机械设计强度计算

机械设计强度计算
机械设计强度计算

第3章 剪切和挤压的实用计算

3.1 剪切的概念

在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。

图3-1

工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面

相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。

剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。

受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。

3.2 剪切和挤压的强度计算

3.2.1 剪切强度计算

剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为

2

F F Q =

图3-2

由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。在这种计算方法中,假设应力在剪切面内是均匀分布的。若以A 表示销钉横截面面积,则应力为

A

F Q =τ (3-1) τ与剪切面相切故为切应力。以上计算是以假设“切应力在剪切面上均匀分布”为基础的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。

当F 达到b F 时的切应力称剪切极限应力,记为b τ。对于上述剪切试验,剪切极限应力为

A

F b b 2=

τ 将b τ除以安全系数n ,即得到许用切应力 []n b

ττ=

这样,剪切计算的强度条件可表示为

[]ττ≤=A F Q

(3-2)

3.2.2 挤压强度计算

一般情况下,联接件在承受剪切作用的同时,在联接件与被联接件之间传递压力的接触面上还发生局部受压的现象,称为挤压。例如,图3-2b 给出了销钉承受挤压力作用的情况,挤压力以bs F 表示。当挤压力超过一定限度时,联接件或被联接件在挤压面附近产生明显的塑性变形,称为挤压破坏。在有些情况下,构件在剪切破坏之前可能首先发生挤压破坏,所以需要建立挤压强度条件。图3-2a 中销钉与被联接件的实际挤压面为半个圆柱面,其上的挤压应力也不是均匀分布的,销钉与被联接件的挤压应力的分布情况在弹性范围内如图3-3a 所示。

图3-3

与上面解决抗剪强度的计算方法类同,按构件的名义挤压应力建立挤压强度条件

[]bs bs

bs bs A F σσ≤= (3-3) 式中bs A 为挤压面积,等于实际挤压面的投影面(直径平面)的面积,见图3-3b 。bs σ为挤压应力,[]bs σ为许用挤压应力。

由图3-2b 可见,在销钉中部n m -段,挤压力bs F 等于F ,挤压面积bs A 等于td 2;在销钉端部两段,挤压力均为2

F ,挤压面积为td 。 许用应力值通常可根据材料、联接方式和载荷情况等实际工作条件在有关设计规范中查得。一般地,许用切应力[]τ要比同样材料的许用拉应力[]σ小,而许用挤压应力则比[]σ大。

对于塑性材料 []()[]στ8.0~6.0=

[]()[]σσ5.2~5.1=bs

对于脆性材料 []()[]στ0.1~8.0=

[]()[]σσ5.1~9.0=bs

本章所讨论的剪切与挤压的实用计算与其它章节的一般分析方法不同。由于剪切和挤压问题的复杂性,很难得出与实际情况相符的理论分析结果,所以工程中主要是采用以实验为基础而建立起来的实用计算方法。

例3-1 图3-4中,已知钢板厚度mm 10=t ,其剪切极限应力MPa 300=b τ。若用冲床将钢板冲出直径mm 25=d 的孔,问需要多大的冲剪力F ?

图3-4

解 剪切面就是钢板内被冲头冲出的圆柱体的侧面,如图3-4b 所示。其面积为

22mm 785mm 1025=??π=π=dt A

冲孔所需的冲力应为

kN 236N 103001078566=???=τ≥-b A F

例3-2 图3-5a 表示齿轮用平键与轴联接(图中只画出了轴与键,没有画齿轮)。

已知轴的直径mm 70=d ,键的尺寸为mm 1001220??=??l h b ,传递的扭转力偶矩m kN 2?=e T ,键的许用应力[]MPa 60=τ,[]MPa 100=σbs 。试校核键的强度。

图3-5

解 首先校核键的剪切强度。将键沿n n -截面假想地分成两部分,并把n n -截面以下部分和轴作为一个整体来考虑(图3-5b)。因为假设在n n -截面上的切应力均匀分布,故n n -截面上剪力Q F 为

ττbl A F Q ==

对轴心取矩,由平衡条件∑=0o M ,得

e Q T d bl d F ==2

2τ 故

[]ττ<=?????==-MPa 6.28Pa 109010020102229

3

bld T e , 可见该键满足剪切强度条件。 其次校核键的挤压强度。考虑键在n n -截面以上部分的平衡(图3-5c),在n n -截面上的剪力为τbl F Q =,右侧面上的挤压力为

bs bs bs bs l h A F σσ2

== 由水平方向的平衡条件得 bs Q F F = 或 bs l h bl στ2=

由此求得

[]bs bs h b σ<=??=τ=σMPa 3.95MPa 12

6.282022 故平键也符合挤压强度要求。

例3-3 电瓶车挂钩用插销联接,如图3-6a 所示。已知mm 8=t ,插销材料的许用切应力[]MPa 30=τ,许用挤压应力[]MPa 100=bs σ,牵引力kN 15=F 。试选定插销的

直径d 。

图3-6

解 插销的受力情况如图3—6b ,可以求得

kN 5.7kN 2

152===F F Q 先按抗剪强度条件进行设计

[]2426m 105.2m 10307500

-?=?=τ≥Q

F A

242

m 105.24

-?≥πd mm 8.17m 0178.0=≥d

再用挤压强度条件进行校核

[]bs 6

3

MPa 7.52Pa 108.178210152σσ<=????===-td F A F bs bs bs 所以挤压强度条件也是足够的。查机械设计手册,最后采用mm 20=d 的标准圆柱销钉。

例3-4 图3-7a 所示拉杆,用四个直径相同的铆钉固定在另一个板上,拉杆和铆钉的材料相同,试校核铆钉和拉杆的强度。已知kN 80=F ,mm 80=b ,mm 10=t ,mm 16=d ,[]MPa 100=τ,[]MPa 300=bs σ,[]MPa 150=σ。

图3-7

解 根据受力分析,此结构有三种破坏可能,即铆钉被剪断或产生挤压破坏,或拉杆被拉断。

(1)铆钉的抗剪强度计算

当各铆钉的材料和直径均相同,且外力作用线通过铆钉组剪切面的形心时,可以假设各铆钉剪切面上的剪力相同。所以,对于图3-7a 所示铆钉组,各铆钉剪切面上的剪力均为

kN 20kN 4

804===F F Q 相应的切应力为

[]τ<=??π?==τ-MPa 5.991016410206

23

Pa A F Q

(2)铆钉的挤压强度计算

四个铆钉受挤压力为F ,每个铆钉所受到的挤压力bs F 为

kN 204

==F F bs 由于挤压面为半圆柱面,则挤压面积应为其投影面积,即

td A bs =

故挤压应力为

[]bs bs bs bs A F σσ<=???==-MPa 125Pa 10161010206

3

(3)拉杆的强度计算

其危险面为1-1截面,所受到的拉力为F ,危险截面面积为()t d b A -=1,故最大

拉应力为

()[]σσ<=??-?==-MPa 125Pa 1010168010806

3

1A F 根据以上强度计算,铆钉和拉杆均满足强度要求。

习 题

3-1 试校核图示联接销钉的抗剪强度。已知kN 100=F ,销钉直径mm 30=d ,材料的许用切应力[]MPa 60=τ。若强度不够,应改用多大直径的销钉?

题3-1图

3-2 在厚度mm 5=t 的钢板上,冲出一个形状如图所示的孔,钢板剪切极限应力MPa 3000=τ,求冲床所需的冲力F 。

题 3-2图 题3-3图

3-3 冲床的最大冲力为kN 400,被剪钢板的剪切极限应力MPa 3600=τ,冲头材料的[]MPa 440=σ ,试求在最大冲力下所能冲剪的圆孔的最小直径min d 和板的最大厚度max t 。

3-4 销钉式安全联轴器所传递的扭矩需小于300m N ?,否则销钉应被剪断,使轴停止工作,试设计销钉直径d 。已知轴的直径mm 30=D ,销钉的剪切极限应力MPa 3600=τ。

题 3-4图

3-5 图示轴的直径mm 80=d ,键的尺寸mm 24=b ,mm 14=h 。键的许用切应力[]MPa 40=τ,许用挤压应力[]MPa 90=σbs 。若由轴通过键所传递的扭转力偶矩m kN 2.3?=e T ,试求所需键的长度l 。

题3-5图 题3-6图

3-6 木榫接头如图所示。mm 120==b a ,mm 350=h ,mm 45=c kN 40=F 。试求接头的剪切和挤压应力。

3-7 图示凸缘联轴节传递的扭矩m kN 3?=e T 。四个直径mm 12=d 的螺栓均匀地分布在mm 150=D 的圆周上。材料的许用切应力[]MPa 90=τ,试校核螺栓的抗剪强度。

题3-7图

3-8 厚度各为10mm 的两块钢板,用直径mm 20=d 的铆钉和厚度为8mm 的三块钢板联接起来,如图所示。已知F =280kN ,[]MPa 100=τ,[]MPa 280=bs σ,试求所需要的铆钉数目n 。

题3-8图

3-9图示螺钉受拉力F 作用。已知材料的剪切许用应力[]τ和拉伸许用应力[]σ之间的关系为[][]στ6.0=。试求螺钉直径d 与钉头高度h 的合理比值。

题3-9图

3-10 两块钢板用7个铆钉联接如图所示。已知钢板厚度mm 6=t ,宽度mm 200=b ,铆钉直径mm 18=d 。材料的许用应力[]MPa 160=σ,[]MPa 100=τ,[]MPa 240=σbs 。载荷kN 150=F 试校核此接头的强度。

题 3-10图

3-11用夹剪剪断直径为mm 3的铅丝。若铅丝的剪切极限应力为MPa 100,试问需要多大的力F? 若销钉B 的直径为mm 8,试求销钉内的切应力。

题3-11图

机械设计基础公式计算例题

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的自由度为 3-2) 3-3) 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤ 分析以上诸式,即可得出铰链四杆机构有曲柄的条件为:

(1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。 上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: 四、从动件位移s与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称? S曲线) -位移曲线直观地表示了从动件的位移变化规律,它是凸轮轮廓设计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律

???? ? ?? ?? == ====00 0dt dv a h S h v v ? ?ω?常数从动件等速运动的运动参数表达式为 等速运动规律运动曲线 等速运动位移曲线的修正 ,两轮的中心距α=630mm ,主动带轮转速1n 1 450 r/min ,能传递的最大功率P=10kW 。试求:V 带中各应力,并画出各应力1σ、σ2、σb1、σb2及σc 的分布图。 附:V 带的弹性模量E=130~200MPa ;V 带的质量q=0.8kg/m ;带与带轮间的当量摩擦系数fv=0.51;B 型带的截面积A=138mm2;B 型带的高度h=10.5mm 。

机械设计强度计算

第3章 剪切和挤压的实用计算 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面 相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 剪切和挤压的强度计算

剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2F F Q = 图3-2 由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。在这种计算方法中,假设应力在剪切面内是均匀分布的。若以A 表示销钉横截面面积,则应力为 A F Q =τ (3-1) τ与剪切面相切故为切应力。以上计算是以假设“切应力在剪切面上均匀分布”为基础的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。 当F 达到b F 时的切应力称剪切极限应力,记为b τ。对于上述剪切试验,剪切极限应力为 A F b b 2= τ 将b τ除以安全系数n ,即得到许用切应力

第三章机械设计编程基础

第三章 机械设计编程基础 2.1 编程和图表处理的基本方法 一、编制机械设计计算程序的基本方法 (1) 设计数据 (2) 表格、线图及标准规范 (3) 算法设计 [] p p dlh T σσ≤= 4 式中,T 为转矩; h 为键高度; l 为键的工作长度; [σp ]为轮毂的许用挤压应力。 表1 平键(摘自GB1096-90) 轴径 mm d mm b mm h 自6~8 2 2 >8 ~10 3 3 >10~12 4 4 >12~17 5 5 >17~22 6 6 >22~30 8 7 >30~38 10 8 >38~44 12 8 >44~50 14 9

二、设计图表处理的基本方法 1.表格(手册中的)分为两类:? ?? ..:;:着某种联系表格中的数据之间存在列表函数任何联系表格中的数据之间没有数表 2.表格处理的基本方法: (1) 表格的程序化:将数表中的数据以数组形式存储和检索,直接编 在解题的程序中。 (2) 表格的公式化:对于列表函数,可用曲线拟合的方法形成数学表 达式并直接编于程序中。 2-2 设计数表的处理 一、表格的程序化 1. 数表 一维(元)数表:所查取的数据只与一个变量有关的数表; 二维(元)数表:所查取的数据与两个变量有关的数表; 它们均可用一维和二维数组的形式存入计算机,以备程序使用。 一维(元)数表程序化

示例1 : 示例2 : int I; float GAMA[ ] ={ 7.87,7.85,8.30,7.75}; printf( “1. 工业纯铁\ n”); printf( “1. 钢材\ n”); printf( “2. 高速钢\ n”); printf( “3. 不锈钢\ n”); printf( “选择材料类型:”); scanf( “ % d”,&I); printf( “3. 不锈钢\ n”); printf( “材料的密度:% f\ n”,GAMA[I -1]); 表2 材料的密度 材 料 密度 / (g.。cm -3) 工业纯铁 7。87 钢 材 7。85 高 速 钢 8。30 不 锈 钢 7。75

机械设计轴Ⅱ强度计算

轴Ⅱ强度计算 1) 由作用力与反向作用力可求得: 周向力F t2=1999.028N ;径向力F a2=727.587N ;轴向力F r2=748.192N 2) 求水平面的支座反力(图4-0-3a) ??? ????=??? ????+=-=-=??? ????-=-=N N l d F F F N N l d F F F a r RHD a R RHC 771.10501362967.252587.7272192.74822579.3021362967.252587.7272192.74822222222 3) 求水平面弯矩M H ,作水平面弯矩M H 图(图4-0-3b) M HQ1=F RHA ×2l 错误!未找到引用源。=-302.579×1000 2136? N ?m=-20.575N ?m M HQ2=F RHB ×2l =1050.771×1000 2136?错误!未找到引用源。N ?m=71.452N ?m 4) 求垂直面支座反力(图4-0-3c),作垂直弯矩M V 图(图4-0-3d) F RVC =F RVD =22 t F 错误!未找到引用源。=999.514N M VQ =F RVC ×2l 错误!未找到引用源。=999.514×13821000 ?错误!未找到引用源。N ·m=64.697N ?m 5) 作合成弯矩M 图(图4-0-3e) m N m N M M M HQ VQ Q ?=?+= +=013.71575.20697.64222121 m N m N M M M HQ VQ Q ?=?+= +=615.98452.71697.64222222 6) 作转矩T 图(图4-0-3f) T =T Ⅱ=245.306N ?m 7) 作当量弯矩M E 图(图4-0-3g) 因为是单向传动,可认为转矩为脉动循环变化,故校正系数][][11b b +-=σσα=0.59,则危险截面Q 处的当量弯矩 M eQ =()22T M HQ α+=()2 2306.24559.0576.98?+N ?m 错误!未找到引用源。=186.178N ?m 危险截面C 、D 处当量弯矩 M eC =M eD =T α =0.59×245.306N ?m=144.731N ?m 8) 计算危险截面处的轴径 截面Q 处直径 mm mm M d b eQ Q 696.3155 1.0175134][1.0331=?=?≥-σ

机械设计基础公式计算例题

机械设计基础公式计算 例题 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

一、计算图所示振动式输送机的自由度。 解:原动构件1绕A 轴转动、通过相互铰接的运动构件2、3、4带动滑块5作往复直线移动。构件2、3和4在C 处构成复合铰链。此机构共有5个运动构件、6个转动副、1个移动副,即n =5,l p =7,h p =0。则该机构的自由度为 F =h l p p n --23=07253-?-?=1 二、在图所示的铰链四杆机构中,设分别以a 、b 、c 、d 表示机构中各构件的长度,且设a <d 。如果构件AB 为曲柄,则AB 能绕轴A 相对机架作整周转动。为此构件AB 能占据与构件AD 拉直共线和重叠共线的两个位置B A '及B A ''。由图可见,为了使构件AB 能够转至位置B A ',显然各构件的长度关系应满足 c b d a +≤+ (3-1) 为了使构件AB 能够转至位置B A '',各构件的长度关系应满足 c a d b +-≤)(或b a d c +-≤)( 即c d b a +≤+ (3-2) 或b d c a +≤+ (3-3) 将式(3-1)、(3-2)、(3-3)分别两两相加,则得 同理,当设a >d 时,亦可得出 得c d ≤b d ≤a d ≤ 分析以上诸式,即可得出铰链四杆机构有曲柄的条件为: (1)连架杆和机架中必有一杆是最短杆。 (2)最短杆与最长杆长度之和不大于其他两杆长度之和。

上述两个条件必须同时满足,否则机构中便不可能存在曲柄,因而只能是双摇杆机构。 通常可用以下方法来判别铰链四杆机构的基本类型: (1)若机构满足杆长之和条件,则: ① 以最短杆为机架时,可得双曲柄机构。 ② 以最短杆的邻边为机架时,可得曲柄摇杆机构。 ③ 以最短杆的对边为机架时,可得双摇杆机构。 (2)若机构不满足杆长之和条件则只能获得双摇杆机构。 三、 k = 12v v =121221t C C t C C =21t t =21??= θ θ-?+?180180 即k = θ θ-?+?180180 θ=11 180+-?k k 式中k 称为急回机构的行程速度变化系数。 四、从动件位移s 与凸轮转角?之间的关系可用图表示,它称为位移曲线(也称 ?-S 曲线)位移曲线直观地表示了从动件的位移变化规律,它是凸轮轮廓设 计的依据 凸轮与从动件的运动关系 五、凸轮等速运动规律 ???? ? ? ? ?? == ====00 0dt dv a h S h v v ? ?ω?常数从动件等速运动的运动参数表达式为 等速运动规律运动曲线 等速运动位移曲线的修正 六、凸轮等加等减速运动规律(抛物线运动规律)

《机械设计》第九版-公式大全

第五章 螺纹连接和螺旋传动 受拉螺栓连接 1、受轴向力F Σ 每个螺栓所受轴向工作载荷:z F F /∑= z :螺栓数目; F :每个螺栓所受工作载荷 2、受横向力F Σ 每个螺栓预紧力:fiz F K F s ∑> f :接合面摩擦系数;i :接合面对数;s K :防滑系数; z :螺栓数目 3、受旋转力矩T 每个螺栓所受预紧力:∑=≥ n i i s r f T K F 10 s K :防滑系数; f :摩擦系数; 4、受翻转力矩M 螺栓受最大工作载荷:∑=≥ z i i L ML F 1 2max max m ax L :最远螺栓距离 受剪螺栓连接 5、受横向力F Σ(铰制孔用螺栓) 每个螺栓所受工作剪力:z F F /∑= z :螺栓数目; 6、受旋转力矩T (铰制孔用螺栓) 受力最大螺栓所受工作剪力:∑=≥ z i i r Tr F 1 2 max max m ax r :最远螺栓距离 螺栓连接强度计算 松螺栓连接:[]σπσ ≤= 4 21d F 只受预紧力的紧螺栓连接:[]σπσ≤= 4 3.1210 d F 受预紧力和轴向工作载荷的紧螺栓连接: 受轴向静载荷:[]σπσ ≤= 4 3.12 12 d F 受轴向动载荷:[]p m b b a d F C C C σπσ≤?+= 21 2 受剪力的铰制孔用螺栓连接剪力: 螺栓的剪切强度条件:[]σπτ ≤= 4 /20 d F 螺栓与孔壁挤压强度:[]p p L d F σσ≤= min 螺纹连接的许用应力 许用拉应力: []S S σσ= 许用切应力: []τ στS S =

机械设计强度计算.doc

第 3 章剪切和挤压的实用计算 3.1剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴 线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用( 图 3-1a) ,构件的变形主要表现为沿着与外力作用线平行的剪切面( m n 面)发生相对错动( 图3-1b) 。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构 件。构件剪切面上的内力可用截面法求得。将构件沿剪切面 m n 假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面 相切的内力 F Q(图3-1c) 的作用。 F Q称为剪力,根据平衡方程Y 0 ,可求得F Q F 。剪切破坏时,构件将沿剪切面( 如图 3-la 所示的m n面 ) 被剪断。只有一个剪切面的 情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1 中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和 内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析 是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的 比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a为一种剪切试验装置的简图,试件的受力情况如图3-2b所示,这是模拟某种销钉联接的工作情 形。当载荷 F 增大至破坏载荷F b时,试件在剪切面m m 及 n n 处被剪断。这种具 有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 F F Q 2

机械设计常用计算公式 集(一)

运动学篇 一、直线运动: 基本公式:(距离、速度、加速度和时间之间的关系) 1)路程=初速度x时间+加速度x时间^2/2 2)平均速度=路程/时间; 3)末速度-初速度=2x加速度x路程; 4)加速度=(末速度-初速度)/时间 5)中间时刻速度=(初速度+末速度)/2 6)力与运动之间的联系:牛顿第二定律:F=ma,[合外力(N)=物体质量(kg)x加速度(m/s^2)] (注:重力加速度g=9.8m/s^2或g=9.8N/kg) 二、旋转运动:(旋转运动与直线运动类似,注:弧度是没有单位的) 单位对比: 圆的弧长计算公式: 弧长s=rθ=圆弧的半径x圆弧角度(角位移) 周长=C=2πr=πd,即:圆的周长=2x3.14x圆弧的半径=3.14x圆弧的直径 旋转运动中角位移、弧度(rad)和公转(r)之间的关系。

1)1r(公转)=2π(弧度)=360°(角位移) 2)1rad=360°/(2π)=57.3° 3)1°=2π/360°=0.01745rad 4)1rad=0.16r 5)1°=0.003r 6)1r/min=1x2x3.14=6.28rad/min 7)1r/min=1x360°=360°/min 三、旋转运动与直线运动的联系: 1)弧长计算公式(s=rθ):弧长=圆弧的半径x圆心角(圆弧角度或角位移) 2)角速度(角速度是角度(角位移)的时间变化率)(ω=θ/t):角速度=圆弧角度/时间 注:结合上式可推倒出角速度与圆周速度(即:s/t也称切线速度)之间的关系。S 3)圆周速度=角速度x半径,(即:v=ωr) 注:角度度ω的单位一般为rad/s,实际应用中,旋转速度的单位大多表示为r/min (每分钟多少转)。可通过下式换算: 1rad/s=1x60/(2x3.14)r/min 例如:电机的转速为100rad/s的速度运行,我们将角速度ω=100rad/s换算成r/min 单位,则为: ω=100rad/s=100x60/(2π)=955r/min 4)rad/s和r/min的联系公式: 转速n(r/min)= ω(rad/s)x60/(2π),即:转速(r/min)=角速度(rad/s) x60/(2π); 5)角速度ω与转速n之间的关系(使用时须注意单位统一):ω=2πn,(即:带单位时为角速度(rad/s)=2x3.14x转速(r/min)/60) 6)直线(切线)速度、转速和2πr(圆的周长)之间的关系(使用时需注意单位):

机械设计(8.4.1)--轴的强度计算

已知:作用在轴上的转矩T 适用: 1. 传动轴的设计; 2. 弯矩较小的转轴; 3. 粗(初)估轴的直 8-4 轴的强度计 算一、按扭转强度条件 轴的强度计算通常是在初步完成轴的结构设计后进行校核计算。 8-4 轴的强度计算 一、按扭转强度条件

[]23N/mm 2.01095503 T T T d n P W T ττ≤?==τT ——轴的扭转应力,N/mm ,T ——轴传递的扭矩,N.mm W T ——轴的抗扭截面模量,mm 3;P ——轴传递的功率,kW ;n ——轴的转速,r/min ; [τT ]——许用扭转应力,N/mm ; 8-4 轴的强度计算 一、按扭转强度条件

[]mm 2.0109550 3 .03 .3 n P A n P d T =?≥τ轴的最小直径设计公式: A 0——由轴材料及承载情况确定的系数,A 0=110~160, 材质好、弯矩较小、无冲击和过载时取小值;反之取大值。 β——空心轴内外径的比值,常取0.5~0.6。当轴上有键槽时,应适当增大轴径:单键增大 3%-5% 8-4 轴的强度计算 一、按扭转强度条件 实心圆轴[]mm )1( )1(2.0109550 3 .4 03.43 n P A n P d T βτβ-=-?≥空心圆轴

已知:各段轴径,轴所受各力、轴承跨 距 计算:轴的强度 步骤:可先画出轴的弯矩扭矩合成图,然后计算危险截面的最大弯曲应力。 二、按弯扭合成强度计算主要用于计算一般重要,受弯扭复合的轴。计算精度中等。

[]2 2 2N/mm 4b T b ca στσσ≤+=第三强度理论 []b T ca T T b W T M W T W M W T d T W T d M W M σστσ≤+=??? ? ??+??? ??==≈=≈=2 2 2 3 3 2422.01.0

机械设计强度计算

第3章 剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面 相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q =

机械设计习题及答案

机械设计习题及答案 第一篇总论 第一章绪论 一.分析与思考题 1-1 机器的基本组成要素是什么? 1-2 什么是零件?什么是构件?什么是部件?试各举三个实例。 1-3 什么是通用零件?什么是专用零件?试各举三个实例。 第二章机械设计总论 一.选择题 2-1 机械设计课程研究的内容只限于_______。 (1) 专用零件的部件 (2) 在高速,高压,环境温度过高或过低等特殊条件下工作的以及尺寸特大或特小的通用零件和部件 (3) 在普通工作条件下工作的一般参数的通用零件和部件 (4) 标准化的零件和部件 2-2 下列8种机械零件:涡轮的叶片,飞机的螺旋桨,往复式内燃机的曲轴,拖拉机发动机的气门弹簧,起重机的起重吊钩,火车车轮,自行车的链条,纺织机的纱锭。其中有_____是专用零件。 (1) 3种 (2) 4种 (3) 5种 (4) 6种 2-3变应力特性可用σmax,σmin,σm, σa, r 等五个参数中的任意_____来描述。 (1) 一个 (2) 两个 (3) 三个 (4) 四个 2-4 零件的工作安全系数为____。 (1) 零件的极限应力比许用应力 (2) 零件的极限应力比零件的工作应力 (3) 零件的工作应力比许用应力 (4) 零件的工作应力比零件的极限应力 2-5 在进行疲劳强度计算时,其极限应力应为材料的____。 (1) 屈服点 (2) 疲劳极限 (3) 强度极限 (4) 弹性极限 二.分析与思考题 2-1 一台完整2-3 机械零件主要有哪些失效形式?常用的计算准则主要有哪些? 2-2 机械零件主要有哪些失效形式?常用的计算准则主要有哪些? 2-3 什么是零件的强度要求?强度条件是如何表示的?如何提高零件的强度? 2-4 什么是零件的刚度要求?刚度条件是如何表示的?提高零件刚度的措施有哪些? 2-5 机械零件设计中选择材料的原则是什么? 2-6 指出下列材料的种类,并说明代号中符号及数字的含义:HTl50,ZG230-450,2-7 机械的现代设计方法与传统设计方法有哪些主要区别? 第三章机械零件的强度 一.选择题 3-1 零件的截面形状一定,如绝对尺寸(横截面尺寸)增大,疲劳强度将随之_____。 (1) 增高 (2) 不变 (3) 降低 3-2 零件的形状,尺寸,结构相同时,磨削加工的零件与精车加工相比,其疲劳强度______。 (1) 较高 (2) 较低 (3) 相同

机械设计 计算题

。 (1) 活动构件数n=5,低副数 P L =7,高副数P H =0 ,因此自由度数 F=3n-2P L -P H =3*5-2*7=1 C 为复合铰链 (2) 活动构件数n=5,低副数 P L =7,高副数P H =0 因此自由度数 F=3n-2P L -P H =3*5-2*7=1 F 、G 为同一个移动副,存在一个虚约束。 2.在图示锥齿轮组成的行星轮系中,各齿轮数120Z =,Z 2=27,Z 2’=45,340Z =,已知齿轮1的转速1n =330r/min ,试求转臂H 的转速n H (大小与方向)。 (1)判断转化轮系齿轮的转动方由画箭头法可知,齿轮1与齿轮3的转动方向相反。 (2)转化轮系传动比关系式 ' 21323113Z Z Z Z n n n n i H H H ??-=--= (3)计算转臂H 的转速H n 。 代入13330,0n n ==及各轮齿数 3302740 02045 3306 15 150/min H H H H n n n n r -?=- -?- +=-=转臂H 的转动方向与齿轮1相同。 2’ 2 1 3

3.有一轴用一对46309轴承支承,轴承的基本额定动负载r C =48.1kN ,内部轴向力S=0.7Fr ,已知轴上承力R F =2500N ,A F =1600N ,轴的转速n=960r/min ,尺寸如图所示。若取载荷系数 p f =1.2,试计算轴承的使用寿命。 1)计算径向负荷 F A F r1 S 2 F R S 1 F r2 由力矩平衡 F r2×200- F R ×300+ F A ×40=0 F r2= (F R ×300- F A ×40)/200=(2500×3000-1600×40)/200=3430N F r1= F r2- F R =3430-2500=930N (2)计算轴向负荷 内部轴向力 S 1=0.7 F r1=0.7×930=651N ;S 2=0.7 F r2=0.7×3430=2401N 由S 1+ F A < S 2 ,可知轴承1为“压紧”轴承,故有F a1= S 2- F A =2401-1600=801N F a2= S 2=2401N (3)计算当量动负荷 轴承1:F a1/ F r1=801/930=0.86>e ;取X =0.41,Y =0.87 P 1=f p (X F r1+Y F a1)=1.2×(0.41×930+0.87×801)=1294N 轴承2:F a2/ F r2=0.7=e ;取X=1,Y=0 P 2=f p ×F r2=1.2×3430=4116N ∵ P 2> P 1 ∴ 取P=P 2=4116N 计算轴承寿命。 (4)计算轴承寿命 L h =(106/60n)( C t /P)ε= 〔106 /(60×960)〕×(48.1×103/4116)ε =27706h e F a /F r ≤e F a /F r >e X Y X Y 0.7 1 0.41 0.85

机械设计课程设计-电动机的选择计算

第三章电动机的选择计算 合理的选择电动机是正确使用的先决条件。选择恰当,电动机就能安全、经济、可靠地运行;选择得不合适,轻者造成浪费,重者烧毁电动机。选择电动机的内容包括很多,例如电压、频率、功率、转速、启动转矩、防护形式、结构形式等,但是结合农村具体情况,需要选择的通常只是功率、转速、防护形式等几项比较重要的内容,因此在这里介绍一下电动机的选择方法及使用。 3.1电动机选择步骤 电动机的选择一般遵循以下三个步骤: 3.1.1 型号的选择 电动机的型号很多,通常选用异步电动机。从类型上可分为鼠笼式与绕线式异步电动机两种。常用鼠笼式的有J、J2、JO、JO2、JO3系列的小型异步电动机和JS、JSQ系列中型异步电动机。绕线式的有JR、JR O2系列小型绕线式异步电动机和JRQ系列中型绕线式异步电动机。 从电动机的防护形式上又可分为以下几种: 1.防护式。这种电动机的外壳有通风孔,能防止水滴、铁屑等物从上面或垂直方向成45o以内掉进电动机内部,但是灰尘潮气还是能侵入电动机内部,它的通风性能比较好,价格也比较便宜,在干燥、灰尘不多的地方可以采用。“J”系列电动机就属于这种防护形式。 2.封闭式。这种电动机的转子,定子绕组等都装在一个封闭的机壳内,能防止灰尘、铁屑或其它杂物侵入电动机内部,但它的密封不很严密,所以还不能在水中工作,“JO”系列电动机属于这种防护形式。在农村尘土飞扬、水花四溅的地方(如农副业加工机械和水泵)广泛地使用这种电动机。 3.密封式。这种电动机的整个机体都严密的密封起来,可以浸没在水里工作,农村的电动潜水泵就需要这种电动机。 实际上,农村用来带动水泵、机磨、脱粒机、扎花机和粉碎机等农业机械的小型电动机大多选用JO、JO2系列电动机。 在特殊场合可选用一些特殊用途的电动机。如JBS系列小型三相防爆异步电动机,JQS 系列井用潜水泵三相异步电动机以及DM2系列深井泵用三相异步电动机。 3.1.2 功率的选择 一般机械都注明应配套使用的电动机功率,更换或配套时十分方便,有的农业机械注明本机的机械功率,可把电动机功率选得比它大10%即可(指直接传动)。一些自制简易农机具,我们可以凭经验粗选一台电动机进行试验,用测得的电功率来选择电动机功率。

机械设计基础公式汇总

机械设计基础公式汇总 机械设计基础公式大家了解吗?以下是XX为大家整理好的机械设计基础公式汇总,一起来学习吧. 零件:独立的制造单元 构件:独立的运动单元体 机构:用来传递运动和力的、有一个构件为机架的、用 构件间能够相对运动的连接方式组成的构件系统 机器:是执行机械运动的装置,用来变换或传递能量、 物料、信息 机械:机器和机构的总称 机构运动简图:用简单的线条和符号来代表构件和运动 副,并按一定比例确定各运动副的相对位置,这种表示机构 中各构件间相对运动关系的简单图形称为机构运动简图运动副:由两个构件直接接触而组成的可动的连接 运动副元素:把两构件上能够参加接触而构成的运动副 表面 运动副的自由度和约束数的关系f=6-s 运动链:构件通过运动副的连接而构成的可相对运动系 统 高副:两构件通过点线接触而构成的运动副 低副:两构件通过面接触而构成的运动副 平面运动副的最大约束数为2,最小约束数为1;引入

一个约束的运动副为高副,引入两个约束的运动副为平面低副 平面自由度计算公式:F=3n-2PL-PH 机构可动的条件:机构的自由度大于零 机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目 虚约束:对机构不起限制作用的约束 局部自由度:与输出机构运动无关的自由度 复合铰链:两个以上构件同时在一处用转动副相连接 速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。若绝对速度为零,则该瞬心称为绝对瞬心相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是 三心定理:三个彼此作平面运动的构件的三个瞬心必位于同一直线上 机构的瞬心数:N=K(K-1)/2 机械自锁:有些机械中,有些机械按其结构情况分析是可以运动的,但由于摩擦的存在却会出现无论如何增大驱动力也无法使其运动 曲柄:作整周定轴回转的构件; 连杆:作平面运动的构件;

机械设计常用计算总目

电机选型皮带轮选型 负载转矩计算皮带轮间歇运动 惯量计算皮带轮连续运动 电机常识三角皮带长度计算 常用Y系列电机型号参数表三角皮带参数表电机功率确定程序同步带节线长计算 伺服电机选型自动版 减速机公称功率 凸轮分割器盘类计算 分割器选型知识分度盘 惯性距计算圆盘 分割器计算分度盘选型计算公式 弹簧计算搖擺資料 棘轮计算輸送帶計算 螺杆螺纹其他公式 美制螺纹单位换算 粗螺纹压入力计算 细螺纹弹性模量、泊松系数迫牙丝攻钻孔径焊缝及键连接受力计算比较美制特细螺纹及英制电器螺纹 管螺纹 螺栓扭矩标准

螺纹中小径计算

机械设计常用计气缸选型丝杆运动计算 气缸内径选型丝杠水平运动 气缸推力计算丝杠垂直运动 气缸理论出力表 真空元件的选定 耗气量计算及电磁阀选择 气缸与系统选型指南 键槽&销计算联轴器配合 外花键跨棒距万向联轴器计算 内花键棒间距齿式联轴器计算 键的强度计算过盈计算 销的强度计算 立柱计算 立柱计算 稳定性系数

常用计算总目 齿轮计算带轮计算 外啮合变位圆柱齿轮传动几何尺寸计算链轮参数计算 齿轮齿条链轮计算齿轮常用材料及其力学性能同步带轮传动设计高度变位斜齿轮跨棒(球)距链条计算高变位齿轮尺寸计算 锥齿轮传动设计计算 齿轮齿条传动设计计算 标准件查询A标准件查询B 深沟球轴承查询孔用弹性挡圈 超越离合器设计轴用弹性挡圈 推力球轴承尺寸表轴用E形扣环 齒輪分割計算平键和键槽查询

蜗杆计算 圆柱蜗杆传动 蜗杆常用材料 圆柱蜗杆传动主要参数搭配推荐值 蜗轮传动 材料学 模具钢牌号和性能 材料摩擦系数 材料价格计算表 常用材料硬度表

机械设计常用计算公式集

一、直线运动 基本公式:(距离、速度、加速度和时间之间的关系) 1)路程=初速度 x 时间+21*2 加速度时间 2)平均速度=路程/时间; 3)末速度-初速度=2x 加速度 x 路程; 4)加速度=(末速度-初速度)/时间 5)中间时刻速度= 1 2 (初速度+末速度) 6)力与运动之间的联系:牛顿第二定律:F=ma ,[合外力(N )=物体质量(kg )x 加 速度(2/m s )] (注:重力加速度 g=9.82/m s 或 g=9.8N/kg ) 二、旋转运动 单位对比: 圆的弧长计算公式: 弧长 s=r θ=圆弧的半径 x 圆弧角度(角位移) 周长=C=2πr=πd ,即:圆的周长=2x3.14x 圆弧的半径=3.14x 圆弧的直径 旋转运动中角位移、弧度(rad )和公转(r )之间的关系。 1)1r (公转)=2π(弧度)=360°(角位移)

2)1rad=360 2π =57.3° 3)1°= 2360 π =0.01745rad 4)1rad=0.16r 5)1°=0.003r 6)1r/min=1x2x3.14=6.28rad/min 7) 1r/min=1x360°=360°/min 三、旋转运动与直线运动的联系: 1)弧长计算公式(s=r θ):弧长=圆弧的半径 x 圆心角(圆弧角度或角位移) 2)角速度(角速度是角度(角位移)的时间变化率)(ω=θ/t ):角速度=圆弧角度/时间 注:结合上式可推倒出角速度与圆周速度(即:s/t 也称切线速度)之间的关系。 3)圆周速度=角速度 x 半径,(即:v=ωr ) 注:角度度ω的单位一般为 rad/s ,实际应用中,旋转速度的单位大多表示为 r/min (每分钟多少转)。可通过下式换算: 1rad/s=1x60/(2x3.14)r/min 例如:电机的转速为 100rad/s 的速度运行,我们将角速度ω=100rad/s 换算成 r/min 单位,则为: ω=100rad/s= 100*60 2π =955r/min 4)rad/s 和 r/min 的联系公式: 转速 n(r/min)= *2/60 rad s ω()π ,即:转速(r/min )= /*60 2rad s π 角速度(); 5)角速度ω与转速 n 之间的关系(使用时须注意单位统一):ω=2πn ,(即:带单

机械设计计算题及答案.

《机械设计计算题》试题库 29001单级齿轮减速器由电动机直接驱动,减速器输入功率P=7.5kW,电动机转速n=1450r/min,齿轮齿数z1=20,z2=50,减速器效率η=0.9。试求减速器输出轴的功率和转矩。 所以, 29002带式输送机的传动简图如下图所示,已知输送带输出功率为2.51kW,现有Y100L2-4型电动机一台,电动机额定功率P ed=3kW,满载转速n m=1420r/min, 试问此电动机能否使用。各效率如下:η联轴器=0.99,η 齿轮=0.97,η 轴承 =0.99。 验算此电动机能否使用 P输入=P输出/η总=2.51/0.895=2.805kW P ed(=3kW)>P输入(=2.805kW) 此电动机能用。 29003带式输送机的传动简图如下图所示,已知输送带的工作拉力F=2300N(F中已考虑输送带与卷筒、卷筒轴承的摩擦损耗的影响),输送带的速度v=1.1m/s,卷筒直径D=400mm,齿轮的齿数为z1=17,z2=102,z3=24,z4=

109,试求传动装置的输出功率、总效率、总传动比和输入功率。各效率如下:η=0.99、η齿轮=0.97、η轴承=0.99。 联轴器 1)输出功率: 2)总效率: 3)总传动比: 4)输入功率 29004一蜗杆减速器,蜗杆轴功率,传动总效率,三班制工作,如工业用电为每度0.12元,试计算五年(每年按260天计算)中用于功率损耗的费用。 功率损耗 五年中损耗能量 损耗费用元 五年中用于功率损耗的费用为74880元。 29005下图为一卷扬机传动系统简图,已知:被提升的重物W=5000N,卷筒直径D=300mm,卷筒转速n G=25r/min,电动机转速n E=720r/min,试求:1)重物W的上升速度v; 2)卷筒的转矩T; 3)匀速提升重物时卷筒的功率P; 4)电动机所需功率P E(传动总效率η=0.886);

《机械设计》考试复习题(2011)(计算题答案)..

《机械设计》考试复习题 一、填空题: 1 零件强度计算中的许用安全系数是用来考虑。 2 一个零件的磨损大致可以分为磨损、磨损、磨损三个阶段,在设计和使用时,应力求、、。 3 在变应力工况下,机械零件的损坏将是,这种损坏的断面包括。 4 螺纹的公称直径是指螺纹的径,螺纹的升角是指螺纹径处的升角。螺旋的自锁条件为,拧紧螺母时效率公式为。 5 用四个铰制孔螺栓联接两个半凸缘联轴器,螺栓均布在直径为20㎜的圆周上,轴上转矩为100N·m ,每个螺栓受的横向力为N。 6 仅承受预紧力的紧螺栓联接强度计算时,螺栓的危险截面上有和载荷联合作用。因此,在截面上有应力和应力。 7 螺纹联接常用的防松原理有,,。其对应的防松装置有,, 。 8 当采用两个楔键传递周向载荷时,应使两键布置在沿周向相隔的位置,在强度校核时只按个键计算。 9 平键联接的主要失效形式有:工作面(静联接),工作面(动联接),个别情况下会出现键的剪断。 10 选择普通平键时,键的截面尺寸(b×h )是根据查标准来确定;普通平键的工作面是。 11 带传动中,打滑是指,多发生在轮上。刚开始打滑时紧边拉力F1与松边拉力F2的关系为。 12 带传动与齿轮传动一起作减速工作时,宜将带传动布置在齿轮传动之;当带传动中心距水平布置时,宜将松边安置在方。带传动一周过程中,带所受应力的大小要发生次变化,其中以应力变化最大,而应力不变化。 13 带传动中,用方法可以使小带轮包角加大。 14 链传动中,即使主动链轮的角速度ω1=常数,也只有当时,从动轮的角速度ω2和传动比 才能得到恒定值。 15 开式链传动的主要失效形式是。 16 链传动工作时,其转速越高,其运动不均匀性越,故链传动多用于速传动。 17 链传动中,小链轮的齿数越多时,则传动平稳性越。 18 链传动的传动比不变,传动比是变化的。 19齿轮传动强度设计中,σH是应力,[σ]H是应力,σF是应力,[σ]F是应力。 20 在圆柱齿轮传动中,齿轮直径不变而减小模数m ,对轮齿的弯曲强度、接触强度及传动的工作平稳性的影响分别为,,。 21 对于开式齿轮传动,在工程设计中,一般只需按设计。 22 直齿圆柱齿轮作接触强度计算时取处的接触应力为计算依据,其载荷由对轮齿承担。 23 减速蜗杆传动中,主要的失效形式、、、和,常发生在。

机械式转向器的设计与计算

第四节机械式转向器的设计与计算 一、转向系计算载荷的确定 为了保证行驶安全,组成转向系的各零件应有. 足够的强度。欲验算转向系零件的强度,需首先确定作用在各零件上的力。影响这些力的主要因素有转向轴的负荷、路面阻力和轮胎 气压等。为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎 变形阻力和转向系中的内摩擦阻力等。 精确地计算出这些力是困难的。为此推荐用足够精确的半经验公式来计算汽车在沥青或 式中,f为轮胎和路面间的滑动摩擦因数,一般取0.7; G l为转向轴负荷(N); p为轮 胎气压(MP a)。 作用在转向盘上的手力为 l 2L i M R F h L 2 D sw i 式中, L 1为转向摇臂 长; L 2为转向节臂长; D sw为转向盘直径;i为转向器角传动比; 为转向器正效率。 对给定的汽车,用式(7-10)计算出来的作用力是最大值。因此,可以用此值作为计算载 荷。然而,对于前轴负荷大的重型货车,用上式计算的力往往超过驾驶员生理上的可能,在 此情况下对转向器和动力转向器动力缸以前零件的计算载荷,应取驾驶员作用在转向盘轮缘 上的最大瞬时力,此力为700No 二、齿轮齿条式转向器的设计 齿轮齿条式转向器的齿轮多数采用斜齿圆柱齿轮。齿轮模数取值范围多在2?3mm之间。 主动小齿轮齿数多数在5?7个齿范围变化,压力角取20o,齿轮螺旋角取值范围多为9o?1 5o o齿条齿数应根据转向轮达到最大偏转角时,相应的齿条移动行程应达到的值来确定。变速比的齿条压力角,对现有结构在12o?350范围内变化。此外,设计时应验算 齿轮的抗弯强度和接触强度。 主动小齿轮选用16MnCr5或15CrNi6材料制造,而齿条常采用45钢制造。为减轻质量,壳体用铝合金压铸。 三、循环球式转向器设计 (一)主要尺寸参数的选择 1、螺杆、钢球、螺母传动副 (1)钢球中心距D、螺杆外径D1、螺母内径D2 尺寸D D 1、 D2如图7-19所示。钢球中心距是基本尺寸,螺杆外径D1、螺母内径D2及钢球直径d对确定钢球中心距D的大 小有影响,而D又对转向器结构尺寸和强度有影响。在保证足够的强度条件下,尽可能将 D 值取小些。选取D值的规律是随着扇齿模数的增大,钢球中心距D也相应增加(表7—1)o 者混凝土路面上的原地转向阻力矩M R( N ?mm) (7-10)

机械设计习题答案

绪论 1、机器的基本组成要素是什么? 【答】 2 3 在相对运动方面,机器中各个零件的运动需要满足整个机器运动规律的要求; 在机器的性能方面,机器的整体性能依赖于各个零件的性能,而每个零件的设计或选择又和机器整机的性能要求分不开。

机械设计总论 1、机器由哪三个基本组成部分组成?传动装置的作用是什么? 【答】 2 4)破坏正常工作条件引起的失效:有些零件只有在一定的工作条件下才能正常工作,如果破坏了这些必要的条件,则将发生不同类型的失效,如带传动的打滑,高速转子由于共振而引起断裂,滑动轴承由于过热而引起的胶合等。

3、什么是机械零件的设计准则?机械零件的主要设计准则有哪些? 【答】 机械零件的设计准则是指机械零件设计计算时应遵循的原则。 增长;第Ⅲ段代表损坏阶段,失效率数 值由稳定的数值逐渐急剧上升。 5、设计机械零件时应满足哪些基本要求? 【答】

机械零件的基本设计要求有:避免在预定寿命期内失效的要求;结构工艺性要求;经济性要求;质量小要求;可靠性要求。 6、简述机械零件的一般设计步骤? 【答】 设计属于常规设计方法吗? 【答】机械零件的常规设计方法有: (1)理论设计:根据长期总结出来的设计理论和实验数据所进行的设计称为理论设计。

理论设计中常采用的处理方法有设计计算和校核计算两种。前者是指由公式直接算出所需的零件尺寸,后者是指对初步选定的零件尺寸进行校核计算; (2)经验设计:根据从某类零件已有的设计与使用实践中归纳出的经验关系式,或根据设计者本人的工作经验用类比的办法所进行的设计; 8 5、材料的经济性; 材料的供应状况。 9、什么是机械零件的标准化?实行标准化有何重要意义?

相关文档
最新文档