国际数学奥林匹克中的198个不等式问题
几个含有二次根式的三元不等式

20209几个含有二次根式的三元不等式宿晓阳(四川省成都实验外国语学校,四川成都611731)众所周知,不等式在数学中有重要的地位,无论是国际数学奥林匹克竞赛(IMO)、世界各国(地区)数学奥林匹克竞赛,还是国内各大高校自主招生数学考试,与不等式有关的试题频频出现,原因是不等式有各种难度,具有较强的挑战性,不仅可以很好地区分考生的水平,还可以反映考生的数学功底和创新水平.本文将给出几个新颖的含有二次根式的三元不等式,供参考与欣赏,同时为我们的英才教育提供一点新鲜血液.命题1设%、y、z是正实数,则TT-B2(4,B,C)7T-C2TT~A2于是有in扌+2zsin=.竺+竺+Zm2xsin£+2ysix y z2B2a—)(其中。
、…和be再由三角形恒等式.4sin——=2s分别为的三边和半周长),设s-a=x,s一b=y,s一c=z,贝V+y)(x+z)*汽z+%)*z2(x+y)7(y+z)(y+x)』(z+%)(z+y)......................................................................①证明:关于443(7的嵌入不等式为x2+y2+z22yzcos A+2z%cos B+2xycos C. ...............................................................................②于是有2z.Asin——=2yz*zxx y(%+y)(x+z)+子M2yzxyz+(%+y)(%+z) (%+y)(y+z)+2xxy(x+z)(y+z)•(说明:由于②式可变形为(X-ycosC-zcos B)2+(ysin C-zsin故②式成立)作代换同理乃+竺+竺x y zyz+(%+y)(%+z)2xZX(%+y)(y+z)+Oxy(X+z)(y+z)•两个不等式相加,得式cos纭+sin2(p=1或sec'(p-tan2^=1实施三角换元,其目的是变二元函数为一元三角函数•例3的三角换元之前把3/+/看成虽然换元后仍含有两个变量R和卩,但它们是“分离”的,可以看作两个独立变量进行处理•消去交叉项本文也提供了几种常用技巧,希望能给读者带来帮助.参考文献:[1]蒋宝童•用三角代换妙解几道征解题[J].中学数学教学,2017(4):76-79.20209yz zx xy 、—+ — + — (y+z)x y zyz(% + y) (% + z)+ (z + 兀)zx(% + y) (y + z)+ (% + y)xy(x + z) (y + z)在上述不等式中作代换:%, y, z)并化简,即得证式①.命题2设”、y 、z 是正实数,则%2(y + z) y 2(z + %)y + z M [/^5/2(72 + z 2) + z% 丿2 ( , + %2 )+ xy^2(x 2 + y 2) ]2. ............⑤由⑤式知,欲证④式,先试证2—(% 4- y + z) (%2 + y 2 + z 2)+y (% + y) (% + z) 丿(y + Z )(y + %)z 2(% + y)+• — yz + zx + xy.+ %) (z + y)同理可得2,丿(y +z)(y +兀) 兀 + yz 2( % + y) z y 2y Z4-———y + z 2, Z Xy ______________ M +------,丿(z +%)(z +y) J + z z + 兀y 2(z + %)将此三式相加,即不等式③成立.注:由①和③式,我们得到一个有趣的不等式链:设沢y 、z 是正实数,则2 , 2 , 2 _/(了 +Z )x + y + z 3——+V (x + y) (% + z)z 2(% + y)y 2(z + %)______________ H --- ' 八 M y (y + z) (y + x) y (z + x) (z + y)光y + yz + ZX.命题3设沢y 、z 是正实数,则1 1 1x y z③证明:先证(y + V (x + y)(z + %) M 2yz + zx + xy,(z + x) v(^ + y)(y + z ) + 2zx + xy ,(% +y) v(y +z)(z + %) yz + zx + 2xy.事实上,由二元柯西不等式,有a /(兀 + y) (z + 兀)M 兀 +,(y + z) M 2^yz ,于是有(y + z) /(x + y) (z + %)M (y + z) (% + %/yz)=(y + z) + z% + M 2yz + zx + xy.2(% + y + z) (%*2 + y 2 + z 2) M 3[yz^/2(y 2 + z 2) + z %\/2(22 + %2) + xy^/2(x 2 + y 2)]・...............................................................................④证明:由柯西不等式,有[yz(y+z) + z%(z + %) + %y(% + y)]・z{y 2 + z 2 ) * 2zx (z + x 2) * 2xy(x 2 + y 2)x + yZ + X 2同理可证明另外两式.因为x 2(y + z) _ %2(y + z)丿(% +/)(% +z)JJx + y) (% + z)(% + y)(兀 + z)%2( 2yz + z% + xy')(% + y) (x + z)x 2z(x + y) + x 2y(x + z)(x + y) (% + z)yz(y +z) + zx(z + %) + xy(x + y)2yz(y 2 + z 2)2zx (z 2 + x 2)M+y + zy + x* 2%y(% + y)................% + y⑥2又由不等式? M 2a -6(6 > 0),有(壬(% + y + z) (/ + y 2 + z 2)yz(y +z)z%(z+%) 4- %y(% + y)29-36欽学歙学2020年第9期M —(x + y + z) (x 2 + y2 + z 2 )_yz(y + z)zx(z + x) + xy(x + y)................................................................................⑦由上述不等式知欲证⑥式,试先证⑦式右边工⑥式右边...............⑧将⑥式右边的每一项拆为两项,如2yz(y 2 + z 2) / , 、,yz{y - z)2--------- =yz(y + z) + -------y + z -------------------------------y + z于是⑧式等价于4(% + y + z) (x 2 +y2 +z?) - 6[yz(y + z) + zx (z + %) + xy{x + y)]M 3Z X yz(y - 2)2 ^zx(z - %)2 %y(x - y)2 y + z z + %x + y ⑨⑨式左边=2[ (y 3 +z 3 -y 2z - yz 2) + (z 3 +%3 _z x _zx ) + (x 3 + y 3 -x 2y + xy 2) ] = 2[ (y - 2)(y 2 - z 2) + (z- x) (z 2 - %2) + (% _ y) (x 2 - y 2 )]二 2[(y+z)(y —z)2 + (^+%)(2 -x)2 +(% + y) - y)2],代入⑨式,化简得zF +y + z2z 2 + 2x 2 + z% z 、2 -------------------(z - %) +Z + Xlx 1 + 2y 2 + xy+ ________________________________^(y 2 +z 2)(y+z)(z 2 +x 2)(z+%)c 2 2Zz %+ ~ - —5/(22 +x 2)(z+%)(%2 +y 2)(A ;+y)N —(% + y+ z) + 2( y/xy + Vyz + y/zx ).x + y(% - y)2 M 0.此不等式显然成立,即⑥式成立,于是④式得证.命题4设咒、y 、z 是正实数,则M 73.⑩证明:先证:/ y 2 + Z > 石(y2 + z?) J 4x 2 + y 2 + z 2 2( x 2 + y 2 + z 2) '....................................⑪粧(z 1 + x 2)2(x 2 + y 2 + z 2)> 近(/ +贰)2(x 2 + y 1 +,)事实上,⑪式等价于2(x 2 + y? + z 2) M a /3 (y 2 + z 2) (4x 2 + y 2 + z 2)........................................⑫由二元均值不等式,有2(子 +卡 +,) = 32+/)+(4/ 仪+旳2M J 3 J 寸 +/)(4/ + y2 +/).即⑫式成立•所以⑪式成立.同理可证明另外两式.于是上述三式相加,即得⑩式.注:命题4强于不等式:设兀、y 、z 是正实数,则yz+M 76.+命题5设sy 、z 是正实数,则2 2________x _________+________y ________y(X 2 + /)(X + y) y (/ + Z 2) (y + z)2j+ /〒’ 二- 工〒(衣+ +広)・a /(z + x 2) (z + %) 2...................................⑬证明:⑬式两边平方,等价于不等式x 4 y 4-------------------------+-------------------------(x 2 + y 2)(x + y) (/ + z 2)(y + z)z 4+ -----9----------;----------------------(z +%)(z + x)c 2 22x y+ —■J (x 2 + y 2)(x + y) (y 2 + Z 2) (y + z)2y 2z 2⑭2020年第9期9-37由排序不等式,有7(x *2 + /) (% + y) (y 2 + z 2) (y + z)(/ +/)(^ + y) (y 2 +z 2)(y +z)2 2 ZX(22 +%2)(z+%)'于是知,欲证明⑭式,即先试证44y -----------?------------+------------丫_______(< + /) (x + y) (/ +,) (y + z)z i 小( x 2y 2+ -7-----;--------------+ 2 I — ---------------------(Z 2 +%2)(Z + %) \(/+y)(%+y)y 2z 2 z 2x 2+------------------------ +-----------------------(y 2 + z 2) (y + z) (z 2 + %2) (z + %)M 土[(兀 + y+ z) + 2( y/xy + + J~zx )]...............................................................................⑮+ z 2) (y + 2) (z 2 + x 2) (z + x)a /(z 2 +x 2)(^+x )(x 2 +y 2)(x +y)2 2 2 2% yy zy 16%2/2(/ + y 2)(x + y)16z 2%2(z 2 + x 2) (z + %)4(/+y4)(%2 + y 2) (X + y) J 4(/+/) 1(/ +,) (y + z)'4(/+/)(z 2 + %2) (z + x)」16y 2z 2(/ + z?) (y + z)[兀 + y + 4 y/xy • [y + z + 4 J~yz[z + % + 4 y/zx⑯欲证明⑯式,即证明16x 2y 2o . M%+y + 4 -/xy 一W+y2)(%+y)4(%4 + y 4)(%2 + /)(% + y)'16%2y 2 + 4(%4 + y 4) M (% + y + 4\/xy ) (^2 +/)(% + y)..................................⑰设% + y = a, y/xy = b,则⑰式为3a 4 一 4a 3b 一 14a 2b 2 + Sab 3 + 2464 > 0,即(a - 26)2( 3a 2 + Sab + 6b 2) M 0.此式显然成立,即⑰式成立,故⑬式得证.注:命题5类似于1988年Walther Janous在加拿大数学杂志Curx 提岀的如下问题:又易知y入 )_______________________J乙(/ + /)(% + y) (y 2 +,) (y + z)(z 2 + x 2) (% + x)所以⑮式等价于设兀、y 、z 是正数求证:•兀 + —y/x + y ~Jy + z此题曾被选为2014年印度尼西亚国家集 训队选拔考试题.(上接第9-7页)[9] 朱立明,胡洪强,马云鹏.数学核 心素养的理解与生成路径——以高中数学 课程为例[J].数学教育学报,2018, 27(1 ) : 42 -46.[10] 徐彦辉•论数学计算及其教学[J].数学教育学报,2011,20(2): 19-22.[11] 喻平•数学核心素养的培养:知识 分类视角[J]•教育理论与实践,2018,38( 17): 3 — 6.[12] 张奠宙,马文杰•简评“数学核心素养”[J].教育科学研究,2018(9):62-66.。
高中数学奥赛讲义:竞赛中常用的重要不等式

高中数学奥赛讲义:竞赛中常用的重要不等式第一篇:高中数学奥赛讲义:竞赛中常用的重要不等式高中数学奥赛讲义:竞赛中常用的重要不等式【内容综述】本讲重点介绍柯西不等式、排序不等式、切比雪夫不等式的证明与应用【要点讲解】目录§1 柯西不等式§2 排序不等式§3 切比雪夫不等式★ ★ ★§1。
柯西不等式定理1 对任意实数组恒有不等式“积和方不大于方和积”,即等式当且仅当本不等式称为柯西不等式。
时成立。
思路一证不等式最基本的方法是作差比较法,柯西不等式的证明也可首选此法。
证明1∴右-左=当且仅当思路2 注意到证明2当当定值时,等式成立。
时不等式显然成立,当时,不等式左、右皆正,因此可考虑作商比较法。
时等式成立;时,注意到=1故当且仅当且(两次放缩等式成立条件要一致)即同号且常数,亦即思路3 根据柯西不等式结构,也可利用构造二次函数来证明。
证明3 构造函数由于。
恒非负,故其判别式即有等式当且仅当若常数时成立。
柯西不等式显然成立。
例1 证明均值不等式链:调和平均数≤算术平均数≤均方平均数。
证设本题即是欲证:本题证法很多,现在我们介绍一种主要利用柯西不等式平证明的方法(1)先证注意到此即由柯西不等式,易知②成立,从而①真欲证①,即需证②①(11)再证欲证③,只需证, ③而④即要证④⑤(注意由柯西不等式,知⑤成立.(Ⅰ)(Ⅱ)中等式成立的条件都是)即各正数彼此相等.说明:若再利用熟知的关系(★)(其中,结合代换,即当且仅当式链时,等式成立,说明★的证明参见下节排序不证式或数学归纳法,这样就得到一个更完美的均值不等其中等式成产条件都是§2.排序不等式定理2设有两组实数,.满足则(例序积和)(乱序积和)(须序积和)其中是实数组时成立。
一个排列,等式当且仅当或说明本不等式称排序不等式,俗称例序积和乱序积和须序积和。
证法一.逐步调整法首先注意到数组也是有限个数的集合,从而也只有有限个不同值,故其中必有最大值和最小值(极端性原理)。
全部的初等不等式证明

初等不等式证明一、基本不等式及应用基本不等式是指已被人们证明了的较为常用的不等式,它常被当作定理,用于证明其他一些不等式.基本不等式在许多不等式专著中都作过介绍.这里给出几个常用的基本不等式. 1. 平均值不等式设12,,,n a a a ⋅⋅⋅是n 个正实数,记12111n nn H a a a =++⋅⋅⋅+,n G =12n n a a a A n ++⋅⋅⋅+=,n Q =, 分别称n n n n H G A Q 、、、为这n 个正数的调和平均、几何平均、算术平均和平方平均,则有n n n n H G A Q ≤≤≤, 当且仅当12n a a a ==⋅⋅⋅=时取等号.2. 柯西(Cauchy )不等式 设,(1,2,,)i i a b R i n ∈=⋅⋅⋅,则 222111()()()nn ni i i i i i i a b a b ===≤∑∑∑,当数组12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅不全为零时,当且仅当(1,2,,,0)i i b a i n λλ==⋅⋅⋅≠时取等号.3. 排序不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤,则 有1211n n n a b a b a b -++⋅⋅⋅+ (反序和) 1212n i i n i a b a b a b ≤++⋅⋅⋅+ (乱序和) 1122n n a b a b a b ≤++⋅⋅⋅+ (同序和)当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时取等号.4. 琴生(Jensen )不等式设连续函数()f x 的定义域为(,)a b ,如果对于(,)a b 内的任意两个数12,x x ,都有1212()()()22x x f x f x f ++≤, 则称()f x 为(,)a b 上的凸函数.若上式不等式反号,则称()f x 为(,)a b 上的凹函数.若()f x 为(,)a b 上的凸函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≤++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.若为(,)a b 上的凹函数,则对于任意12,,,(,)n x x x a b ⋅⋅⋅∈有 12121()[()()()]n n x x x f f x f x f x n n++⋅⋅⋅+≥++⋅⋅⋅+,当且仅当12n x x x ==⋅⋅⋅=时取等号.5. 贝努利(Bernoulli )不等式 设1x >-,若0α<,或1α>-,则 (1)1x x αα+≥+. 若01α<<,则(1)1x x αα+≤+.当且仅当0x =时,以上两式均取等号. 6. 赫尔德(H ǒlder )不等式设,,,(1,2,,)i i i a b l R i n +⋅⋅⋅∈=⋅⋅⋅,又,,,R αβλ+⋅⋅⋅∈,且1αβλ++⋅⋅⋅+=,则有1111()()()nn n nii i i i i i i i i ab l a b l αβλαβλ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑,.当且仅当111(1,2,,)kkknnni i ii i i a b l k n a b l=====⋅⋅⋅==⋅⋅⋅∑∑∑时取等号.特别当1nαβλ==⋅⋅⋅==时,有 11111[()]()()()nn n nnn i iii i i i i i i a b l a b l ====⋅⋅⋅≤⋅⋅⋅∑∑∑∑.7. 切比雪夫(Chebyshev)不等式设两组实数12,,,n a a a ⋅⋅⋅;12,,,n b b b ⋅⋅⋅,若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≤≤⋅⋅⋅≤或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≥≥⋅⋅⋅≥,则有111111()()n n ni i i i i i i a b a b n n n ===≥∑∑∑.若满足12n a a a ≤≤⋅⋅⋅≤,12n b b b ≥≥⋅⋅⋅≥,或12n a a a ≥≥⋅⋅⋅≥,12n b b b ≤≤⋅⋅⋅≤, 则有111111()()n n ni i i i i i i a b a b n n n ===≤∑∑∑.当且仅当12n a a a ==⋅⋅⋅=,或12n b b b ==⋅⋅⋅=时以上两式均取等号.8. 加权幂平均不等式设,(1,2,,)i i a p R i n +∈=⋅⋅⋅,,r s R ∈,且r s <,则111111nnrsrsi i i i i i nn i i i i p a p a p p ====⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪≤⎪⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑, 当且仅当12n a a a ==⋅⋅⋅=时取等号. 9. 其他(1)设,,,,,x y z R αβγ∈,且(21)k αβγπ++=+(k Z ∈),则 i ) 2221cos cos cos ()2yz zx xy x y z αβγ++≤++ 当且仅当sin sin sin yz zx xy αβγ==时取等号.ii ) 22221sin sin sin ()4yz zx xy x y z αβγ++≤++, 当且仅当sin 2sin 2sin 2yz zx xy αβγ==时取等号. (2) 设,,1,2,,,ij x R i j n ∈=⋅⋅⋅则1n i =≥,当且仅当123::::i i i ni x x x x λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(3)设,,,,i i i i x y z l R -⋅⋅⋅∈,22220i i i i x y z l ---⋅⋅⋅-≥,1,2,3,,i n =⋅⋅⋅,则1ni =≤当且仅当::::i i i i x y z l λ⋅⋅⋅=(常数),1,2,3,,i n =⋅⋅⋅时取等号.(4)两个有用定理定理1 设,,u v R λ+∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,x =,y =i ) 23()61(xy xy xy +---(1)(2)3283()61(x xy xy xy ≤≤+-+-ii )23()61(xy xy xy +---(3)(4)3283()61(y xy xy xy ≤≤+-+-.当且仅当,,u v λ中有两个数相等且不小于第三个数时,(1)、(4)两式取等号;当且仅当,,u v λ中有两个数相等,且不大于第三个数时,(2)、(3)两式取等号.推论1 同定理1条件,有(5)(6)324(1)4(1)164129()219595xy xy xy x xy xy xy xy ---+≤≤++---;(7)(8)324(1)4(1)164129()219595xy xy xy y xy xy xy xy ---+≤≤++---当且仅当u v λ==时,(5)、(6)、(7)、(8)四式取等号.推论2 同定理1条件,有x ≤≤3(11)(12)12728972x y x x-+++≤≤,当且仅当u v λ==时,(9)、(10)、(11)、(12)四式均取等号.定理2 设,,u v R λ∈,记1s u v λ=++,2s uv v u λλ=++,3s uv λ=,w =(10w s ≤≤),则32322323(13)(14)11111111332(2)()(2)()3227272727s s w w s w s w s w s w s s w w s ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于113s 时,(13)式取等号;当且仅当,,u v λ中有两个数相等,且不大于113s 时,(14)式取等号. 推论3 同定理2条件,特别当11s =时,有232223(15)(16)132(12)(1)(12)(1)132********w w w w w w w w uv λ---++--+=≤≤=,当且仅当,,u v λ中有两个数相等,且不小于13时,(15)式取等号;当且仅当,,u v λ中有两个数相等,且不大于13时,(16)式取等号. 注:在应用定理2与其推论3时,要特别注意120w -≤的情况,有时要对120w -≤和120w -≥分别加以讨论,尤其在0u λν≥时的情况.(一) 算术几何平均值不等式应用例子 例1 已知 ,1,2,i a R i +∈=…,n, 且11nii a==∑,求证()()()()3122311*********n n n n a a a a a a a a n -++⋅⋅⋅++≥+++++ (1) 当且仅当 121n a a a n==⋅⋅⋅==时,(1)式取等号.例2 (20XX 年全国十八所奥赛协作体学校试题)设 ,,,a b c R +∈且 1bc ca ab ++=,求证1abc≤ (2) 提示 由1bc =≥∑知,可证更强式(3)⇔3 (※)例3 (2005,第17届亚太地区数学奥林匹克)设 ,,,x y z R +∈且 8xyz =,则243≥(4) 当且仅当2x y z ===时,(4)式取等号.注:由本题证明中可知,若将条件改为12yz zx xy ++≥,结论也成立.例4 (自创题,2006.12.17) 设,,a b c R +∈,则> (5)例 5 (自创题,1988.10.13)设同一平面上两个凸四边形的边长分别为,,,a b c d 和,,,a b c d '''',面积分别为∆和'∆,那么aa bb cc dd ''''+++≥ (6) 当且仅当这两个凸四边形都内接于圆(不一定要同一个圆),且 ()()()s a s a s b ''--=-⋅()()()()()s b s c s c s d s d ''''''-=--=--时,(6)式取等号. 这里1()2s a b c d =+++,1()2s a b c d '''''=+++.附: 凸四边形ABCD 四边长分别为AB a =,BC b =,CD c =,DA d =,当且仅当此四边形ABCD 内接于圆时,其面积最大,最大值为max ()ABCD S =(7)例6 (自创题,2006.12.26)设,,,a b c d R -∈,则32222()4[()()()()]a a c d b d a c a b d b c ≥+++++++∑ (8)当且仅当a c =,b d =时,(8)式取等号.例7 设,,x y z R -∈,求证 25()81x xyz x ≥⋅∑∑ (9)当且仅当x y z ==时,(9)式取等号.(二) 柯西不等式应用例子 例1 设,i i x y R ∈,1,2,,i n =⋅⋅⋅,且10nii x=≥∑,10ni i y =≥∑,10i j i j nx x ≤<≤≥∑,10i j i j ny y ≤<≤≥∑,1ni i x x ==∑,则1()niii x x y=-≥∑ (1)yxdc baDCBA当且仅当1212n nx x x y y y ==⋅⋅⋅= 时,(1)式取等号. 在(1)式中,当3n =时,被人们称之为“母不等式”.即以下 命题1:设123123,,,,,x x x y y y R ∈,且10x≥∑,10y ≥∑,120x x ≥∑,120y y ≥∑,则231()xx y +≥∑ (2)当且仅当312123x x x y y y ==时,(2)式取等号. 命题1应用如下:1.(匹多不等式)ABC ∆与'''A B C ∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2222()16ab c a ''-++≥∆∆∑ (3) 当且仅当ABCA B C '''∆∆时,(3)式取等号. 提示:取222x a b c =-++,2222x a b c ''''=-++等,并应用三角形面积公式.2.(程灵提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()a b c a '-++≥∑ (4)当且仅当ABC ∆与'''A B C ∆均为正三角形时,(4)式取等号.提示:在(2)中取1x a b c '''=-++,1y a b c =-++等,并应用到22bc a-∑∑≥.3.(安振平提出)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则2()()16a b c a b c a ''-++-≥∆∆∑ (5)当且仅当222()()()a b c a a b c b a b c c a b c '''==-++-++-时,(5)式取等号.提示:在(2)中取2221x a b c '''=-++,1()()y a b c a b c =-++-等.4.(自创题,1983.05.07)若ABC ∆与A B C '''∆边长分别为,,a b c 和,,a b c ''',面积分别为∆与'∆,则()()()16a a b c a b c a b c '''''''-++-++-≥∆∆∑ (6)当且仅当ABCA B C '''∆∆时,(6)式取等号.提示:在(2)中取1()()x a b c a b c =-++-,1()()y a b c a b c ''''''=-++-等. 以上(3)式与(6)式有相同的取等号条件,试讨论他们左边式子的大小.5. 设ABC ∆三边长为,,BC a CA b AB c ===,面积为∆,P 为ABC ∆内部或边界上一点,从P 分别向三边BC 、CA 、AB 所在直线作垂线,垂足分别为D 、E 、F ,记1PD r =,2PE r =,3PF r =,则223242r r bc a∆≤-∑∑∑. (7) 提示:12342()()ar a b c r r ∆==-+++∑∑≥≥.我们还可以由(2)式得到或证明更多不等式.又如第六章,“三角几何不等式”中的例6、例22等.注:类似上述方法,应用赫尔德不等式,有 命题 设x ,,i i i y z R -∈,1,2,3i =,则123123123111222333()()()()x x x y y y z z z x y z x y z x y z ++++++-++≥.(8)例2 (自创题,1988,0.4.20)设,,,,x y z w R λ∈,且0,0xy zw >>,2λ≤,则≤(9)=时,(9)式取等号.注:(9)式可参阅由吴康主编的《奥赛金牌之路》(高中数学)“第一章 §6 三角不等式”(P81—P90),本节系杨学枝所写.利用同上证法可得以下命题(自创题):设,,,x y z w R +∈,(21)k αβγθπ+++=+ ()k z ∈,则sin sin sin sin x y z w αβγθ+++≤(10)当且仅当,cos cos cos cos x y z w αβγθ=== 时,(9)式取等号.(10)式为笔者首创,可参见同上吴康主编的《奥赛金牌之路》(高中数学)P82. 本命题在《中等数学》杂志社组织的数学竞赛命题评奖中,获一等奖.本命题也可参见《中等数学》,1989年第二期,杨学枝文:《对一个三角不等式的再探讨》.例3 a ,i i b R ∈,1,2,,i n =⋅⋅⋅,则1112nnni i i i i i i a b a b n ===≥∑∑∑. (11) 注:(11)式是一个值得关注的不等式,如取3n =时,可证20XX 年中国国家队培训题:,,,,,a b c x y z R ∈,满足()()3a b c x y z ++++=,222222()()4a b c x y z ++++=,求证0ax by cz ++≥.例4 设a,,b c R +∈,且3a b c ++=,则2232a ab ≥+∑. (12)例5 (20XX 年.IMO.46)已知x,y,z ∈R +,且 1xyz ≥,求证525220x x x y z-≥++∑ (13)例6 (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(14)例7 a,b,c 为正数,证明22224()a b c a b a b c b c a a b c-++≥+++++, (15) 当且仅当a c b >>,且a b c a c a b c b==---,即a c b >>且3322b c b c +=时,(15)式取等号.例8 (20XX 年国家集训队测试题)设,,,x y z R -∈且1x y z ++=,求证+≤ (16)例9 (自创题,1987.07.20) 设 ,,,x y z w R +∈,则 ()2918x x x xy xz xw yz yw zw +⋅≥+++++∑∑∑ (17)当且仅当 x y z w === 时,(17)式取等号.注:(17)式可推广为:设 ,1,2,,i x R i n +∈=⋅⋅⋅,则111n ni i i i x x ==⋅≥∑∑()()2212112n i i i ji j jn x n n x x =≤<≤⎛⎫- ⎪⎝⎭--∑∑ (18) 当且仅当12n x x x ==⋅⋅⋅=时,(18)式取等号.若记11ni i s x ==∑,21i j i j ns x x ≤<≤=∑,12n n s x x x =⋅⋅⋅,111n n s s x -=∑,则(18)式可写成如下形式:22212121(2)(1)n n n s s s n n s s n s s -+-≥-.例10 (陈计,2008.08.29提供)对正数,,,a b c d 及0k ≥,有 41a b c d b kd c ka d kb a kc k+++≥+++++. (19)例11 (自创题,2010.11,09)设,,x y z R +∈,求证322x x xy y ≥++∑ (20) 当且仅当1x y z ===时(20)式取等号.注:猜想 设,,x y z R +∈,有322x x xy y ≥++∑322x x xy y≥++∑.例12 设,,,..a b c x y z 非负,且a b c x y z ++=++,则()()()3()ax a x by b y cz c z abc xyz +++++≥+. (21)例13 (第50届IMO 金牌得主林博提出的猜想)设,,0a b c ≥,求证2a ≤∑∑. (22)例14(自创题,2001.02.02)设,,x y z R +∈,且4yz zx xy xyz +++≤,则x y z yz zx xy ++≥++. (23) 注:1.用类似方法,可证以下命题 设,,p q r R -∈,,,x y z R ∈,且14p q r pqr +++≤,则222px qy rz yz zx xy ++≥++. (24) 2. 第48届国际数学奥林匹克中国国家集训队有一道测试题(20XX 年3月)与其相似.题目 设正实数,,u v w满足4u v w ++=,求证u v w ++. (25)x =y =z =,则原命题等价于:,,x y z R +∈,且4yz zx xy xyz +++=,则x y z yz zx xy ++≥++ ① 式证明可见《数学奥林匹克不等式研究》第八章章练习题64中i ).例15(第48届IMO 中国国家集训队测试题)设正数12,,,n a a a ⋅⋅⋅,满足12a a +1n a +⋅⋅⋅+=,求证1212231222223311()()1n n a a a na a a a a a a a a a a a n ++⋅⋅⋅+++⋅⋅⋅+≥++++ (26)例16 已知221,a b kab +-= 221c d kcd +-=,,,,,a b c d k R ∈,且 2k <,求证ac bd -≤(27)当且仅当()()()()22a b c d k k a b c d ---=+++,即bc ad k ac bd +=+时,(27)式取等号.例17. (20XX 年IMO 预选题)设(1,2,,)i x R i n ∈=⋅⋅⋅,求证1222222211212111n nx x x x x x x x x ++⋅⋅⋅+<++++++⋅⋅⋅+(28)3. 其他基本不等式应用例子 例1 设,,x y z R -∈,则4+≤(1)()2x y z ≤++,例2 (自创题,2010.07.03) 若,,a b c 为满足1a b c ++=的正数,19λ≥,则 31()()()(3)3a b c b c a λλλλ+++≥+, (3)推广式,即有以下命题 若12,,,n a a a ⋅⋅⋅为满足11ni i a ==∑的正数,21n λ≥,则 122311()()()()n n a a a n a a a nλλλλ++⋅⋅⋅+≥+, (4) 当且仅当121n a a a n==⋅⋅⋅==时,(4)式取等号.例3 (自创题,2010.07.03)若,,a b c 为满足1abc ≥的正数,23λ≥,则)a b c ≤++, (5)当且仅当1a b c ===时,(5)式取等号.推广式以下命题 若12,,,n a a a ⋅⋅⋅为满足121n a a a ⋅⋅⋅≥的正数,11nλ≥-,则11nni i i a ==≤, (6)当且仅当121n a a a ==⋅⋅⋅==时,(6)式取等号.例4(《不等式研究网站》,“竞赛不等式”专栏,20XX 年1月6日,陈胜利老师提出) 设,,0a b c >,且1abc =,求证2112()3a a ≥+-∑ (7)例5 (王雍熙,2011.08.22提供)设,,a b c R -∈,且2a a ≥∑∑,则31aabc bc +≥+∑∑. (8)本题可推广,见以下例6.例6(自创题,2011.08.22)设i a R -∈,1,2,,i n =⋅⋅⋅,2n ≥,记i a (1,2,,i n =⋅⋅⋅)中每k (1,2,,k n =⋅⋅⋅),个乘积之和为k s ,m 为不大于n 的正整数,且211n ni ii i a a==≥∑∑,则11352411+s 1nn n n ii n n s n s n as s s s n sn --=-⎧⎧++≥+++⋅⋅⋅+⎨⎨⎩⎩∑(为奇数)(为奇数)(为偶数)(为偶数), (9)二、其他方法证明不等式例子例1 (自创题,2006.08.25)设,,x y z R -∈,且2222x y z xyz +++1≤,则 142xyz yz +≥∑, (1)当且仅当12x y z ===,或,,x y z中一个为零,另外二个均等于2时,(1)式取等号.例2(20XX 年全国高中数学联赛A 卷加试题3)给定整数2n >,设正实数12,,,n a a a ⋅⋅⋅满足1,1,2,,k a k n ≤=⋅⋅⋅,记12,1,2,,kk a a a A k n k++⋅⋅⋅+==⋅⋅⋅.求证: 1112nnk k k k n a A ==--<∑∑. (2)例 3 已知123123a a a b b b ++=++,122331122331a a a a a a a a a a a a ++=++,若123123min{,,}min{,,}a a a b b b ≤,求证: 123123max{,,}max{,,}a a a b b b ≤.注. 本例可推广.例4 (自创题,2007.12.28)设,,a b c R +∈,且1bc =∑,则21142a bc ≥-+∑, (3)当且仅当a b c ===时取等号.例5 (宋庆老师在《中学数学研究》(广东),20XX 年第1期,文“两个优美的无理不等式”中提出的猜想) 若,,0a b c >,满足1a b c ===,则≥(4)例6 .(20XX 年,Serbian 数学奥林匹克试题) 已知,,a b c 是正数,且1a b c ++=,证明127131bc a a≤++∑. (5)例7(陈计,2008.05.04提供)设,,a b c R ∈,n N ∈,则 2[()()]4[()][()]n n n b c b c b c bc b c +-≥--∑∑∑. (6)例8 (自创题,2008.05.07)设,,a b c R -∈,求使22222233()()()(2)()b c bc c a ca a b ab abc a b c λλλλ++++++≥+++ 成立的最大正数λ的值.例9 (自创题,2008.08.30)设1122,,,a b a b R ∈,且222221122a b a b m -=-=,则2212211122211221122()()()()()4()()a b a b m a b a b a b a b m a b a b ++-+++≥++-++, (7) 当且仅当22211a b m -=,12a a =,12b b =时,(7)式取等号.例10 (江苏高三学生顾振同学2010.08.06提供)设,,x y z R -∈,且2221x y z ++=,则411x yzx xyz≤--∑∑∑ , (8)当且仅当3x y z ===,或,,x y z中,有一个为零,其余两个都等于2时,(8)式取等号.例11 (自创题,2005.12.04)设,,a b c R +∈,且1a b c ++=,则3)5)1080abc abc bc -+≥∑ (9)当且仅当13a b c ===,或,,a b c中有一个等于33-,另外两个都等于6时,(9)式取等号.例12(自创题,2007.09.18)设,,a b c R +∈,且1a b c ++=,则271481abc a-≤∑ (10)当且仅当13a b c ===,或,,a b c 中一个等于23,其余两个都等于16时,(10)式取等号.例13 (美国,Pham Kim Hung )设,,a b c 是三角形三边长,则222a b a b a≥+∑∑∑, (11) 当且仅当ABC ∆为正三角形时,(11)式取等号.例14 “奥数之家”2010.03.31,“476934847”提出: 设,,a b c R +∈,则22222()3a b c a c b c a a b c -++≥+++. (12)例15 假设P 、Q 、R 分别是ABC 的三边BC 、CA 、AB 上三点,且满足13AQ AR BR BP CP CQ +=+=+=,则12PQ QR RP ++≥(13)注:1. 关于本题,有其深刻的背景,可参阅杨之所著《初等数学研究的问题和课题》P297~298;或参阅《数学通讯》1991年第2期“问题征解”栏目杨学枝解答及编者评语;或参阅《中学数学教学参考》(陕西),1992年第6期,杨学枝文《一个几何不等式的再加强》;或参阅《数学通讯》1996年第10期,杨学枝文《从一道命题谈起》:也可以参阅杨学枝主编《不等式研究》(西藏人民出版社,2000年6月出版)一书中杨路教授写的“序”;还可以参阅杨学枝著《数学奥林匹克不等式研究》(哈尔滨工业大学出版社,20XX 年8月出版)一书中杨路教授写的“序”;还可以参见《UNIV, BEOGRAD. PUBL. ELEKTKOTEHN.FAKser. Mat.4(1993).25~27.陈计与杨学枝文:《ON A ZIRAKZADEH INEQUALITY RELATED TO TWO TRIANGLES INSCRIBED ONE IN THE OTHER 》.2. 由以上所得重要不等式1()()(cos cos cos )3QR RP PQ a b c a b c A B C ++≥++-++++(14) 可得较(13)式更强的不等式33339()()8QR RP PQ BC CA AB ++≥++ (15)3. 《福建中学数学》,1996年第4期.杨学枝文:《对一道猜想题的证明》中,用与(13)式的类似证法,给出了2221()4RP PQ PQ QR QR RP BC CA AB ⋅+⋅+⋅≥++ (16)其中,,P Q R 分别为,,BC CA AB 边上的周界中点.。
历届美国数学奥林匹克试题集

历届美国数学奥林匹克试题集美国数学奥林匹克(简称USAMO)历史悠久,始于1938年,它是一场美国学生数学挑战赛,旨在识别最杰出的高中数学学者。
下面就是历届美国数学奥林匹克的试题集:一、1938-1962年USAMO试题1、1938年:给出一个三角形的三边,求面积;2、1939年:讨论旋转半径与直径之比的一般性质;3、1940年:定义无限小的超越数,根据某假设,求这个超越数的值;4、1941年:讨论圆柱体表面积与体积的关系;5、1942年:求取3个不相交的、边长为a、b、c的三角形三角形内部与边长有关的值;6、1943年:用三角函数分析,求取某数字列中元素的平均值;7、1944年:根据若干条件求取某个矩形的面积;8、1945年:用三角函数分析求解一个双曲线曲线积分;9、1946年:讨论如何用三角函数求取某区域的面积;10、1947年:讨论以二次函数求取某直线的最大值;11、1948年:用函数渐近方程求取平面上的点的垂直距离;12、1949年:证明某系统的某凸多面体的面积;13、1950年:论及某曲线的长度;14、1951年:用泰勒级数求取某函数值;15、1952年:设计一个实验,用来测量椭圆面积;16、1953年:证明某函数满足一定性质;17、1954年:论及某非凸多面体的三角形边界;18、1955年:用代数方法求取某系统的某函数的分式;19、1956年:求解拉格朗日错误现象的数学模型;20、1957年:书写一个数学程序,用来迭代某函数;21、1958年:论及一元二次方程组的一般性质;22、1959年:求取某函数对某范围的极限;23、1960年:证明某二维函数的最大值与最小值;24、1961年:分析和讨论某系统的特定性质;25、1962年:用数学语言解释某物理系统的相关性质。
二、1963-1984年USAMO试题1、1963年:讨论一元二次方程的不定实根的情况;2、1964年:求取某带因变量的积分;3、1965年:设计一个实验来测量阶乘的值;4、1966年:利用欧拉公式讨论某椭圆的性质;5、1967年:根据(lLp)型的数列求取相应的递推式;6、1968年:用拉格朗日不等式求取某函数的极值点;7、1969年:说明某曲线的曲率、弧长、弧径之间的关系;8、1970年:给出一组数据,求取其中元素的平均数;9、1971年:证明某四次方程的全等式;10、1972年:用数学语言描述某系统的动作;11、1973年:分析牛顿迭代公式在求取函数局部极值时的作用;12、1974年:测算某函数的最大值;13、1975年:给出若干条件,根据某函数的极限求取最大值。
国际数学奥林匹克试题分类解析—A数论_A4整除

A4 整除A4-001 证明:当且仅当指数n不能被4整除时,1n+2n+3n+4n能被5整除.【题说】1901年匈牙利数学奥林匹克题1.【证】容易验证14≡24≡34≡44 (mod 5)假设n=4k+r,k是整数,r=0,1,2,3.则S n=1n+2n+3n+4n≡1r+2r+3r+4r(mod 5)由此推出,当r=0时,S n≡4,而当r=1,2,3时,S n≡0(mod 5).因此,当且仅当n不能被4整除时,S n能被5整除.A4-002 证明:从n个给定的自然数中,总可以挑选出若干个数(至少一个,也可能是全体),它们的和能被n整除.【题说】1948年匈牙利数学奥林匹克题3.【证】设a1,a2,…,a n是给定的n个数.考察和序列:a1,a1+a2,a1+a2+a3,…,a1+a2+…+a n.如果所有的和数被n除时余数都不相同,那么必有一个和数被n除时余数为0.此时本题的断言成立.如果在n个和数中,有两个余数相同(被n除时),那么从被加项较多的和数中减去被加项较少的和数,所得的差能被n整除.此时本题的断言也成立.A4-003 1.设n为正整数,证明132n-1是168的倍数.2.问:具有那种性质的自然数n,能使1+2+3+…+n整除1·2·3…·n.【题说】1956年上海市赛高三复赛题1.【解】1.132n-1=(132)n-1,能被132-1,即168整除.2.问题即何时为整数.(1)若n+1为奇质数,则(n+1)2(n-1)!(2)若n+1=2,则(n+1)|2(n-1)!(3)若n+1为合数,则n+1=ab其中a≥b>1.在b=2时,a=n+1-a≤n-1,所以a|(n-1)!,(n+1)|2(n-1)!在b>2时,2a≤n+1-a<n-1,所以2ab|(n-1)!更有(n+1)|2(n-1)!综上所述,当n≠p-1(p为奇质数)时,1+2+…+n整除1·2…·n.A4-004 证明:如果三个连续自然数的中间一个是自然数的立方,那么它们的乘积能被504整除.【题说】 1957年~1958年波兰数学奥林匹克三试题1.【证】设三个连续自然数的乘积为n=(a3-1)a3(a3+1).(1)a≡1,2,-3(mod 7)时,7|a3-1.a≡-1,-2,3(mod 7)时,7|a3+1.a≡0(mod 7)时,7|a3.因此7|n.(2)当a为偶数时,a3被8整除;而当a为奇数时,a3-1与a3+1是两个相邻偶数,其中一个被4整除,因此积被8整除.(3)a≡1,-2,4(mod 9)时,9|a3-1.a≡-1,2,-4(mod 9)时,9|a3+1.a≡0,±3(mod 9)时,9|a3.因此9|n.由于7、8、9互素,所以n被504=7×8×9整除.A4-005 设x、y、z是任意两两不等的整数,证明(x-y)5+(y-z)5+(z-x)5能被5(y -z)(z-x)(x-y)整除.【题说】1962年全俄数学奥林匹克十年级题3.【证】令x-y=u,y-z=v,则z-x=-(u+v).(x-y)5+(y-z)5+(z-x)5=u5+v5-(u+v)5=5uv(n+v)(u2+uv+v2)而 5(y-z)(z-x)(x-y)=-5uv(u+v).因此,结论成立,而且除后所得商式为u2+uv+v2=x2+y2+z2-2xy-2yz-2xz.【别证】也可利用因式定理,分别考虑原式含有因式(x-y),(y-z),(z-x)以及5.A4-006 已知自然数a与b互质,证明:a+b与a2+b2的最大公约数为1或2.【题说】1963年全俄数学奥林匹克八年级题4.【证】设(a+b,a2+b2)=d,则d可以整除(a+b)2-(a2+b2)=2ab但由于a、b互质,a的质因数不整除a+b,所以d与a互质,同理d与b互质.因此d=1或2.A4-007 (a)求出所有正整数n使2n-1能被7整除.(b)证明:没有正整数n能使2n+1被7整除.【题说】第六届(1964年)国际数学奥林匹克题1.本题由捷克斯洛伐克提供.解的关键是找出2n被7除所得的余数的规律.【证】(a)设m是正整数,则23m=(23)m=(7+1)m=7k+1(k是正整数)从而 23m+1=2·23m=2(7k+1)=7k1+223m+2=4·23m=4(7k+1)=7k2+4所以当n=3m时,2n-17k;当n=3m+1时,2n-1=7k1+1;当n=3m+2时,2n-1=7k2+3.因此,当且仅当n是3的倍数时,2n-1能被7整除.(b)由(a)可知,2n+1被7除,余数只可能是2、3、5.因此,2n+1总不能被7整除.A4-008 设k、m和n为正整数,m+k+1是比n+1大的一个质数,记C s=s(s+1).证明:乘积(C m+1-C k)(C m+2-C k)…(C m+n-C k)能被乘积C1·C2·…·C n整除.【题说】第九届(1967年)国际数学奥林匹克题3.本题由英国提供.【证】C p-C q=p(p+1)-q(q+1)=p2-q2+p-q=(p-q)(p+q+1)所以(C m+1-C k)(C m+2-C k)…(C m+n-C k)=(m-k+1)(m-k+2)…(m-k+n)·(m+k+2)(m+k+3)·…·(m+k+n+1)C1C2…C n=n!(n+1)!因此只需证=A·B是整数.由于n个连续整数之积能被n!整除,故A是整数.是整数.因为m+k+1是大于n+1的质数,所以m+k+1与(n+1)!互素,从而(m+k+2)(m+k+3)…(m+k+n+1)能被(n+1)!整除,于是B也是整数,命题得证.A4-009 设a、b、m、n是自然数且a与b互素,又a>1,证明:如果a m+b m能被a n+b n整除,那么m能被n整除.【题说】第六届(1972年)全苏数学奥林匹克十年级题1.【证】由于a k+b k=a k-n(a n+b n)-b n(a k-n-b k-n)a l-b l=a l-n(a n+b n)-b n(a l-n+b l-n)所以(i)如果a k+b k能被a n+b n整除,那么a k-n-b k-n也能被a n+b n整除.(ii)如果a l-b l能被a n+b n整除,那么a l-n+b l-n也能被a n+b n整除.设m=qn+r,0≤r<n,由(i)、(ii)知a r+(-1)q b r能被a n+b n整除,但0≤|a r+(-1)q b r|<a n+b n,故r=0(同时q是奇数).亦即n|m.A4-010 设m,n为任意的非负整数,证明:是整数(约定0!=1).【题说】第十四届(1972年)国际数学奥林匹克题3.本题由英国提供.易证 f(m+1,n)=4f(m,n)-f(m,n+1)(1)n)为整数,则由(1),f(m+1,n)是整数.因此,对一切非负整数m、n,f(m,n)是整数.A4-011 证明对任意的自然数n,和数不能被5整除.【题说】第十六届(1974年)国际数学奥林匹克题3.本题由罗马尼亚提供.又两式相乘得因为72n+1=7×49n≡2×(-1)n(mod 5)A4-012 设p和q均为自然数,使得证明:数p可被1979整除.【题说】第二十一届(1979年)国际数学奥林匹克题1.本题由原联邦德国提供.将等式两边同乘以1319!,得其中N是自然数.由此可见1979整除1319!×p.因为1979是素数,显然不能整除1319!,所以1979整除p.A4-013 一个六位数能被37整除,它的六个数字各个相同且都不是0.证明:重新排列这个数的六个数字,至少可得到23个不同的能被37整除的六位数.【题说】第十四届(1980年)全苏数学奥林匹克十年级题1.(c+f)被37整除.由于上述括号中的数字是对称出现的,且各数字不为0,故交换对又因为100a+10b+c=-999c+10(100c+10a+b),所以各再得7个被37整除的数,这样共得23个六位数.A4-014 (a)对于什么样的整数n>2,有n个连续正整数,其中最大的数是其余n-1个数的最小公倍数的约数?(b)对于什么样的n>2,恰有一组正整数具有上述性质?【题说】第二十二届(1981年)国际数学奥林匹克题4.【解】设n个连续正整数中最大的为m.当n=3时,如果m是m-1,m-2的最小公倍数的约数,那么m整除(m-1)(m-2),由m|(m -1)(m-2)得m|2,与m-2>0矛盾.设n=4.由于m|(m-1)(m-2)(m-3)所以m|6,而m>4,故这时只有一组正整数3,4,5,6具有所述性质.设n>4.由于m|(m-1)(m-2)…(m-n+1),所以m|(n-1)!取m=(n-1)(n-2),则(n -1)|(m-(n-1)),(n-2)|(m-(n-2)).由于n-1与n-2互质,m-(n-1)与m-(n-2)互质,所以m=(n-1)(n-2)整除m-(n-1)与m-(n-2)的最小公倍数,因而m 具有题述性质.类似地,取m=(n-2)(n-3),则m整除m-(n-2)与m-(n-3)的最小公倍数,因而m具有题述性质.所以,当n≥4时,总能找到具有题述性质的一组正整数.当且仅当n=4时,恰有唯一的一组正整数.A4-015 求一对正整数a和b,使得:(1)ab(a+b)不被7整除;(2)(a+b)7-a7-b7被77整除.证明你的论断.【题说】第二十五届(1984年)国际数学奥林匹克题2.【解】(a+b)7-a7-b7=7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6=7ab[(a5+b5)+3ab(a3+b3)+5a2b2(a+b)]=7ab(a+b)[a4+2a3b+3a2b2+2ab3+b4]=7ab(a+b)(a2+ab+b2)2取a=18,b=1,则a2+ab+b2=a(a+b)+b2=343=73.所以(a+b)7-a7-b7被77整除,ab(a +b)不被7整除.A4-016 1.是否存在14个连续正整数,其中每一个数均至少可被一个不小于2、不大于11的素数整除?2.是否存在21个连续正整数,其中每一个数均至少可被一个不小于2、不大于13的素数整除?【题说】第十五届(1986年)美国数学奥林匹克题1.【解】1.14个连续正整数中,有7个奇数n,n+2,n+4,n+6,n+8,n+10,n+12不能被2整除.这7个奇数中,至多1个被11整除,一个被7整除,2个被5整除,3个被3整除.如果被3整除的数少于3个或被5整除的数少于2个,那么这7个奇数中被3,5,7,11整除的数不足7个.如果恰有3个数被3整除,2个数被5整除,那么,被3整除的数必须是n,n+6,n+12,被5整除的2个数必须为n与n+10或n+2与n+12.此时必有一个数n或n+12同时被3,5整除.即这7个奇数中被3,5,7,11整除的数仍不足7个.不管怎样,这14个连续正整数中必有1个不被2,3,5,7,11任一个整除.故答案为不存在.2.存在.以下21个连续整数-10,-9,…,-1,0,1,2,3,…,10除去±1,其余整数被2,3,5,7之一整除.由中国剩余定理,满足N≡0(mod 210)N≡1(mod 11)N≡-1(mod 13)的整数N存在,于是N-10,N-9,…,N,N+1,…,N+10这21个连续整数满足所有要求.A4-018 试求出所有的正整数a、b、c,其中1<a<b<c,使得(a-1)(b-1)(c-1)是abc -1的约数.【题说】第三十三届(1992年)国际数学奥林匹克题1.本题由新西兰提供.【解】设x=a-1,y=b-1,z=c-1,则1≤x<y<z并且xyz是(x+1)(y+1)(z+1)-1=xyz+x+y+z+xy+yz+zx的约数,从而xyz是x+y+z+xy+yz +zx的约数.由于x+y+z+xy+yz+zx<3yz,所以x=1或2.若x=1,则yz是奇数1+2y+2z的约数.由于1+2y+2z<4z,所以y=3.并且3z是7+2z的约数.于是z=7.若x=2,则2yz是2+3y+3z+yz的约数,从而y,z均为偶数,设y=2y1,z=2z1,则4y1z1≤1+3y1+3z1+2y1z1<6z1+2y1z1,所以y1<3.因为y>x,所以y1=2,y=4.再由8z1是7+7z1的约数得z1=7,z=14.因此,所求解为(3,5,15)与(2,4,8).019 x与y是两个互素的正整数,且xy≠1,n为正偶数.证明:x+y不整除x n+y n.【题说】1992年日本数学奥林匹克题1.【证】由(x,y)=1知(x+y,y)=1,(x+y,xy)=1.当n=2时,x2+y2=(x+y)2-2xy.由于x+y>2,所以(x+y)2xy.故(x+y)(x2+y2).假设当n=2k(k∈N+)时,(x+y)(x2k+y2k).则当n=2(k+1)时,由于x2(k+1)+y2(k+1)=(x+y)(x2k+1+y2k+1)-xy(x2k+y2k)所以(x+y)(x2(k+1)+y2(k+1)).故对一切正偶数n,x+y不整除x n+y n.A4-020 证明当且仅当n+1不是奇素数时,前n个自然数的积被前n个自然数的和整除.【题说】第二十四届(1992年)加拿大数学奥林匹克题1.若n+1为奇合数,设n+1=qr,q、r为奇数且3≤q≤r,则nA4-021 找出4个不同的正整数,它们的积能被它们中的任意两个数的和整除.你能找出一组5个或更多个数具有同样的性质吗?【题说】1992年英国数学奥林匹克题3.【解】显然,2、6、10、14满足要求.任取n个不同的正整数。
2006年第47届国际数学奥林匹克(IMO)解答

∑ S ( Ai Ai+1 ) ≥2 ∑ S (ΔOi Ai Ai +1 ) ≥2S(P).
i =1 i =1
2n
2n
P 中同一边上的各个 S(AiAi+1)之和就是该边上的面积最大的内接三角形面积.
9 2 时原不等式成立. 32
1 8
1 31 2ຫໍສະໝຸດ 3 21 21 2
1 2
等号在 s= 2 ,x=y=1,z=-2,即 a:b:c=( 2 +3): 2 :( 2 -3)时达到.故所求的最小 的 M=
9 2 . 32
第二天
4.(美国)求所有的整数对(x,y),使得 1+2x+22x+1=y2.
解.对于每组解(x,y),显然 x≥0,且(x,-y)也是解.x=0 时给出两组解(0,±2). 设 x,y > 0.原式化为 2x(2x+1+1)=(y+1)(y-1). y+1 与 y-1 同为偶数且只有一个 被 4 整除.故 x≥3,且可令 y=m·2x-1+ε,其中 m 为正的奇数,ε =±1.代入化简得 1-εm=2x-2(m2-8). 若 ε =1, m2-8≤0,m=1.不满足上式. 故必 ε =-1,此时 1+m=2x-2(m2-8)≥2(m2-8),解得 m≤3.但 m=1 不符合,只有 m=3,x=4,y=23. 因此共有 4 组整数解(0,±2),(4,±23). 5.(罗马尼亚)设 P(x)为 n 次(n>1)整系数多项式,k 是一个正整数.考虑多项式 Q(x)=P(P(…(P(x))…)),其中 P 出现 k 次.证明,最多存在 n 个整数 t,使得 Q(t)=t. 证.若 Q 的每个整数不动点都是 P 的不动点,结论显然成立. 设有整数 x0 使得 Q(x0)=x0, P(x0)≠x0.作递推数列 xi+1=P(xi) (i=0.1.2….).它以 k 为周期.差分数列 Δi=xi-xi-1 (i=1,2,…)的每一项整除后一项.由周期性及 Δ1≠0,所有 |Δi|为同一个正整数 u.令 xm=min{x1,x2,…,xk},u=xm-1-xm= xm+1-xm, xm+1=xm-1.数列 的周期为 2.即 x0 是 P 的 2-周期点. 设 a 是 P 的另一个 2-周期点,b=P(a) (允许 b=a).则 a-x0 与 b-x1 互相整除,故 |a-x0|=|b-x1|,同理|b-x0|=|a-x1|.展开绝对值号,若二者同取正号,推出 x0=x1,矛盾.
第41届国际数学奥林匹克解答

第41届国际数学奥林匹克解答问题 1.圆Γ1和圆Γ2相交于点M和N.设L是圆Γ1和圆Γ2的两条公切线中距离M较近的那条公切线.L与圆Γ1相切于点A,与圆Γ2相切于点 B.设经过点M且与L平行的直线与圆Γ1还相交于点C,与圆Γ2还相交于点 D.直线C A和D B相交于点E;直线A N和C D相交于点P;直线B N和C D相交于点Q.证明:E P=E Q.解答:令K为M N和A B的交点.根据圆幂定理,,换言之K是A B的中点.因为P Q∥A B,所以M是P Q的中点.故只需证明E M⊥P Q.因为C D∥A B,所以点A是Γ1的弧C M的中点,点B是Γ2的弧D M的中点.于是三角形A C M与B D M都是等腰三角形.从而有,.这意味着E M⊥A B.再由P Q∥A B即证E M⊥P Q.问题 2.设a,b,c是正实数,且满足a b c=1.证明:.解答:令,,,其中x,y,z为正实数,则原不等式变为(x-y+z)(y-z+x)(z-x+y)≤x y z.记u=x-y+z,v=y-z+x,w=z-x+y.因为这三个数中的任意两个之和都是正数,所以它们中间最多只有一个是负数.如果恰有一个是负数,则u v w≤0<x y z,不等式得证.如果这三个数都大于0,则由算术平均-几何平均不等式可得同理可得,.于是得到u v w≤x y z,不等式得证.问题 3.设n≥2为正整数.开始时,在一条直线上有n只跳蚤,且它们不全在同一点.对任意给定的一个正实数λ,可以定义如下的一种"移动":I、选取任意两只跳蚤,设它们分别位于点A和B,且A位于B的左边;I I、令位于点A的跳蚤跳到该直线上位于点B右边的点C,使得B C/A B=λ.试确定所有可能的正实数λ。
使得对于直线上任意给定的点M以及这n 只跳蚤的任意初始位置,总能够经过有限多个移动之后令所有的跳蚤都位于M的右边.解答:要使跳蚤尽可能远地跳向右边,一个合理的策略是在每一个移动中都选取最左边的跳蚤所处的位置作为点A,最右边的跳蚤所处的位置作为点 B.按照这一策略,假设在k次移动之后,这些跳蚤之间距离的最大值为d k,而任意两只相邻的跳蚤之间距离的最小值为δk.显然有d k≥(n-1)δk.经过第(k+1)次移动,会产生一个新的两只相邻跳蚤之间的距离λd k.如果这是新的最小值,则有δk+1=λd k;如果它不是最小值,则显然有δk+1≥δk.无论哪种情形,总有m i n m i n.因此,只要λ≥1/(n-1),就有δk+1≥δk对任意k都成立.这意味着任意两只相邻跳蚤之间距离的最小值不会减小.故每次移动之后,最左边的跳蚤所处的位置都以不小于某个正的常数的步伐向右平移.最终,所有的跳蚤都可以跳到任意给定的点M的右边.下面来证明:如果λ<1/(n-1),则对任意初始位置都存在某个点M,使得这些跳蚤无法跳到点M的右边.将这些跳蚤的位置表示成实数,考虑任意的一系列移动.令S K为第K次移动之后,表示跳蚤所在位置的所有实数之和.再令W K为这些实数中最大的一个(即最右边的跳蚤的位置).显然有S K≤n W K.我们要证明序列{W K}有界.在第(k+1)次移动时,一只跳蚤从点A跳过点B落在点 C.分别用实数a,b,c表示这三个点,则S k+1=S k+c-a.根据移动的定义,c-b=λ(b-a).进而得到λ(c-a)=(1+λ)(c-b).于是.如果c>W k,则刚跳过来的这只跳蚤占据了新的最右边位置W k+1=c.再由b≤W k可得.如果c≤W k,则有W k+1-W k=0,.故上式仍然成立.考虑下列数列,k=0,1,2,…则有Z k+1-Z k≤0,即该数列是不升的.因此,对所有的k总有Z k≤Z0.假设λ<1/(n-1),则1+λ>nλ.可以把Z k写成,其中.于是得到不等式.故对于所有的k,总有.这意味着最右边跳蚤的位置永远不会超过一个常数,这个常数与n,λ和这些跳蚤的初始位置有关,而与如何移动无关.最终得到结论:所求λ的可能值为所有不小于1/(n-1)的实数.问题 4.一位魔术师有一百张卡片,分别写有数字1到100.他把这一百张卡片放入三个盒子里,一个盒子是红色的,一个是白色的,一个是蓝色的.每个盒子里至少都放入了一张卡片.一位观众从三个盒子中挑出两个,再从这两个盒子里各选取一张卡片,然后宣布这两张卡片上的数字之和.知道这个和之后,魔术师便能够指出哪一个是没有从中选取卡片的盒子.问共有多少种放卡片的方法,使得这个魔术总能够成功?(两种方法被认为是不同的,如果至少有一张卡片被放入不同颜色的盒子.)解答:共有12种不同的方法.考虑1到100之间的整数.为简便起见,将整数i所放入的盒子的颜色定义为该整数的颜色.用r代表红色,w代表白色,b代表蓝色.情形 1.存在某个i,使得i,i+1,i+2的颜色互不相同,例如分别为r w b.则因i+(i+3)=(i+1)+(i+2),所以i+3的颜色既不能是i+1的颜色w,也不能是i+2的颜色b,只能是r.可见只要三个相邻的数字有互不相同的颜色,就能够确定下一个数字的颜色.进一步地,这三个数字的颜色模式必定反复出现:r w b后面一定是r,然后又是w,b,…依此类推.同理可得上述过程对于相反方向也成立:r w b的前面一定是b,…依此类推.因此,只需确定1,2,3的颜色.而这有6种不同的方法.这6种方法都能够使魔术成功,因为它们的和r+w, w+b, b+r给出模3的互不相同的余数.情形 2.不存在三个连续的数字,其颜色互不相同.假设1是红色的.令i为最小的不是红色的数字.不妨假设i为白色的.再设k为最小的蓝色数字,则由假设必有i+1<k.如果k<100,因为i+k=(i-1)+(k+1),所以k+1一定要是红色的.但又由于i+(k+1)=(i+1)+k,所以i+1一定要是蓝色的,与k是最小蓝色数字相矛盾.故得k必须等于100.换言之,只有100是蓝色的.我们再来证明只有1是红色的.不然的话,设存在t>1是红色的,则由t+99=(t-1)+100推出t-1是蓝色的,与只有100是蓝色的相矛盾.于是这些数字的颜色必须是r w w…w w b.而这种方法确实可行:如果被选取的两张卡片上的数字之和≤100,则没有从中选取卡片的盒子一定是蓝色的;如果数字之和等于101,则没有从中选取卡片的盒子一定是白色的;如果数字之和>101,则没有从中选取卡片的盒子一定是红色的.最后,共有6种按照上述样子排列颜色的方法.故答案为12.问题 5.确定是否存在满足下列条件的正整数n:n恰好能够被2000个互不相同的质数整除,且2n+1能够被n整除.解答:存在.我们用归纳法来证明一个更一般的命题:对每一个自然数k都存在自然数n=n(k),满足n|2+1,3|n且n恰好能够被k个互不相同的质数整除.当k=1时,n(1)=3即可使命题成立.假设对于k≥1存在满足要求的n(k)=3l.t,其中l≥1且3不能整除t.于是n=n(k)必为奇数,可得.利用恒等式可知3n|23n+1.根据下面的引理,存在一个奇质数p满足p|23n+1但是p不能整除2n+1.于是自然数n(k+1)=3p.n(k)即满足命题对于k+1的要求.归纳法完成.引理:对于每一个整数a>2,存在一个质数p满足p|a3+1但是p不能整除a+1 .证明:假设对某个a>2引理不成立.则a2-a+1的每一个质因子都要整除a+1.而恒等式a2-a+1=(a+1)(a-2)+3说明能够整除a2-a+1的唯一质数是3.换言之,a2-a+1是3的方幂.因为a+1是3的倍数,所以a-2也是3的倍数.于是a2-a+1能够被3整除,但不能被9整除.故得a2-a+1恰等于3.另一方面,由a>2知a2-a+1>3 .这个矛盾完成了引理的证明.问题 6.设A H1,B H2,C H3是锐角三角形A B C的三条高线.三角形A B C的内切圆与边B C,C A,A B分别相切于点T1,T2,T3.设直线l1,l2,l3分别是直线H2H3,H3H1,H1H2关于直线T2T3,T3T1,T1T2的对称直线.证明:l1,l2,l3所确定的三角形,其顶点都在三角形A B C的内切圆上.解答:令M1为T1关于∠A的角平分线的对称点,M2和M3分别为T2和T3关于∠B 和∠C 的角平分线的对称点.显然M1,M2和M3在三角形A B C的内接圆周上.只需证明它们恰好是题目中所求证的三角形的三个顶点.由对称性,只需证明H2H3关于直线T2T3的对称直线l1经过M2即可.设I为三角形A B C的内心.注意T2和H2总在B I的同一侧,且T2比H2距离B I更近.我们只考虑C也在B I同一侧的情形(如果C和T2,H2分别位于B I的两侧,证明需要稍加改动).设∠A=2α,∠B=2β,∠C=2γ.引理H2关于T2T3的镜像位于直线B I上.证明:过H2作直线l与T2T3垂直.记P为l与B I的交点,S为B I与T2T3的交点.则S既在线段B P上,也在线段T2T3上.只需证明.首先我们有.又由外角定理知.再由关于B I的对称性知.因为,所以C和S在I T1的同一侧.由可得S,I,T1和C四点共圆,于是有.因为,所以B,C,H2和S也是四点共圆.这意味着,引理得证.注意到在引理的证明中,因为B,C,H2和S四点共圆以及关于T2T3的对称性,可以得到.又由于M2是T2关于B I的对称像,我们有.因此P M2平行于B C.要证明M2位于l1上,只需证l1也平行于B C.假设α≠γ.设直线B C与H2H3和T2T3分别相交于点D和 E.注意到D和E位于直线B C上线段B C的同一侧.不难证明有,.故得l1确实平行于B C.。
数学奥林匹克竞赛训练题:代数部分(1)集合、数与式

数学奥林匹克竞赛训练题:代数部分(1)集合、数与式B1-001把含有12个元素的集分成6个子集,每个子集都含有2个元素,有多少种分法?【题说】1969年~1970年波兰数学奥林匹克三试题5.【解】将12个元素排成一列有12!种方法.排定后,从左到右每2个一组就得到6个2元子集.同一组中2个元素顺序交换得到的是同一子集.6个子集顺序交换得到的是同样的分法,因此共有种不同的分法.[别解]设a1是集中的一个元素,将a1与其余11个元素中的任一个结合,就得到含a1的2元子集,这种2元子集共有11种.确定含a1的子集后,设a2是剩下的一个元素,将a2与其余9个元素中的任一个结合,就得到含a2的2元子集,这种子集共有9种.如此继续下去,得到6个2元子集.共有11³9³7³5³3=10395种分法.B1-002证明:任一个有限集的全部子集可以这样地排列顺序,使任何两个邻接的集相差一个元素.【题说】1971年~1972年波兰数学奥林匹克三试题5.【证】设有限集A含n个元素.当n=1时,子集序列φ,A即满足条件.假设n=k时命题成立,对于k+1元集A={x1,x2,…,x k+1}由归纳假设,{x1,x2,…,x k}的子集可排成序列B1,B2,…,B t(t=2k)满足要求.因此A的子集也可排成序列B1,B2,…,B t,B t∪{x k+1},B t-1∪{x k+1},…,B2∪{x k+1}B1∪{x k+1},满足要求.于是命题对一切自然数n均成立.B1-003设1≤r≤n,考虑集合{1,2,3,…,n}的所有含r个元素的子集及每个这样的子集中的最小元素,用F(n,r)表示一切这样的子集各自的最小元素的算术平均数.证明:【题说】第二十二届(1981年)国际数学奥林匹克题2.这n-k个数中选出).所以将(1)式右边的和写成一个表将上表每一行加起来,再将这些行和相加便得(1)的右边的分子,现B1-004定义一个数集的和为该集的所有元素的和.设S是一些不大于15的正整数组成的集,假设S 的任意两个不相交的子集有不相同的和,具有这个性质的集合S的和的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题12.【解】先证明S元素个数至多是5.如果多于5个,则元素个数不S的元素个数≤5,所以S的和≤15+14+13+12+11=65.如果S的和≥62,则S的元数为5,并且15、14均在S中(S的和至多比15+14+13+12+11少3).这时S中无其它的连续整数,因而只有一种情况即{15,14,13,11,9),不难看出它不满足条件.所以,S的和≤61.特别地,S={15,14,13,11,8}时,和取最大值61.B1-006对有限集合A,存在函数f:N→A具有下述性质:若|i-j|是素数,则f(i)≠f(j),N={1,2,…}.求有限集合A的元素的最少个数.【题说】1990年巴尔干地区数学奥林匹克题4.【解】1,3,6,8中每两个数的差为素数,所以f(1),f(3),f(6),f(8)互不相同,|A|≥4.另一方面,令A={0,1,2,3}.对每一自然数n,令f(n)为n除以4所得余数,则在f(i)=f(j)时,|i-j|被4整除.因而f是满足条件的函数.于是,A的元素个数最少为4.B1-007集合{1,2,3,…,100}的某些子集,满足条件:没有一个数是另一个数的2倍.这样的子集中所含元素的个数最多是多少?【题说】1991年河南省数学奥林匹克集训班一试题1(6).原题为选择题.【解】令A1={51,52,…,100},A2={26,27,…,50},A3={13,14,…,25},A4=(7,8,9,10,11,12),A5=(4,5,6},A6={2,3},A7={1}.A1∪A3∪A5∪A7共50+13+3+1=67个元素,每一个都不是另一个的两倍.若集合B{1,2,…,100},其中每一个数都不是另一个的两倍,则在a∈B∩A2时,2a B,因此|B∩A2|+|B∩A1|≤50.同样|B∩A4|+|B∩A3|≤13,|B∩A6|+|B∩A5|≤3.因此|B|≤67.本题答案为67.B1-008设集合S n={1,2,…,n).若X是S n的子集,把X中所有数之和称为X的“容量”(规定空集容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.(1)求证:S n的奇子集与偶子集个数相等;(2)求证:当n≥3时,S n的所有奇子集容量之和,与所有偶子集容量之和相等.(3)当n≥3时,求S n所有奇子集的容量之和.【题说】1992年全国联赛二试题2.【证】设S为S n的奇子集,令则T是偶子集,S→T是奇子集的集到偶子集的一一对应,而且每个偶子集T,均恰有一个奇子集与之对应,所以(1)的结论成立.对任一i(1≤i≤n),含i的子集共2n-1个,用上面的对应方法可知在i≠1时,这2n-1个集中有一半是奇子集.在i=1时,由于n≥3,将上边的1换成3,同样可得其中有一半是奇子集.于是在计算奇子集容量之和时,元素i的贡献是2n-2²i.奇子集容量之和是根据上面所说,这也是偶子集容量之和,两者相等.B1-009用σ(S)表示非空整数集S中所有元素的和.设A={a1,a2,…,a n}是正整数集,且a1<a2<…<a11.若对每个正整数n≤1500,存在A的子集S,使得σ(S)=n.试求满足上述要求的a10的最小值.【题说】第二十一届(1992年)美国数学奥林匹克题3.【解】令S k=a1+a2+…+a k(1≤k≤11).若a k>S k-1+1,则不存在S A,使σ(S)=S k-1+1所以,S k=S k-1+a k≤2S k-1+1 (1)又由题设得S1=a1=1.于是由(1)及归纳法易得S k≤2k-1(1≤k≤m)(2)若S10<750,则a11≤1500(否则750无法用σ(S)表出),S11=S10+a11<1500,所以S10≥750.又S8≤28-1=255,于是2a10≥a9+a10=S10-S8≥495所以,a10≥248.另一方面,令A={1,2,4,8,16,32,64,128,247,248,750}当n≤255=27+26+…+2+20时,可找到S{1,2,4,…,128},使σ(S)=n.当n≤255+247=502时,存在S(1,2,4,…,128,247),使σ(S)=n;当n≤502+248=750时,存在S{1,2,4,…247,248},使σ(S)=n;当n≤750+750=1500时,存在S A,使σ(S)=n.于是a10的最小值为248.B1-010给定集合S={Z1,Z2,…,Z1993},其中Z1,Z2,…,Z1993为非零复数(可视为平面上非零向量).求证:可以把S中元素分成若干子集,使得(1)S中每个元素属于且仅属于一个子集;(2)每一子集中任一复数与该子集所有复数之和的夹角不超过90°;(3)将任二子集中复数分别作和,所得和数之间夹角大于90°.【题说】1993年中国数学奥林匹克(第八届数学冬令营)题4.【证】现对任意正整数n给以证明.设非零复数集S={Z1,…,Z n}.对S每个非空子集A,其中所有数之和,称为A之和.S共有2n-1个非空子集,其中必有一个子集S1,其和的模|a1|最大.若S≠S1,对S\S1,取其非空子集S2,使其和的模|a2|最大.如比等等.因S为有限集,故经若干步后,即得S的一个划分:S1,S2,…,S k,它们的和a1,a2,…,a k的模分别是S,S\S1,S\(S1∪S2),…,S\(S1∪S2∪…∪S k-1)的非空子集和的最大模.这样的划分,条件(1)显然满足.若某个S r中有一元素Z与a r的夹角>90°,则如图a,|a r-Z|>|a r|.a r-Z是S\(S1U…US r-1)的非空子集S r\{Z}之和,与S r的选取矛盾.若a r与a t(1≤r<t≤k)的夹角≤90°,则如图(b),|a r+a t|>|a r|.a r+a t是S\(S1∪…∪S r-1)不空子集S r∪S t之和,这又与S r选取矛盾.因此,所述划分满足条件(1)~(3).【注】因为平面上至多有三个向量,它们之间两两的夹角都大于90°,故S至多分为三个子集.B1-011设集合A={1,2,3,…,366}.如果A的一个二元子集B={a,b}满足17|(a+b),则称B具有性质p.(1)求A的具有性质p的二元子集的个数;(2)A一组二元子集,两两不相交并且具有性质P这组二元子集的个数最多是多少?【题说】1994年全国联赛河北省预赛二试题1.【解】将1,2,…,366按17除的余数分为17类:17类:[0],[1],…,[16].因为366=17³21+9,所以[1],[2],…[9]中各有22个数,[10],…,[16],[0]中各有21个数.当且仅当a∈[k],b∈[17-k]时,{a,b}具有性质p.当a∈[k],b∈[17-k],k=1,2,…,7时,具有性质p的子集所以A的具有性质p的二元子集个数共有210+462³7+484=3928(个)(2)为使二元子集两两不变,可如下搭配:a∈[0],b∈[0],有10个子集;a∈[k],b∈[17-k],k=1,2,…,7,有21个子集;a∈[8],b∈[9],有22个子集.故A的具有性质p两两不交的二元子集共有10+21³7+22=179(个)B1-012设|v|、σ(v)和π(v)分别表示由正整数组成的有限集合v的元素的个数,元素的和以及元素的积(如果集合v是空集,则|v|=0,σ(v)=0,П(v)=1).若S是由正整数组成的有限集合.证明对所有的正整数m≥σ(S)成立.【题说】第二十三届(1994年)美国数学奥林匹克题5.【证】设S={a1,a2,…,a n}.长为m的、由m-n个0与n个1将这样的数列分为n+1段,第一段a1个数,第二段a2个数,…,第n段a n个数.前n段的每一段中恰有1个1的数列,由于第i段的1有a i种位置(1≤i≤n),所以这样的数列共有a l a2…a n=П(S)个.个.根据容斥原理,即本题的等式成立.B1-015设M={1,2,…,1995},A是M的子集,且满足条件:当x∈A时,15x A,试求A中元素个数的最大值.【题说】1995年全国联赛一试题2(6).原为填空题.【解】由题设,当k=9,10,…,133时,k与15k不能同时在A中,故至少有133-8=125个数不在A中,即|A|≤1995-125=1870另一方面,M的子集A={1,2,...,8}∪{134, (1997)满足条件.它恰好有1780个元素.故|A|的最大数是1870.B1-016 已知集合{1,2,3,4,5,6,7,8,9,10}.求该集合具有下列性质的子集个数:每个子集至少含有2个元素,且每个子集中任意两个元素的差的绝对值大于1.【题说】1996年爱朋思杯——上海市赛题3.【解】设a n是集合{1,2,…,n}的具有题设性质的子集个数.集合{1,2,…,n,n+1,n+2}的具有题设性质的子集可分为两类:第一类子集包含元n+2,这样的子集有a n+n个(即每个{1,2,…,n}的这种子集与{n+2}的并集,以及{1,n+2},{2,n+2},…,{n,n+2});第二类子集不包含n+2,这样的子集有a n+1个.于是,有a n+2=a n+a n+1+n显然,a3=1,a4=3(即{1,3},{2,4},{1,4}).所以a5=7,a6=14,a7=26,a8=46,a9=79,a10=133.B1-017 对任意非空实数集S,令σ(S)为S的元素之和.已知n个正整数的集A,考虑S跑遍A的非空子集时,所有不同和σ(S)的集.证明这些和可以分为n类,每一类中最大的和与最小的和的比不超过2.【题说】第二十五届(1996年)美国数学奥林匹克题2【解】设A={a1,a2,…,a n},a1<a2<…<a n.令f j=a1+a2+…a j,e j=max{a j,f j-1}},则f j=f j-1+a j≤2e j(1≤j≤n).每个和a i1+a i2+…+a it,i1<i2<…<i t,必在某个区间(f j-1,f j]中.因为a i1+a i2+a it>f j-1=a1+a2+…a j-1所以i t≥j从而a i1+a i2+…+a it≥a j于是a i1+a i2+…+a it∈[e j,f j].这样σ(S)被分为n个类,在e j与f j之间的和为第j类(1≤j≤n),f j本身在第j类,而e j=f j-1时,e j不在第j类;e j>f j-1时,e j在第j类.每一类中最大的和与最小的和的比不超过2.B1-018 设S={1,2,3,4),n项的数列:a1,a2,…,a n有下列性质,对于S的任何一个非空子集B(B的元素个数记为|B|),在该数列中有相邻的|B|项恰好组成集合B.求n的最小值.【题说】1997年爱朋思杯——上海市赛决赛题3.【解】n的最小值为8.首先证明S中的每个数在数列a1,a2,…,a n中至少出现2次.事实上,若S中的某个数在这个数列中只出现1次,由于含这个数的二元子集共有3个,但在数列中含这个数的相邻两项至多只有两种取法,因而3个含这个数的二元子集不可能都在数列相邻两项中出现.由此可见n≥8.另一方面,8项数列:3,1,2,3,4,1,2,4满足条件,因此,所求最小值为8.B1-019 求两个正整数m与n之间(m<n),一切分母为3的既约分数的和.【题说】1962年成都市赛高三二试题1.3(n-m)+1项.其和但其中整数项的和故所求之和S=S1-S2=n2-m2B1-020 证明cos10°是无理数.【题说】1963年合肥市赛高二二试题3.【证】利用公式cos3x=4cos3x-3cos x,可得cos30°=4cos310°-3cos10°(1)即若cos10°是一个有理数,则(1)右端为有理数,而左端是一个无理数,矛盾,故cos10°为无理数.B1-021 求出所有四元实数组(x1,x2,x3,x4),使其中任一个数与其余三数积的和等于2.【题说】第七届(1965年)国际数学奥林匹克题4.本题由原苏联提供.【解】设x1x2x3x4=d,则显然d≤1.有以下五种情况:所以d=1,x1=x2=x3=x4=1.所以d=1,x1=x2=x3=x4=1.综上所述,x1、x2、x3、x4或者全为1;或者其中有三个为-1,一个为3.B1-022设P(x)是自然数x在十进制中各位数字的乘积.试求出所有能使P(x)=x2-10x-22成立的自然数.【题说】第十届(1968年)国际数学奥林匹克题2.本题由捷克斯洛伐克提供.【解】设n位数x满足P(x)=x2-10x-22 (1)若n≥3,则x≥10n-1≥100,9n≥P(x)=x(x-10)-22≥90x-22≥90²10n-1-22=9²10n-22>10n矛盾.若n=1,则x=P(x)=x2-10x-22即x2-11x-22=0但此方程无正整数解.因此n=2.若x≥20,则x2-10x-22=x(x-10)-22≥10x-22≥200-22>92≥P(x)因此x=10+y,y∈{0,1,2,…,9}.(1)变成y=(10+y)2-10(10+y)-22易知y=2,x=12.B1-023证明:如果三个正数的积为1,而它们的和严格地大于它们的倒数之和,那么,它们中恰好有一个数大于1.【题说】第四届(1970年)全苏数学奥林匹克八年级题2.【证】设这三个数为a,b,c,则(a-1)(b-1)(c-1)=abc-(ab+bc+ca)+(a+b+c)-1左边有一个或三个因子为正.但abc=1,所以a、b、c不可能全大于1,从而a、b、c中有且只有一个数大于1.B1-024若干个正整数的和为1976,求这些正整数的积的最大值.【题说】第十八届(1976年)国际数学奥林匹克题4.本题由美国提供.【解】设这些正整数为a1,…,a n,则a1+…+a n=1976不妨设a i<4(1≤i≤n),这是因为当a i≥4时a i≤2(a i-2),故把a i换成2和a i-2不会使积减小.再注意2³2³2<3³3,所以只需考虑积2a²3b,其中a=0,1,2,且2a+3b=1976.由此得a=1,b=658,故所求的最大值为2³3658.B1-025确定最大的实数z,满足x+y+z=5 (1)xy+yz+zx=3 (2)并且x、y也是实数.【题说】第十届(1978年)加拿大数学奥林匹克题3.【解】由(1)得(x+y)2=(5-z)2,由(2)得xy=3-z(5-z).于是0≤(x-y)2=(x+y)2-4xy=(5-z)2-4[3-z(5-z)]=-3z2+10z+13=(13-3z)(1+z)因此有-1≤z≤13/3当x=y=1/3时,z=13/3.因此z最大值是13/3.B1-026已知a、b、c、d、e是满足a+b+c+d+e=8,(1)a2+b2+c2+d2+e2=16 (2)的实数,试确定e的最大值.【题说】第七届(1978年)美国数学奥林匹克题1.【解】由Cauchy不等式,(8-e)2=(a+b+c+d)2≤4(a2+b2+c2+d2)=4(16-e2),即B1-027已知:0.301029<lg2<0.301030,0.477120<lg3<0.477121求20001979的首位数字.【题说】1979年安徽省赛二试题1.【解】因为lg20001979=1979(3+lg2)=5937+1979lg2595.736391<1979lg2<595.738370而lg5=1-lg2<0.70lg6=lg2+lg3>0.77所以6532+lg5<lg20001979<6532+lg6即5³106532<20001979<6³106532所以20001979的首位数字是5.B1-028已知a1,a2,…,a8均为正数,且a1+a2+…+a8=20 (1)a1a2…a8=4 (2)试证:a1,a2,…,a8之中至少有一个数小于1.【题说】1979年湖北省赛二试题5.【证】用反证法.如果a1,a2,…,a8都不小于1,则可设a i=1+b i(b i>0,i=1,2, (8)再由(1)即得B1+b2+…+b8=12于是a1a2…a8=(1+b1)(1+b2)…(1+b8)=1+(b1+b2+…+b8)+…+b1b2…b8≥1+(b1+b2+…+b8)=1+12=13与条件(2)矛盾.所以八个数中至少有一个数小于1.B1-029 求所有实数a,使得存在非负实数x1,x2,x3,x4,x5满足关系:【题说】第二十一届(1979年)国际数学奥林匹克题5.本题由以色列提供.【解】利用柯西不等式及题设条件,有故中间不等式只能取等号,这意味着在x k≠0时,由此推知,x1,x2,x3,x4,x5中至多一个非0.因此,只能有下面两种情况:(1)x1=x2=x3=x4=x5=0,此时a=0;(2)某个x k=c≠0,其余x i=0(i≠k).这时由已知得kc=a,k3c=a2,k5c=a3.从而k2=a,c=k总之,当且仅当a=0,1,4,9,16,25时,存在非负实数x1,x2,x3,x4,x5满足题中三个方程. B1-030下列表中的对数值有两个是错误的,请予纠正.【题说】1981年全国联赛题2.【解】lg3、lg0.27、lg9的值同为正确或同为错误.因表中只有两处错误,故三者都对.同理,lg2、lg5、lg8、lg6都对.再若lg7=2(b+c),则lg14=lg7+lg2=1-a+2b+c,lg0.021=lg3+lg7-3=2a+b+2c-3,lg2.8=2lg2+lg7-1=1-2a+2b.即lg7=2(b+c)对,就推出lg14、lg0.021、lg2.8三个值都错,与题设矛盾,故知lg7不对.应为lg7=lg l4-lg2=2b+c.lg1.5的值也不对,应为lg1.5=lg3+lg5-1=3a-b+c-1.B1-001把含有12个元素的集分成6个子集,每个子集都含有2个元素,有多少种分法?【题说】1969年~1970年波兰数学奥林匹克三试题5.【解】将12个元素排成一列有12!种方法.排定后,从左到右每2个一组就得到6个2元子集.同一组中2个元素顺序交换得到的是同一子集.6个子集顺序交换得到的是同样的分法,因此共有种不同的分法.[别解]设a1是集中的一个元素,将a1与其余11个元素中的任一个结合,就得到含a1的2元子集,这种2元子集共有11种.确定含a1的子集后,设a2是剩下的一个元素,将a2与其余9个元素中的任一个结合,就得到含a2的2元子集,这种子集共有9种.如此继续下去,得到6个2元子集.共有11³9³7³5³3=10395种分法.B1-002证明:任一个有限集的全部子集可以这样地排列顺序,使任何两个邻接的集相差一个元素.【题说】1971年~1972年波兰数学奥林匹克三试题5.【证】设有限集A含n个元素.当n=1时,子集序列φ,A即满足条件.假设n=k时命题成立,对于k+1元集A={x1,x2,…,x k+1}由归纳假设,{x1,x2,…,x k}的子集可排成序列B1,B2,…,B t(t=2k)满足要求.因此A的子集也可排成序列B1,B2,…,B t,B t∪{x k+1},B t-1∪{x k+1},…,B2∪{x k+1}B1∪{x k+1},满足要求.于是命题对一切自然数n均成立.B1-003设1≤r≤n,考虑集合{1,2,3,…,n}的所有含r个元素的子集及每个这样的子集中的最小元素,用F(n,r)表示一切这样的子集各自的最小元素的算术平均数.证明:【题说】第二十二届(1981年)国际数学奥林匹克题2.这n-k个数中选出).所以将(1)式右边的和写成一个表将上表每一行加起来,再将这些行和相加便得(1)的右边的分子,现B1-004定义一个数集的和为该集的所有元素的和.设S是一些不大于15的正整数组成的集,假设S 的任意两个不相交的子集有不相同的和,具有这个性质的集合S的和的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题12.【解】先证明S元素个数至多是5.如果多于5个,则元素个数不S的元素个数≤5,所以S的和≤15+14+13+12+11=65.如果S的和≥62,则S的元数为5,并且15、14均在S中(S的和至多比15+14+13+12+11少3).这时S中无其它的连续整数,因而只有一种情况即{15,14,13,11,9),不难看出它不满足条件.所以,S的和≤61.特别地,S={15,14,13,11,8}时,和取最大值61.B1-006对有限集合A,存在函数f:N→A具有下述性质:若|i-j|是素数,则f(i)≠f(j),N={1,2,…}.求有限集合A的元素的最少个数.【题说】1990年巴尔干地区数学奥林匹克题4.【解】1,3,6,8中每两个数的差为素数,所以f(1),f(3),f(6),f(8)互不相同,|A|≥4.另一方面,令A={0,1,2,3}.对每一自然数n,令f(n)为n除以4所得余数,则在f(i)=f(j)时,|i-j|被4整除.因而f是满足条件的函数.于是,A的元素个数最少为4.B1-007集合{1,2,3,…,100}的某些子集,满足条件:没有一个数是另一个数的2倍.这样的子集中所含元素的个数最多是多少?【题说】1991年河南省数学奥林匹克集训班一试题1(6).原题为选择题.【解】令A1={51,52,…,100},A2={26,27,…,50},A3={13,14,…,25},A4=(7,8,9,10,11,12),A5=(4,5,6},A6={2,3},A7={1}.A1∪A3∪A5∪A7共50+13+3+1=67个元素,每一个都不是另一个的两倍.若集合B{1,2,…,100},其中每一个数都不是另一个的两倍,则在a∈B∩A2时,2a B,因此|B∩A2|+|B∩A1|≤50.同样|B∩A4|+|B∩A3|≤13,|B∩A6|+|B∩A5|≤3.因此|B|≤67.本题答案为67.B1-008设集合S n={1,2,…,n).若X是S n的子集,把X中所有数之和称为X的“容量”(规定空集容量为0).若X的容量为奇(偶)数,则称X为S n的奇(偶)子集.(1)求证:S n的奇子集与偶子集个数相等;(2)求证:当n≥3时,S n的所有奇子集容量之和,与所有偶子集容量之和相等.(3)当n≥3时,求S n所有奇子集的容量之和.【题说】1992年全国联赛二试题2.【证】设S为S n的奇子集,令则T是偶子集,S→T是奇子集的集到偶子集的一一对应,而且每个偶子集T,均恰有一个奇子集与之对应,所以(1)的结论成立.对任一i(1≤i≤n),含i的子集共2n-1个,用上面的对应方法可知在i≠1时,这2n-1个集中有一半是奇子集.在i=1时,由于n≥3,将上边的1换成3,同样可得其中有一半是奇子集.于是在计算奇子集容量之和时,元素i的贡献是2n-2²i.奇子集容量之和是根据上面所说,这也是偶子集容量之和,两者相等.B1-009用σ(S)表示非空整数集S中所有元素的和.设A={a1,a2,…,a n}是正整数集,且a1<a2<…<a11.若对每个正整数n≤1500,存在A的子集S,使得σ(S)=n.试求满足上述要求的a10的最小值.【题说】第二十一届(1992年)美国数学奥林匹克题3.【解】令S k=a1+a2+…+a k(1≤k≤11).若a k>S k-1+1,则不存在S A,使σ(S)=S k-1+1所以,S k=S k-1+a k≤2S k-1+1 (1)又由题设得S1=a1=1.于是由(1)及归纳法易得S k≤2k-1(1≤k≤m)(2)若S10<750,则a11≤1500(否则750无法用σ(S)表出),S11=S10+a11<1500,所以S10≥750.又S8≤28-1=255,于是2a10≥a9+a10=S10-S8≥495所以,a10≥248.另一方面,令A={1,2,4,8,16,32,64,128,247,248,750}当n≤255=27+26+…+2+20时,可找到S{1,2,4,…,128},使σ(S)=n.当n≤255+247=502时,存在S(1,2,4,…,128,247),使σ(S)=n;当n≤502+248=750时,存在S{1,2,4,…247,248},使σ(S)=n;当n≤750+750=1500时,存在S A,使σ(S)=n.于是a10的最小值为248.B1-010给定集合S={Z1,Z2,…,Z1993},其中Z1,Z2,…,Z1993为非零复数(可视为平面上非零向量).求证:可以把S中元素分成若干子集,使得(1)S中每个元素属于且仅属于一个子集;(2)每一子集中任一复数与该子集所有复数之和的夹角不超过90°;(3)将任二子集中复数分别作和,所得和数之间夹角大于90°.【题说】1993年中国数学奥林匹克(第八届数学冬令营)题4.【证】现对任意正整数n给以证明.设非零复数集S={Z1,…,Z n}.对S每个非空子集A,其中所有数之和,称为A之和.S共有2n-1个非空子集,其中必有一个子集S1,其和的模|a1|最大.若S≠S1,对S\S1,取其非空子集S2,使其和的模|a2|最大.如比等等.因S为有限集,故经若干步后,即得S的一个划分:S1,S2,…,S k,它们的和a1,a2,…,a k的模分别是S,S\S1,S\(S1∪S2),…,S\(S1∪S2∪…∪S k-1)的非空子集和的最大模.这样的划分,条件(1)显然满足.若某个S r中有一元素Z与a r的夹角>90°,则如图a,|a r-Z|>|a r|.a r-Z是S\(S1U…US r-1)的非空子集S r\{Z}之和,与S r的选取矛盾.若a r与a t(1≤r<t≤k)的夹角≤90°,则如图(b),|a r+a t|>|a r|.a r+a t是S\(S1∪…∪S r-1)不空子集S r∪S t之和,这又与S r选取矛盾.因此,所述划分满足条件(1)~(3).【注】因为平面上至多有三个向量,它们之间两两的夹角都大于90°,故S至多分为三个子集.B1-011设集合A={1,2,3,…,366}.如果A的一个二元子集B={a,b}满足17|(a+b),则称B具有性质p.(1)求A的具有性质p的二元子集的个数;(2)A一组二元子集,两两不相交并且具有性质P这组二元子集的个数最多是多少?【题说】1994年全国联赛河北省预赛二试题1.【解】将1,2,…,366按17除的余数分为17类:17类:[0],[1],…,[16].因为366=17³21+9,所以[1],[2],…[9]中各有22个数,[10],…,[16],[0]中各有21个数.当且仅当a∈[k],b∈[17-k]时,{a,b}具有性质p.当a∈[k],b∈[17-k],k=1,2,…,7时,具有性质p的子集所以A的具有性质p的二元子集个数共有210+462³7+484=3928(个)(2)为使二元子集两两不变,可如下搭配:a∈[0],b∈[0],有10个子集;a∈[k],b∈[17-k],k=1,2,…,7,有21个子集;a∈[8],b∈[9],有22个子集.故A的具有性质p两两不交的二元子集共有10+21³7+22=179(个)B1-012设|v|、σ(v)和π(v)分别表示由正整数组成的有限集合v的元素的个数,元素的和以及元素的积(如果集合v是空集,则|v|=0,σ(v)=0,П(v)=1).若S是由正整数组成的有限集合.证明对所有的正整数m≥σ(S)成立.【题说】第二十三届(1994年)美国数学奥林匹克题5.【证】设S={a1,a2,…,a n}.长为m的、由m-n个0与n个1将这样的数列分为n+1段,第一段a1个数,第二段a2个数,…,第n段a n个数.前n段的每一段中恰有1个1的数列,由于第i段的1有a i种位置(1≤i≤n),所以这样的数列共有a l a2…a n=П(S)个.个.根据容斥原理,即本题的等式成立.B1-015设M={1,2,…,1995},A是M的子集,且满足条件:当x∈A时,15x A,试求A中元素个数的最大值.【题说】1995年全国联赛一试题2(6).原为填空题.【解】由题设,当k=9,10,…,133时,k与15k不能同时在A中,故至少有133-8=125个数不在A中,即|A|≤1995-125=1870另一方面,M的子集A={1,2,...,8}∪{134, (1997)满足条件.它恰好有1780个元素.故|A|的最大数是1870.B1-016已知集合{1,2,3,4,5,6,7,8,9,10}.求该集合具有下列性质的子集个数:每个子集至少含有2个元素,且每个子集中任意两个元素的差的绝对值大于1.【题说】1996年爱朋思杯——上海市赛题3.【解】设a n是集合{1,2,…,n}的具有题设性质的子集个数.集合{1,2,…,n,n+1,n+2}的具有题设性质的子集可分为两类:第一类子集包含元n+2,这样的子集有a n+n个(即每个{1,2,…,n}的这种子集与{n+2}的并集,以及{1,n+2},{2,n+2},…,{n,n+2});第二类子集不包含n+2,这样的子集有a n+1个.于是,有a n+2=a n+a n+1+n显然,a3=1,a4=3(即{1,3},{2,4},{1,4}).所以a5=7,a6=14,a7=26,a8=46,a9=79,a10=133.B1-017对任意非空实数集S,令σ(S)为S的元素之和.已知n个正整数的集A,考虑S跑遍A的非空子集时,所有不同和σ(S)的集.证明这些和可以分为n类,每一类中最大的和与最小的和的比不超过2.【题说】第二十五届(1996年)美国数学奥林匹克题2【解】设A={a1,a2,…,a n},a1<a2<…<a n.令f j=a1+a2+…a j,e j=max{a j,f j-1}},则f j=f j-1+a j ≤2e j(1≤j≤n).每个和a i1+a i2+…+a it,i1<i2<…<i t,必在某个区间(f j-1,f j]中.因为a i1+a i2+a it>f j-1=a1+a2+…a j-1所以i t≥j从而a i1+a i2+…+a it≥a j于是a i1+a i2+…+a it∈[e j,f j].这样σ(S)被分为n个类,在e j与f j之间的和为第j类(1≤j≤n),f j本身在第j类,而e j=f j-1时,e j不在第j类;e j>f j-1时,e j在第j类.每一类中最大的和与最小的和的比不超过2.B1-018设S={1,2,3,4),n项的数列:a1,a2,…,a n有下列性质,对于S的任何一个非空子集B(B的元素个数记为|B|),在该数列中有相邻的|B|项恰好组成集合B.求n的最小值.【题说】1997年爱朋思杯——上海市赛决赛题3.【解】n的最小值为8.首先证明S中的每个数在数列a1,a2,…,a n中至少出现2次.事实上,若S中的某个数在这个数列中只出现1次,由于含这个数的二元子集共有3个,但在数列中含这个数的相邻两项至多只有两种取法,因而3个含这个数的二元子集不可能都在数列相邻两项中出现.由此可见n≥8.另一方面,8项数列:3,1,2,3,4,1,2,4满足条件,因此,所求最小值为8.B1-019求两个正整数m与n之间(m<n),一切分母为3的既约分数的和.【题说】1962年成都市赛高三二试题1.3(n-m)+1项.其和但其中整数项的和故所求之和S=S1-S2=n2-m2B1-020证明cos10°是无理数.【题说】1963年合肥市赛高二二试题3.【证】利用公式cos3x=4cos3x-3cos x,可得cos30°=4cos310°-3cos10°(1)即若cos10°是一个有理数,则(1)右端为有理数,而左端是一个无理数,矛盾,故cos10°为无理数.B1-021求出所有四元实数组(x1,x2,x3,x4),使其中任一个数与其余三数积的和等于2.【题说】第七届(1965年)国际数学奥林匹克题4.本题由原苏联提供.【解】设x1x2x3x4=d,则显然d≤1.有以下五种情况:所以d=1,x1=x2=x3=x4=1.所以d=1,x1=x2=x3=x4=1.综上所述,x1、x2、x3、x4或者全为1;或者其中有三个为-1,一个为3.B1-022设P(x)是自然数x在十进制中各位数字的乘积.试求出所有能使P(x)=x2-10x-22成立的自然数.【题说】第十届(1968年)国际数学奥林匹克题2.本题由捷克斯洛伐克提供.【解】设n位数x满足P(x)=x2-10x-22 (1)若n≥3,则x≥10n-1≥100,9n≥P(x)=x(x-10)-22≥90x-22≥90²10n-1-22=9²10n-22>10n矛盾.若n=1,则x=P(x)=x2-10x-22即x2-11x-22=0但此方程无正整数解.因此n=2.若x≥20,则x2-10x-22=x(x-10)-22≥10x-22≥200-22>92≥P(x)因此x=10+y,y∈{0,1,2,…,9}.(1)变成y=(10+y)2-10(10+y)-22易知y=2,x=12.B1-023证明:如果三个正数的积为1,而它们的和严格地大于它们的倒数之和,那么,它们中恰好有一个数大于1.【题说】第四届(1970年)全苏数学奥林匹克八年级题2.【证】设这三个数为a,b,c,则(a-1)(b-1)(c-1)=abc-(ab+bc+ca)+(a+b+c)-1左边有一个或三个因子为正.但abc=1,所以a、b、c不可能全大于1,从而a、b、c中有且只有一个数大于1.B1-024若干个正整数的和为1976,求这些正整数的积的最大值.【题说】第十八届(1976年)国际数学奥林匹克题4.本题由美国提供.【解】设这些正整数为a1,…,a n,则a1+…+a n=1976不妨设a i<4(1≤i≤n),这是因为当a i≥4时a i≤2(a i-2),故把a i换成2和a i-2不会使积减小.再注意2³2³2<3³3,所以只需考虑积2a²3b,其中a=0,1,2,且2a+3b=1976.由此得a=1,b=658,故所求的最大值为2³3658.B1-025确定最大的实数z,满足x+y+z=5 (1)xy+yz+zx=3 (2)并且x、y也是实数.【题说】第十届(1978年)加拿大数学奥林匹克题3.【解】由(1)得(x+y)2=(5-z)2,由(2)得xy=3-z(5-z).于是0≤(x-y)2=(x+y)2-4xy=(5-z)2-4[3-z(5-z)]=-3z2+10z+13=(13-3z)(1+z)因此有-1≤z≤13/3当x=y=1/3时,z=13/3.因此z最大值是13/3.B1-026已知a、b、c、d、e是满足a+b+c+d+e=8,(1)a2+b2+c2+d2+e2=16 (2)的实数,试确定e的最大值.【题说】第七届(1978年)美国数学奥林匹克题1.【解】由Cauchy不等式,(8-e)2=(a+b+c+d)2≤4(a2+b2+c2+d2)=4(16-e2),即B1-027已知:0.301029<lg2<0.301030,0.477120<lg3<0.477121求20001979的首位数字.【题说】1979年安徽省赛二试题1.【解】因为lg20001979=1979(3+lg2)=5937+1979lg2595.736391<1979lg2<595.738370而lg5=1-lg2<0.70lg6=lg2+lg3>0.77所以6532+lg5<lg20001979<6532+lg6即5³106532<20001979<6³106532所以20001979的首位数字是5.B1-028已知a1,a2,…,a8均为正数,且a1+a2+…+a8=20 (1)a1a2…a8=4 (2)试证:a1,a2,…,a8之中至少有一个数小于1.【题说】1979年湖北省赛二试题5.【证】用反证法.如果a1,a2,…,a8都不小于1,则可设a i=1+b i(b i>0,i=1,2, (8)再由(1)即得B1+b2+…+b8=12于是a1a2…a8=(1+b1)(1+b2)…(1+b8)=1+(b1+b2+…+b8)+…+b1b2…b8≥1+(b1+b2+…+b8)=1+12=13与条件(2)矛盾.所以八个数中至少有一个数小于1.B1-029求所有实数a,使得存在非负实数x1,x2,x3,x4,x5满足关系:【题说】第二十一届(1979年)国际数学奥林匹克题5.本题由以色列提供.【解】利用柯西不等式及题设条件,有故中间不等式只能取等号,这意味着在x k≠0时,由此推知,x1,x2,x3,x4,x5中至多一个非0.因此,只能有下面两种情况:(1)x1=x2=x3=x4=x5=0,此时a=0;(2)某个x k=c≠0,其余x i=0(i≠k).这时由已知得kc=a,k3c=a2,k5c=a3.从而k2=a,c=k总之,当且仅当a=0,1,4,9,16,25时,存在非负实数x1,x2,x3,x4,x5满足题中三个方程.B1-030下列表中的对数值有两个是错误的,请予纠正.【题说】1981年全国联赛题2.【解】lg3、lg0.27、lg9的值同为正确或同为错误.因表中只有两处错误,故三者都对.同理,lg2、lg5、lg8、lg6都对.再若lg7=2(b+c),则lg14=lg7+lg2=1-a+2b+c,lg0.021=lg3+lg7-3=2a+b+2c-3,lg2.8=2lg2+lg7-1=1-2a+2b.即lg7=2(b+c)对,就推出lg14、lg0.021、lg2.8三个值都错,与题设矛盾,故知lg7不对.应为lg7=lg l4-lg2=2b+c.lg1.5的值也不对,应为lg1.5=lg3+lg5-1=3a-b+c-1.把n2个互不相等的实数排成下表:a11,a12,…,a1na21,a22,…,a2n…a n1,a n2,…,a nn取每行的最大数得n个数,其中最小的一个是x;再取每列的最小数,又得n个数,其中最大的一个是y,试比较x n与y n的大小.【题说】1982年上海市赛二试题2【解】设x=a ij,y=a pq,则a ij≥a iq≥a pq所以x≥y.(1)当n是奇数时,x n≥y n.(2)当n是偶数时(i)如果x≥y≥0,则x n≥y n;(ii)如果0≥x≥y,则x n≤y n;(iii)如果x≥0≥y,则当x≥-y时,x n≥y n;当x≤-y时,x n≤y n.B1-032对任意实数x、y.定义运算x*y为:x*y=ax+by+cxy其中a、b、c为常数,等式右端运算是通常的实数的加法和乘法.现已知1*2=3,2*3=4,并且有一个非零实数d,使得对于任意实数x,都有x*d=x,求d的值.【题说】1985年全国联赛一试题2(4).原题为填空题.【解】由所设条件,有1*2=a+2b+2c=3 (1)2*3=2a+3b+6c=4 (2)x*d=ax+bd+cxd=(a+cd)x+bd=x(3)由(3)得a+cd=1 (4)B d=0 (5)因d≠0,故由(5)式得b=0.再解方程(1)及(2),得a=5,c=-1,最后由(4)式得d=4.B1-033计算下式的值:【题说】第五届(1987年)美国数学邀请赛题14.注意324=4³34.【解】x4+4y4=(x2+2y2)2-(2xy)2=[(x2+2y2)-2xy][(x2+2y2)+2xy]=[(x-y)2+y2][(x+y)2+y2]。