发布的良好效果单击此处添加正文单击 此处添加正文,文字是您思想的提炼,单击此处添加正文,文字是您思想的提炼 ,为了最终呈现发布的良好效果单击此处添加正文单击此处添加正文,文字提炼 ,为了最终呈现发布的良好效果单击此处添加正文单击此处添加正文,文字提炼 ,为了最终呈现发布的良好效果单击此处添加正文单击此处添加正文,文字是您 思想的提炼,11*37
极限与连续复习题及答案
01
答案:0
02
判断下列函数的连续性
03
1. f(x) = x^2 (x < 0); f(x) = x (x >= 0)
04
答案:在x=0处不连续
导数与微分复习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学期末复习指导
(第二学期使用)
卫斌教授编写
惠州学院数学系
高等数学(2)期末复习指导
卫 斌 教授 编写
本学期《高等数学》的考试范围是:第六章至第十一章.内容为:空间解析几何与向量代数,多元函数的微积分,曲线积分,微积分的应用-级数理论及常微分方程的解法.
我们用了72课时,讲了尽可能多的知识,保证了后继课程学习中对数学知识的需要,及将来考研同学对高数的知识点范围.
对教学工作仍坚持一丝不苟、认真负责的态度,讲好每节课,对大题量的作业做到每周全收、认真批阅一次,耐心解答同学提出的问题.对同学的学习坚持从严要求,强调做好听课、记笔记、独立完成作业三个教学环节.逐步培养同学掌握学习数学课的方法:多动脑勤动手,数学书不是光靠看,还要动手演算才能理解深刻,记忆牢固.
考试题型为:
一.选择题(每小题4分,共16分) 二.填空题(每小题4分,共16分) 三.计算题(每小题7分,共49分) 四.证明题(本题10分) 五.应用题(本题9分)
下面分章复习所学知识
第六章 向量代数与空间解析几何
(一)向量代数
1.空间两点111(,,)A x y z 与222(,,)B x y z 的距离公式
d =
2.非零向量 {}123,,a a a a =r
的方向余弦公式
cos αβγ=
=
=
3.向量的运算
设 {}{}123123,,,,,a a a a b b b b ==r r
,则
1122331
231
23
,i
j k a b a b a b a b a b a a a b b b ⋅=++⨯=r r r r r r r
两非零向量垂直、平行的充要条件。