发酵工程--抗生素发酵生产技术概述
抗生素的发酵生产

抗生素的发酵生产抗生素的发酵法生产摘要:对马杜霉素,螺旋霉素,农用抗真菌素的发酵生产,确定其最佳的发酵条件,并且对其各自发酵工艺进行比较,深入的了解用发酵法产抗生素的原理及方法。
关键词:马杜霉素螺旋霉素农用抗真菌素发酵生产引言采用发酵工程技术生产医药产品是制药工程的重要部分,其中抗牛素是我国医药生产的大宗产品,随着基因工程技术的进展,基因工程药的比例逐渐增大。
但抗生素在国计民生中所起的作用是能完全替代的。
特别是西方同家出于能源和环保的考虑,转产生产高附加值的药物,留出厂抗生素的市场空间,为我国的抗生素生产发展提供了机遇,作为一个发展中的国家,可以说在相当长时间内,我国抗生素生产在整个医药产品巾仍占很大的比例,因此抗生素类发酵过程优化技术研究对医药行业的生产具有重要的经济和社会意义。
抗生素发酵过程优化研究中主要存在的问题长期以来为提高抗生素发酵水平,把注意力主要放在菌种筛选与改造,或从国外引进菌株。
近年来,随着现代牛物技术的日益发展,尤其是基因工程和代谢1:程技术的发展,已经取得了引入注目的效果,主要有:(1)将生物合成途径中关键酶基因克隆来改良现有抗生素生产菌种;(2)将抗生素生物合成产生副产物的酶基因敲除,以提高产生抗生素的能力;(3)克隆外源基因以改良原菌种的发酵生理特性;(4)克隆外源抗生素合成基因簇来合成新的抗牛素等,但是在通过各种方法得到一个高产菌株后,在实际发酵操作时,往往忽视厂生物反应器中上程问题所必须加以考虑的工艺变化和过程优化。
随后的逐级放大与优化基本上是以最佳工艺控制点为依据,采用人工经验为主的静态操作,在方法上基本以正交试验为基础。
因此,发酵过程优化与放大始终是生化上程中一个复杂问题的两个侧面,人们从不同的角度进行研究。
此外,随着计赞机技术的迅速发展,各抗生素发酵工厂已普遍采用计算机在线控制,主要在补料操作上采用杯式流加技术,基本上满足了抗生素工业发酵生产上所需要的高精度控制补料速率问题,对提高发酵效价起了重要作用。
抗生素发酵生产工艺

抗生素发酵生产工艺抗生素发酵生产工艺抗生素是一类具有杀菌或抑菌作用的药物,对人类和动植物疾病的治疗起到至关重要的作用。
抗生素的生产主要依赖于微生物发酵技术。
在抗生素发酵生产工艺中,常用的微生物包括青霉素、链霉素和阿奇霉素等。
抗生素的发酵过程主要分为菌种体系培养、种母液培养和发酵液培养三个步骤。
首先,我们需要培养菌种体系。
菌种培养一般分为筛选和种植两个步骤。
筛选菌种是为了选出具有高产量和优良品质的菌株,种植菌种是为了通过大规模培养来获取足够的菌量。
筛选菌种的方法主要有传统的混合培养方法和现代的分离培养方法。
种植菌种则需要提供适宜的培养基,包括碳源、氮源、无机盐和生长因子等。
菌种体系的培养需要在合适的温度、PH值和搅拌速度下进行,以保证菌株的健康生长。
接下来是种母液培养。
在种母液培养过程中,需要通过喂养和连续培养来提高菌中抗生素的产量。
喂养是指给菌株提供充足的营养物质,通过控制喂养时间和喂养速度来调节菌株的生长速度和抗生素产量。
连续培养是指在一定的培养条件下,通过不断的增加培养基的流速,实现菌株的连续培养和抗生素的连续产量。
种母液培养需要控制好菌株的温度、PH值、搅拌速度和氧气的供应等,以提高抗生素的产量和质量。
最后是发酵液培养。
发酵液培养是将种母液转移到发酵罐中进行大规模培养的过程。
发酵罐除了具备种母液培养的基本要求外,还需要考虑更多的因素,如气体供应、温度控制、搅拌速度和反应器设计等。
发酵液培养的目标是达到最大的菌株数量和抗生素产量。
为了保证抗生素的纯度和稳定性,还需要对发酵液进行适当的提纯和分离。
这样,最终得到的抗生素就可以应用于医药领域,对各种细菌感染进行治疗。
总之,抗生素的发酵生产工艺是一项复杂而关键的过程。
通过合理的菌种培养、种母液培养和发酵液培养,可以获得高产量和优质的抗生素。
随着生物技术的不断发展和进步,抗生素的发酵生产工艺也在不断完善和优化,为人类健康事业做出了重要贡献。
发酵工程抗生素发酵生产技术概述

严格控制环境卫生、定期灭菌、使用一次性塑料薄膜和胶管、种子 培养物严格筛选等。
控制方法
定期取样检查,一旦发现污染,立即采取措施,如加入抗菌素或重 新灭菌。
发酵异常现象及其处理
1 2
异常现象
菌体生长缓慢、产物形成少、发酵液泡沫多、 pH 值异常等。
处理方法
根据具体情况调整培养条件,如温度、湿度、通 风、pH 值、培养基组成和浓度等。
提取
发酵结束后,通过离心、过滤等方法将菌体与发酵液分离, 得到粗制抗生素。
精制
通过重结晶、萃取、吸附等方法进一步纯化抗生素,提高其 纯度和结晶收率。
03
发酵工程中抗生素发酵的工艺 优化
菌种选育与改良
菌种选育
通过自然突变、诱变、基因重组等技 术,筛选具有高产抗生素特性的菌株 ,提高抗生素产量。
菌种改良
特性
具有高度选择性,对不同微生物的作 用效果不同;对细胞的生长和分化具 有调节作用;通常对敏感菌具有杀菌 作用,对耐药菌无效。
抗生素的种类与用途
种类
β-内酰胺类、大环内酯类、氨基糖苷类、四环素类、氯霉素类、林可胺类、糖 肽类、噁唑烷酮类、磺胺类等。
用途
治疗各种由细菌引起的感染性疾病,如肺炎、肠道感染、尿路感染等;预防细 菌感染;用于食品和农业中的防腐和保鲜。
THANKS
谢谢您的观看
抗生素发酵生产的历史与现状
历史
自20世纪40年代青霉素的发现以来,抗生素的研发和应用经历了60多年的发展历程。目前,抗生素已成为医疗 、食品和农业领域中不可或缺的重要物质。
现状
随着抗生素的广泛应用,耐药菌株的出现和传播已成为全球性的问题。因此,新型抗生素的研发和生产技术不断 改进,以应对日益严重的耐药性问题。同时,各国政府和国际组织也在加强抗生素使用的监管和管理,以减少不 必要的抗生素使用和防止耐药性的传播。
发酵工程抗生素发酵生产技术概述

发酵工程抗生素发酵生产技术概述发酵工程是一种利用微生物、酶和发酵介质(常见的如糖)来生产有用化合物的技术。
在这个过程中,微生物通过代谢物质的转化来生成目标产品。
抗生素发酵生产技术是发酵工程的一个重要应用领域,在制药、医疗等领域中起到重要作用。
本文将就抗生素发酵生产技术进行一些概述。
抗生素是一类能够抑制或杀死细菌或其他微生物的药物,广泛应用于医疗、养殖和农业等领域。
然而,抗生素的生产过程并不容易。
抗生素分子具有复杂的结构,不同的抗生素有不同的生产方式和工艺。
一般来说,抗生素的生产过程可以分为以下几个步骤:获得产生抗生素的微生物菌种;培养产生抗生素的微生物菌种;提取和纯化抗生素产物;加工和包装抗生素产物。
在抗生素发酵生产技术中,首先需要获得产生抗生素的微生物菌种。
这些微生物可以从自然环境或已知产生抗生素的菌株中分离得到,也可以通过基因工程技术进行修改得到。
随后,需要对这些微生物进行培养。
培养条件的选择对于微生物的生长和抗生素产量有重要的影响。
常见的培养条件包括培养基的组成、温度、pH值、氧气供应等。
通过调节这些条件,可以提高菌株的生长速度和产生抗生素的能力。
在培养过程中,需要不断监测微生物菌种的生长情况和抗生素产量。
常用的监测方法包括测定菌株密度、测定发酵液的抗生素浓度等。
通过监测,可以对微生物的生长状态进行控制和调节,以及对抗生素产量进行评估和优化。
当培养达到一定程度后,需要对发酵液进行产品的提取和纯化。
传统的提取方法包括萃取、蒸馏、结晶等。
这些方法可以将抗生素从发酵液中分离出来,并去除其他杂质。
随后,抗生素产品需要经过纯化过程,获得高纯度的抗生素。
纯化方法包括过滤、层析、电泳等。
这些方法可以去除抗生素中的杂质,提高纯度。
最后,经过提取和纯化的抗生素产品需要进行加工和包装,以便后续的药物制剂或应用。
加工包括液体制剂的调整和固体制剂的制备。
包装过程需要严格控制产品的质量和卫生条件,以确保最终产品的安全性和稳定性。
抗生素发酵工艺

一、名词解释1、分批发酵:在发酵中,营养物和菌种一次加入进行培养,直到结束放出,中间除了空气进入和尾气排出外,与外部没有物料交换。
2、补料分批发酵:又称半连续发酵,是指在微生物分批发酵中,以某种方式向培养系统不加一定物料的培养技术。
3、前体:指某些化合物加入到发酵培养基中,能直接彼微生物在生物合成过程中合成到产物物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因加入前体而有较大的提高。
4、接种量:移入种子的体积接种量=—————————接种后培养液的体积5、次级代谢产物:是指微生物在一定生长时期,以初级代谢产物为前体物质,合成一些对微生物的生命活动无明确功能的物质过程,这一过程的产物,即为次级代谢产物。
6、实罐灭菌:实罐灭菌(即分批灭菌)将配制好的培养基放入发酵罐或其他装置中,通入蒸汽将培养基和所用设备加热至灭菌温度后维持一定时间,在冷却到接种温度,这一工艺过程称为实罐灭菌,也叫间歇灭菌。
7、种子扩大培养:指将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养,最终获得一定数量和质量的纯种过程。
这些纯种培养物称为种子。
8、倒种:一部分种子来源于种子罐,一部分来源于发酵罐。
二、填空题1、微生物发酵培养(过程)方法主要有分批培养、补料分批培养、连续培养、半连续培养四种。
2、发酵过程工艺控制的只要化学参数溶解氧、PH、核酸量等.3、发酵过程控制的目的就是得到最大的比生产率和最大的得率。
4、微生物的培养基根据生产用途只要分为孢子培养基、种子培养基和发酵培养基。
5、常用灭菌方法:化学灭菌、射线灭菌、干热灭菌、湿热灭菌6、发酵过程工艺控制的代谢参数中物理参数温度、压力、搅拌转速、功率输入、流加数率和质量等7、染菌原因:发酵工艺流程中的各环节漏洞和发酵过程管理不善两个方面。
8、发酵产物整个分离提取路线可分为:预处理、固液分离、初步纯化、精细纯化和成品加工加工等五个主要过程。
发酵工程-第九章-抗生素

PG
Pka 2.7
RCONH
6
4
5S
CH3
HH
7
O
N1
3 CH3
2
COOH
H
2S,5R,6R
临床用其钠盐、钾盐或普鲁卡因盐,增强水溶性。 粉针剂,有效期2年 临床用粉针剂,现用现配
不稳定性
β –内酰胺环是青霉素中最 不稳定的部分,原因是
1、四元环和五元环稠合, 环的张力大
2、两个环不在同一平面, 青霉素结构中β-内酰胺环 中羰基和氮原子的孤对电 子不能共轭, 易受到亲核 性或亲电性试剂的进攻, 使β-内酰胺环破裂。
(二)一般生产流程
抗生素发酵阶段一般主要包括:孢子制备、种子 制备和发酵,这是进行微生物逐步扩大培养过 程。
1、孢子制备 目的是将沙土管保存的菌种进行 培养,以制备大量孢子供下一步种子制备之用, 一般于试管、扁瓶或摇瓶内进行。
2、种子制备 目的是使有限数量的孢子发芽繁 殖,获得足够菌丝体以供发酵之用。在种子罐 内进行。通过种子制备,可以缩短发酵罐内菌 丝体繁殖生长的时间,增加抗生素合成的时间。 一般通过种子罐1-3次,再移种到发酵罐中-内酰胺类抗生素 (二)四环类抗生素
(三)氨基糖苷类抗生素 (四)大环内酯类抗生素 (五)多烯大环类抗生素 (六)多肽类抗生素 (七)蒽环类抗生素 (八)其他类
四、根据作用机制
(一)抑制细胞壁合成 (二)影响细胞膜功能 (三)抑制和干扰蛋白质合成 (四)抑制核酸合成 (五)抑制细菌生物能作用
OH
H+ or HgCl2
-CO2
NH O
Penilloaldehyde
CHO
O
NH S H
发酵工程抗生素发酵生产技术概述

通过结晶、离子交换、色谱分离等手段,对提取液进行进一步纯化 ,提高抗生素的纯度和质量。
干燥与包装
将抗生素粉末或结晶进行干燥处理,并进行包装,以便于运输和使 用。
发酵过程控制技术
发酵过程监控
01
通过实时监测发酵过程中的关键指标(如菌体生长、代谢产物
浓度等),确保发酵过程的顺利进行。
自动化控制
02
严格管理抗生素使用
加强抗生素使用的管理和监管,减少不必要的抗生素使用和防止耐药 菌株的传播。
06
典型抗生素发酵生产案例 分析
链霉素的发酵生产技术
01
02
03
04
链霉素是一种由链霉菌产生的 抗生素,通过发酵工程进行生
产。
链霉菌的菌种选育是链霉素发 酵生产的关键步骤,通常采用
诱变育种等方法。
发酵条件对链霉素的生产有重 要影响,包括温度、pH值、
。
03
抗生素发酵生产关键技术
菌种选育与改良技术
自然选育
利用自然环境中的微生物资源, 通过自发突变和筛选获得具有优
良性状的菌株。
诱变育种
利用物理、化学等方法诱发微生 物发生突变,再通过筛选和繁殖
获得所需菌株。
基因工程育种
通过基因重组和转基因技术,对 微生物进行遗传改良,提高其产
量和抗菌活性。
发酵条件优化技术
THANK YOU
感谢观看
抗生素定义
抗生素是由微生物(包括细菌、真菌、放线菌等)或高等动植物在生活过程中 所产生的具有抗病原体或其他活性的一类次级代谢产物,能干扰其他生活细胞 发育功能的化学物质。
抗生素分类
抗生素按化学结构可分为β-内酰胺类、氨基糖苷类、大环内酯类、肽类抗生素 。
抗生素发酵生产工艺

抗生素发酵生产工艺1. 引言抗生素是一类具有抑制或杀死细菌生长的药物,广泛用于医疗领域。
而抗生素的生产则主要通过发酵过程来实现。
本文将介绍抗生素发酵生产的工艺流程及相关要点。
2. 抗生素发酵生产工艺流程抗生素的发酵生产流程一般包括以下几个关键步骤:2.1. 选材与接种抗生素发酵的起点是菌种的选取与接种。
通常选用的是具有产生目标抗生素能力的细菌或真菌菌种。
接种时应注意保持菌种的纯度,并选择合适的培养基进行预培养。
2.2. 发酵罐配置与预处理发酵罐是抗生素生产的核心设备之一,其配置应根据具体抗生素的特性和工艺要求进行选择。
常见的发酵罐包括摇床发酵罐和搅拌发酵罐。
在进一步发酵前,需要进行罐体消毒和培养基的预处理工作。
2.3. 发酵过程控制发酵过程中,需要对发酵罐中的培养基进行控制和调节,以满足微生物的生长和抗生素的产生需求。
常见的控制参数包括pH值、温度、氧气供应和搅拌速度等。
此外,还需监测微生物的生长和抗生素的产量。
2.4. 抗生素提取与纯化发酵结束后,需要进行抗生素的提取与纯化工作。
常见的提取方法包括有机溶剂法和固相萃取法。
提取后的抗生素需经过一系列工艺步骤,如浓缩、结晶和干燥等,以获得高纯度的抗生素产品。
3. 抗生素发酵生产工艺的关键要点3.1. 培养基配方和优化培养基的配方直接影响着菌种的生长和抗生素的产生。
在选择培养基成分时,需根据目标抗生素的特性和菌种的需求进行优化。
常见的成分包括碳源、氮源、无机盐和生长因子等。
3.2. 发酵过程参数的控制与调节发酵过程中的参数控制对于抗生素的产量和品质具有重要影响。
pH值、温度、氧气供应和搅拌速度是常见的控制参数,需要根据具体菌种和抗生素的特性进行合理的调节和控制。
3.3. 发酵罐的选择与配置发酵罐的选择与配置应根据抗生素的需求和工艺要求进行。
摇床发酵罐适用于部分产生低分子量抗生素的菌种,而搅拌发酵罐适用于大规模生产。
同时,罐体的材质、内部结构和附件设置也需要考虑。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
韩北忠
中国农业大学 食品学院
Han Bei-zhong, Prof. PhD
College of Food Science & Nutritional Engineering
China Agricultural University
2
1. 概 述 Introduction
抗生素
是生物在其生产活动过 程中所产生,并能 在低微浓度下有选 择性地抑制或杀灭 其他微生物或肿瘤 细胞的有机物。
Antibiotics
Any organic substances produced by various organisms that have the power of arresting the growth of other microorganisms or of destroying them.
青霉素
• 抑制细胞膜功能 (Cell Membrane Damage) : 多烯类抗生素
• 抑制蛋白质合成 (Protein Synthesis) :
四环素
• 抑制核酸合成 (Nucleic Acid Synthesis) : 丝裂霉素
5
复制
转录
翻译
6
1. 概 述 Introduction
分 类 Classification
照射 亚硝基胍、亚硝酸、
秋水仙素、氮芥等 诱变剂处理
Conventional strain selection • Physical mutagen
eg. Ultraviolet Radiation • Chemical mutagen
eg. Nitrosoguanidine (NTG) • Improved strain can be
• The first major antibiotic to be commercialized
4
1. 概 述 Introduction
分 类 Classification
根据抗生素的作用机制分类 (Modes of Action of Antibiotics)
• 抑制细胞壁合成 (Cell Wall Synthesis) :
1
抗生素发酵生产技术 Antibiotics Fermentation Production
1. 概述 2. 生产前期研究 3. 生产菌改良 4. 生产工艺过程 5. 发酵条件的控制 6. 提取和精制
1. Introduction 2. Research in Lab 3. Strain improvement 4. Production processing 5. Fermentation control 6. Isolation & purification
11
agar plate 琼脂培养基
lawn of test bacteria 测试菌苔
filter papers soaked with test compounds
含药物滤纸
zones of inhibition (no growth) 抑菌圈
Agar diffusion assay
12
分析仪器 Analytical instruments
现代分析仪器: • 核磁共振 • 毛细管电泳 • 气相色谱 • 高效液相色谱 • 质谱
Modern analytical instruments:
• Nuclear magnetic resonance (NMR)
• Capillary electrophoresis (CE)
• Gas chromatography
10
2.生产前期研究 Research in Lab
• 产生菌的筛选 • 抗菌性试验 • 提取、精制、鉴定 • 毒性试验 • 药理和临床试验
• Screening of a strain • Antimicrobial trial • Isolation, purification and
identification • Toxicological trial • Medicinal & clinical trial
(GC)
• High performance liquid
chromatography
(HPLC)
• Mass spectroscopy (MS)
Automation Sensitivity Accuracy
自动
灵敏
准确
13
3. 抗生素生产菌改良 Strain Improvement
人工诱变法: 紫外线、X-线、r-线
3
1. 概 述 Introduction
历史 • 1929年,英国弗莱
明发现青霉素 • 二战期间,大规模
发酵生产 • 世界上最早用于临
床的抗菌素
History
• Penicillin was discovered by Fleming in 1929.
• World War II, fermented in large-scale
• 多 肽 类 (polymyxin) : 多粘菌素
7
H
RN
H
O
S CH3
CH3
N
COO-
H
-lactam ring β-in R =
CH2-CO-
8
β-内酰胺 环
9
两性霉素
Antibiotics are so complex they can only be synthesized in a living system
根据抗生素的化学结构分类
• β-内酰胺类 (β-lactam):
青霉素类 (penicillins)
头孢菌素类 (cephalosporins)
• 氨基糖苷类 (aminoglycosides) : 链霉素、庆大霉素
• 大环内酯类 (macrolides) : 红霉素、麦迪加霉素
• 四 环 类 (tetracyclines) : 四环素、土霉素
selected empirically
14
3. 抗生素生产菌改良 Strain Improvement
基因工程 Genetic Engineering
Recombinant DNA Technology (DNA重组技术)
克隆
15
Strain Improvement Scale-up