河北省保定市定兴县2020年九年级第一次模拟考试数学试题

合集下载

2020年河北省中考模拟考试(一)数学试题及参考答案与解析(word版)

2020年河北省中考模拟考试(一)数学试题及参考答案与解析(word版)

2020年河北省初中毕业生升学文化课模拟考试(一)数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷1I为非选择题.本试卷满分120分,考试时间为120分钟.卷I(选择题,共42分)注意事项:1.答卷I前.考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑答在试卷上无效.一、选择题(本大题共16个小题,共42分,1~I 0小题各3分;11~16小题各2分.在每小题给出的四个选项中只有项是符合题目要求的)1.下列各数中,比-2大2的数是()A.0 B.-4 C.2 D.42.把一个三角板按下图所示位置放置,∠1=40°,∠2=()A.40°B.45°C.50°D.60°3.下图中几何体的主视图是()A.B.C.D.4.下列对代数式1ab-的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数5.如图,直线a∥b∥c,45AB BC=,若DF=9,则EF的长度为()A .9B .5C .4D .3 6.下列变形正确的是( ) A .-2(a+2)=a -2 B .()121212a a --=-+ C .-a+1=-(a -1) D .1-a=-(a+1) 7.关于x 的一元二次方程2104ax x -+=有两个不相等的实数根,则a 的取值范围是( ) A .a >0 B .a >-1 C .a <1 D .a <1且a ≠08.在新型冠状病毒防控期间,小静坚持每天测量自己的体温,并把5次的体温(单位:℃)分别写在5张完全相同的卡片上:,把这5张卡片背面朝上洗匀后,从中随机抽取一张卡片,已知P (一次抽到36)=25,这5张卡片上数据的方差为( ) A .35.9 B .0.22 C .0.044 D .09.如图,五边形ABCDE 中,AE ∥BC ,BE 交于点O ,四边形OCDE 是平行四边形,若△ABE 的面积是5,四边形OCDE 的面积是6,则△AOE 的面积是( )A .2B .2.5C .3D .410.如图,点A (0,4),B (3,4),以原点O 为位似中心,把线段AB 缩短为原来的一半,得到线段CD ,其中点C 与点A 对应,点D 与点B 对应,则点D 的横坐标...为( )A .2B .2或-2C .32 D .32或32- 11.如图,在△ABC 中,AB <BC ,在BC 上取一点P ,使得PC=BC -PA .根据圆规作图的痕迹,可以用直尺成功找到点P 的是( )A.B.C.D.12.如图,四边形ABCD中,AD∥BC,AD=12BC,CD=BC,点E,F分别是BD,CD的中点,连接AE,EF,AF,若BC=2,AF=85,则BD=()A.35B.95C.125D.313.关于x方程2311x mx-=-的解是正数,m的值可能是()A.23B.12C.0 D.-114.如图,在6×6的正方形网格中,经过格点A,B,C,⊙O点P是ACB上任意一点,连接AP,BP,则tan∠APB的值为()A .12B C D 15.点(a ,b )是反比例函数2y x=-的图象上一点,若a <2,则b 的值不可能...是( ) A .-2 B .13- C .2 D .316.如图,在等边△ABC 中,AB=D 在△ABC 内或其边上,AD=2,以AD 为边向右作等边△ADE ,连接CD ,CE ,设CE 的最小值为m ;当ED 的延长线经过点B 时,∠DEC=n °,则m ,n 的值分别为( )A B C .2,55 D .2,60卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分) 17.若单项式212xyx 与n x y -是同类项,则n 的值为 . 18.定义新运算:对于任意实数a ,b ,都有a ⊕b=a (b+1)-b ,等式右边是通常的加法、减法及乘法运算,比如:3⊕2=3(2+1)-2=9-2=7. (1)2⊕(-3)= ;(2)若(-2)⊕x 的值等于-5,则x= .19.如图,ABCD 中,AB=7,BC=5,CH ⊥AB 于点H ,CH=4,点P 从点D 出发,以每秒1个单位长度的速度沿DC —CH 向点H 运动,到点H 停止,设点P 的运动时间为t .(1)AH= ;(2)若△PBC 是等腰三角形,则t 的值为 .三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别为a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a-b-c=-3,求-a+3b-(b -2c)的值.21.(本小题满分9分)发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一.例1.计算:32×11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352.例2.计算:57×11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1)43×11=;(2)69×11=;(3)98×(-11)=.探究:一个两位数,十位上的数字是m,个位上的数字为n,这个两位数乘11.(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10,直接写出....计算结果中十位上的数字.22.(本小题满分9分)自2020年初的新型冠状病毒疫情爆发以来,疫悄时时刻刻都在牵动全国人民的心.小明在做好自我防控的同时,也从数据分析的角度去看待疫情动态,他从2月10日起,连续7天记录了全国每天新增确诊病例人数,并绘制了如图所示的折线统计图.(注:本题所考查的人数均保留整数)(1)①小明关注这7天每天新增确诊病例人数的最高值、最低值和中位数,井计算了平均数.其中中位数是人,平均数是人;②上述哪个统计量能反映这7天新增确诊病例人数的一般水平?(2)小明又接着记录了连续5天的全国新增确诊病例人数,如下表:①请在图中补画出这5天每天新增确诊病例人数的折线统计图;②求2月10日至2月21日每天新增确诊病例人数的中位数.(3)请你分别通过对上述两个中位数的比较和全部折线图来说明每天新增确诊病例人数的升降趋势.23.(本小题满分9分)如图,Rt△ABC中,∠C=90°,AC=BC=4,P是BC上一点(不与B,C重合),连接AP,将AP绕点A逆时针旋转90°得到AQ,连接BQ,分别交AC,AP于点D,E,作QF⊥AC于点F.(1)求证:QF=AC;(2)若P是BC的中点,求tan∠ADQ的值;(3)若△AEQ的内心在QF上,直接写出....BP的长.24.(本小题满分10分)学校计划拿出一笔钱给一些班级配置篮球和排球.若给每班1个篮球和2个排球,花完这笔钱刚好配置30个班;若给每班2个篮球和1个排球,花完这笔钱刚好配置20个班.设每个篮球a元,每个排球b元.(1)用含b的代数式表示a;(2)现在给每班x个篮球和y个排球,花完这笔钱刚好配置10个班.①求y与x的函数解析式;②怎样的配置方案,可以使每班配置的排球最少?25.(本小题满分10分)如图,正方形ABCD中,AB=3,P使BC边上一点(不包括B,C),连接AP,点E,B关于直线AP对称,连接DE并延长交AP的延长线于点F,以点B为圆心,BF长为半径作圆,与BE交于点G.(1)当∠PAB=26°时,∠AED=°;(2)求证:直线DF时⊙B的切线;(3)当时,求GF的长;(4)若DE=4,直接写出....EF的长.26.(本小题满分12分)如图,抛物线y=ax2+bx+3经过点A(-3,0),B(1,0),顶点为点M,与y轴交于点C,点P是抛物线上一点,PH⊥y轴于点H,射线PH交抛物线的对称轴于点D.(1)求抛物线的解析式及顶点M的坐标;(2)若点P在第四象限,OH=5,求PD的长;(3)m>0,点E(m,y1),F(-1-m,y2)均在抛物线上,比较y1,y2的大小,并说明理由;(4)若点P在第二象限,连接PA,PC,AC,直接写出....△PAC面积的最大值.。

【精校】2020年河北省保定市定兴县中考一模数学

【精校】2020年河北省保定市定兴县中考一模数学

2020年河北省保定市定兴县中考一模数学一、选择题(本大题共16小题,1-10小题,每小题3分,11-16小题,每小题2分,共42分)1.,-1,-3,0这四个实数中,最小的是( )B.-1C.-3D.0解析:根据实数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小)比较即可.∵-3<-1<0,∴最小的实数是-3.答案:C2.有两个完全相同的长方体,按如图方式摆放,其主视图是( )A.B.C.D.解析:根据主视图的定义可知这个立体图形的主视图是C.答案:C3.“一带一路”的“朋友圈”究竟有多大?“一带一路”涉及沿线65个国家,总涉及人口约4400000000,将4400000000用科学记数法表示为( )A.4.4×107B.44×108C.4.4×109D.0.44×1010解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4400000000有10位,所以可以确定n=10-1=9.4 400 000 000=4.4×109.答案:C4.下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.解析:根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.答案:A5.如图,直线AB∥CD,∠B=50°,∠C=40°,则∠E等于( )A.70°B.80°C.90°D.100°解析:根据平行线的性质得到∠1=∠B=50°,由三角形的内角和即可得到结论.∵AB ∥CD ,∴∠1=∠B=50°, ∵∠C=40°,∴∠E=180°-∠B-∠1=90°. 答案:C6.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( )A.512 B.125 C.513 D.1213解析:在由自动扶梯构成的直角三角形中,已知了坡面l 和铅直高度h 的长,可用勾股定理求出坡面的水平宽度,进而求出θ的正切值.∵商场自动扶梯的长l=13米,高度h=5米,∴12==m 米, ∴tan θ=512. 答案:A7.一元二次方程3x2-6x+4=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.有两个实数根解析:直接计算方程根的判别式进行判断即可. ∵3x2-6x+4=0,∴△=(-6)2-4×3×4=36-48=-12<0,∴该方程无实数根.答案:C8.如果a-b=5,那么代数式222⎛⎫+-⎪-⎝⎭ga b abab a b的值是( )A.1 5 -B.1 5C.-5D.5解析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.∵a-b=5,∴原式()22225-+-===-=--g ga ba b ab ab aba bab a b ab a b.答案:D9.已知正方形ABCD,点E在边AB上,以CE为边作正方形CEFG,如图所示,连接DG.求证:△BCE≌△DCG.甲、乙两位同学的证明过程如下,则下列说法正确的是( )甲:∵四边形ABCD、四边形CEFG都是正方形∴CB=CD CE=CG,∠BCD=∠ECG=90°∴∠BCD-∠ECD=∠ECG-∠ECD∴∠BCE=∠GCD∴△BCE ≌△DCG(SAS)乙:∵四边形ABCD 、四边形CEFG 都是正方形 ∴CB=CD CE=CG 且∠B=∠CDG=90° ∴△BCE ≌△DCG(HL) A.甲同学的证明过程正确 B.乙同学的证明过程正确 C.两人的证明过程都正确 D.两人的证明过程都不正确解析:根据正方形性质得出BC=CD ,CE=CG ,∠BCD=∠ECG=90°,都减去∠ECD ,即可求出∠BCE=∠DCG ,根据SAS 即可推出两三角形全等,即可判断甲同学证明过程正确;但是根据已知不能推出∠CDG=90°,即可判断乙同学证明过程不对. 答案:A10.某小组同学在一周内参加家务劳动时间与人数情况如表所示:下列关于“劳动时间”这组数据叙述正确的是( ) A.中位数是2 B.众数是2 C.平均数是3 D.方差是0解析:根据中位数,众数,平均数,方差的计算方法,判断即可. 由题意得,众数是2. 答案:B11.中国古代人民很早就在生产生活种发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程( ) A.()3229-=+x x B.()3229+=-x xC.9232-+=xx D.9232+-=xx 解析:根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可. 设有x 辆车,则可列方程:3(x-2)=2x+9. 答案:A12.如图,在直角坐标系中,点A在函数4=yx(x>0)的图象上,AB⊥x轴于点B,AB的垂直平分线与y轴交于点C,与函数4=yx(x>0)的图象交于点D,连结AC,CB,BD,DA,则四边形ACBD的面积等于( )A.2C.4解析:设A(a,4a),可求出D(2a,2a),∵AB⊥CD,∴1124242==⨯⨯=g四边形ACBDS AB CD aa.答案:C13.如图所示,一架投影机插入胶片后图象可投到屏幕上.已知胶片与屏幕平行,A点为光源,与胶片BC的距离为0.1米,胶片的高BC为0.038米,若需要投影后的图象DE高1.9米,则投影机光源离屏幕大约为( )A.6米B.5米C.4米D.3米解析:因为光源与胶片组成的三角形与光源与投影后的图象组成的三角形相似,所以可用相似三角形的相似比解答.如图所示,过A作AG⊥DE于G,交BC与F,因为BC ∥DE ,所以△ABC ∽△ADE ,AG ⊥BC ,AF=0.1m ,设AG=h , 则:=AF BC AG DE ,即0.10.0381.9=h ,解得,h=5m. 答案:B14.如图,在△ABC 中,AB=10,AC=8,BC=6,以边AB 的中点O 为圆心,作半圆与AC 相切,点P ,Q 分别是边BC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A.6C.9D.323解析:如图,设⊙O 与AC 相切于点E ,连接OE ,作OP 1⊥BC 垂足为P 1交⊙O 于Q 1, 此时垂线段OP 1最短,P 1Q 1最小值为OP 1-OQ 1,∵AB=10,AC=8,BC=6,∴AB 2=AC 2+BC 2, ∴∠C=90°, ∵∠OP 1B=90°, ∴OP 1∥AC ∵AO=OB , ∴P 1C=P 1B ,∴OP1=12AC=4,∴P1Q1最小值为OP1-OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.答案:C15.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是( )A.B.C.D.解析:连接OP:由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.答案:D16.一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3…在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2020B2020C2020D2020的边长是( )A.2017 12⎛⎫ ⎪⎝⎭B.2016 12⎛⎫ ⎪⎝⎭C.2017 3⎛⎫⎪ ⎪⎝⎭D.2016⎝⎭解析:利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.∵∠B1C1O=60°,B1C1∥B2C2∥B3C3,∴∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=12,则1222213cos30=⎛⎝=⎭=︒B EB C,同理可得:332 13⎝=⎭=B C,故正方形A n B n C n D n的边长是:13-⎛⎝⎭n.则正方形A2020B2020C2020D2020的边长是:2017⎝⎭.答案:C二、填空题(本大题共3小题,共10分,17,18小题,每小题3分,19小题共4分)a和b之间,且ab,那么a、b的值分别是, .解析:首先找出与10邻近的两个完全平方数,则这两个数应该是9和16,所以a=3,b=4.答案:3,418.阅读以下作图过程:第一步:在数轴上,点O表示数0,点A表示数1,点B表示数5,以AB为直径作半圆(如图);第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.请你在下面的数轴中完成第三步的画图(保留作图痕迹,不写画法),并写出点M表示的数为 .解析:如图,点M即为所求,连接AC、BC,由题意知,AB=4、BC=1,∵AB为圆的直径,∴∠ACB=90°,则====AM AC∴点M19.如图,在平面直角坐标系中,直线y=x+2交x轴于点A,交y轴于点A1,若图中阴影部分的三角形都是等腰直角三角形,则从左往右第4个阴影三角形的面积是,第2020个阴影三角形的面积是 .解析:根据一次函数图象上点的坐标特征结合等腰直角三角形的性质,即可得出OA1、A2B1、A3B2、A4B3的值,根据边的长度的变化即可找出变化规律“A n+1B n=B n B n+1=2n+1”,再根据三角形的面积即可得出S n+1=12×(2n+1)2=22n+1,分别代入n=3、2016即可求出结论.当x=0时,y=x+2=2,∴OA1=OB1=2;当x=2时,y=x+2=4,∴A2B1=B1B2=4;当x=2+4=6时,y=x+2=8,∴A3B2=B2B3=8;当x=6+8=14时,y=x+2=16,∴A4B3=B3B4=16.∴A n+1B n=B n B n+1=2n+1,∴S n+1=12×(2n+1)2=22n+1.当n=3时,S4=22×3+1=128;当n=2016时,S2020=22×2016+1=24033.答案:128,24033三、解答题(本大题共7小题,共计68分)20.如图,数轴上a、b、c三个数所对应的点分别为A、B、C,已知:b是最小的正整数,且a、c满足(c-6)2+|a+2|=0.(1)求代数式a2+c2-2ac的值.解析:(1)根据(c-6)2+|a+2|=0,利用非负数的性质求得a,c的值即可.答案:(1)∵(c-6)2+|a+2|=0,∴a+2=0,c-6=0,解得a=-2,c=6,∴a2+c2-2ac=4+36+24=64.(2)若将数轴折叠,使得点A与点B重合,则与点C重合的点表示的数是 . 解析:(2)根据轴对称的性质,可得对称点离对称轴的距离相等,据此计算即可. 答案:(2)∵b是最小的正整数,∴b=1,∵(-2+1)÷2=-0.5,∴6-(-0.5)=6.5,-0.5-6.5=-7,∴点C与数-7表示的点重合.故答案为:-7(3)请在数轴上确定一点D,使得AD=2BD,则点D表示的数是 .解析:(3)设点D表示的数为x,分三种情况讨论即可得到点D表示的数是0或4. 答案:(3)设点D表示的数为x,则若点D在点A的左侧,则-2-x=2(1-x),解得x=4(舍去);若点D在A、B之间,则x-(-2)=2(1-x),解得x=0;若点D在点B在右侧,则x-(-2)=2(x-1),解得x=4.综上所述,点D表示的数是0或4.故答案为:0或4.21.观察下列各个等式的规律:第一个等式:2221112--=,第二个等式:2232122--=,第三个等式:2243132--=…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式.解析:(1)根据题目中的式子的变化规律可以写出第四个等式. 答案:(1)由题目中式子的变化规律可得,第四个等式是:2254142--=.(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的. 解析:(2)根据题目中的式子的变化规律可以猜想出第n个等式并加以证明.答案:(2)第n个等式是:()22112+--=n nn.证明:∵()()()221111121122222+++-+--+-==-⎡⎤⎤⎣⎦⎦==⎡⎣n n n nn nn nn,∴第n个等式是:()22112+--=n nn.22.“校园安全”受到全社会的广泛关注,我县某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为 .解析:(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角.答案:(1)接受问卷调查的学生共有30÷50%=60(人),扇形统计图中“基本了解”部分所对应扇形的圆心角为360°×1560=90°.故答案为:60、90°.(2)请补全条形统计图.解析:(2)由(1)可求得了解的人数,继而补全条形统计图.答案:(2)“了解”的人数为:60-15-30-10=5;补全条形统计图得:(3)已知对校园安全知识达到“了解”程度的学生中有3个女生,其余为男生,若从中随机抽取2人参加校园安全知识竞赛,请用画树状图或列表法求出恰好抽到1个男生和1个女生的概率.解析:(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到1个男生和1个女生的情况,再利用概率公式求解即可求得答案.答案:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为123 205=.23.如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°且AB=6,过O点作OE⊥AC,垂足为E.(1)求OE的长.解析:(1)根据∠D=60°,可得出∠B=60°,继而求出BC,判断出OE是△ABC的中位线,就可得出OE的长.答案:(1)∵∠D=60°,∴∠B=60°(圆周角定理),又∵AB=6,∴BC=3,∵AB是⊙O的直径,∴∠ACB=90°,∵OE⊥AC,∴OE∥BC,又∵点O是AB中点,∴OE是△ABC的中位线,∴1322==OE BC.(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积S. 解析:(2)连接OC,将阴影部分的面积转化为扇形FOC的面积.答案:(2)连接OC,则易得△COE ≌△AFE ,故阴影部分的面积=扇形FOC 的面积,260336032ππ⨯==扇形FOCS .即可得阴影部分的面积为32π.24.去年某果园产销两旺,采摘的苹果部分加工销售,部分直接销售,且当天都能销售完,直接销售是4元/斤,加工销售是13元/斤(不计损耗),已知基地雇佣20名工人,每名工人只能参与采摘和加工中的一项工作,每人每天可以采摘70斤或加工35斤.设安排x 名工人采摘苹果,剩下的工人加工苹果.(1)若基地一天的总销售收入为y 元,求y 与x 的函数关系式.解析:(1)根据题意可以列出相应的函数关系式,注意加工之前必须先采摘才可以. 答案:(1)由题意可得,y=[70x-(20-x)×35]×4+35(20-x)×13=-35x+6300, 即y 与x 的函数关系式是y=-35x+6300.(2)试求如何分配工人,才能使一天的销售收入最大?并求出最大值. 解析:(2)根据题意和(1)中的函数解析式可以解答本题. 答案:(2)∵70≥35(20-x), ∴x ≥203, ∵x 是整数且x ≤20, ∴7≤x ≤20, ∵y=-35x+6300,∴当x=7时,y 取得最大值,此时y=-35×7+6300=6055,20-x=13,答:安排7名工人采摘,13名工人加工,才能使一天的销售收入最大,最大值是6055元.25.如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,旋转角为a.(1)当点D ′恰好落在EF 边上时,求旋转角a 的值. 解析:(1)根据旋转的性质得CD ′=CD=2,在Rt △CED ′中,CD ′=2,CE=1,则∠CD ′E=30°,然后根据平行线的性质即可得到∠α=30°.答案:(1)∵长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′, ∴CD ′=CD=2,在Rt △CED ′中,CD ′=2,CE=1, ∴∠CD ′E=30°, ∵CD ∥EF , ∴∠α=30°.(2)如图2,G 为BC 中点,且0°<a <90°,求证:GD ′=E ′D. 解析:(2)由G 为BC 中点可得CG=CE ,根据旋转的性质得∠D ′CE ′=∠DCE=90°,CE=CE ′,则∠GCD ′=∠DCE ′=90°+α,然后根据“SAS ”可判断△GCD ′≌△E ′CD ,则GD ′=E ′D. 答案:(2)证明:∵G 为BC 中点, ∴CG=1, ∴CG=CE ,∵长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′, ∴∠D ′CE ′=∠DCE=90°,CE=CE ′=CG , ∴∠GCD ′=∠DCE ′=90°+α, 在△GCD ′和△E ′CD 中'=⎧⎪∠'=∠'⎨⎪='⎩CD CD GCD DCE CG CE , ∴△GCD ′≌△E ′CD(SAS), ∴GD ′=E ′D.(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△CBD ′能否全等?若能,直接写出旋转角a 的值;若不能说明理由.解析:(3)根据正方形的性质得CB=CD ,而CD=CD ′,则△BCD ′与△DCD ′为腰相等的两等腰三角形,当两顶角相等时它们全等,当△BCD ′与△DCD ′为钝角三角形时,可计算出α=135°,当△BCD ′与△DCD ′为锐角三角形时,可计算得到α=315°. 答案:(3)能.理由如下: ∵四边形ABCD 为正方形,∵CD=CD′,∴△BCD′与△DCD′为腰相等的两等腰三角形,当∠BCD′=∠DCD′时,△BCD′≌△DCD′,当△BCD′与△DCD′为钝角三角形时,则旋转角α=360902︒-︒=135°,当△BCD′与△DCD′为锐角三角形时,∠BCD′=∠DCD′=12∠BCD=45°则α=360°-902︒=315°,即旋转角a的值为135°或315°时,△BCD′与△DCD′全等.26.已知如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式.解析:(1)把点A、B的坐标代入抛物线解析式,解方程组得到b、c的值,即可得解.答案:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴930 10++=⎧⎨++=⎩b cb c,解得43=-⎧⎨=⎩bc,∴抛物线解析式为y=x2-4x+3.(2)求点P在运动的过程中线段PD长度的最大值.解析:(2)求出点C的坐标,再利用待定系数法求出直线AC的解析式,再根据抛物线解析式设出点P的坐标,然后表示出PD的长度,再根据二次函数的最值问题解答.答案:(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=-x+3,设点P(x,x2-4x+3),∴点D(x,-x+3),∴PD=(-x+3)-(x2-4x+3)=-x2+3x=-(x-32)2+94,∵a=-1<0,∴当x=32时,线段PD的长度有最大值94.(3)△APD能否构成直角三角形?若能请直接写出点P坐标,若不能请说明理由.解析:(3)①∠APD是直角时,点P与点B重合,②求出抛物线顶点坐标,然后判断出点P 为在抛物线顶点时,∠PAD是直角,分别写出点P的坐标即可.答案:(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2-4x+3=(x-2)2-1,∴抛物线的顶点坐标为(2,-1),∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,-1),综上所述,点P(1,0)或(2,-1)时,△APD能构成直角三角形.(4)在抛物线对称轴上是否存在点M使|MA-MC|最大?若存在请求出点M的坐标,若不存在请说明理由.解析:(4)根据抛物线的对称性可知MA=MB,再根据三角形的任意两边之差小于第三边可知点M为直线CB与对称轴交点时,|MA-MC|最大,然后利用待定系数法求出直线BC的解析式,再求解即可.答案:(4)由抛物线的对称性,对称轴垂直平分AB,∴MA=MB,由三角形的三边关系,|MA-MC|<BC,∴当M、B、C三点共线时,|MA-MC|最大,为BC的长度,设直线BC的解析式为y=kx+b(k≠0),则3+=⎧⎨=⎩k bb,解得33=-⎧⎨=⎩kb,∴直线BC的解析式为y=-3x+3,∵抛物线y=x2-4x+3的对称轴为直线x=2,∴当x=2时,y=-3×2+3=-3,∴点M(2,-3),即,抛物线对称轴上存在点M(2,-3),使|MA-MC|最大.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2020年河北省保定市中考数学一模试卷

2020年河北省保定市中考数学一模试卷

中考数学一模试卷题号一二三总分得分一、选择题(本大题共10小题,共20.0分)1.如图,坐标平面上二次函数y=x2+1的图象经过A、B两点,且坐标分别为A(a,10)、B(b、10),则AB的长度为()A. 3B. 5C. 6D. 72.在下列各图中,不添加任何辅助线,若每个图所给出的两个三角形都是相似的,则位似图形的个数是()A. 1B. 2C. 3D. 43.已知⊙O的半径OA长为,若OB=,则可以得到的正确图形可能是()A. B.C. D.4.在如图所示的几何体的周围添加一个正方体,添加前后主视图不变化的是()A. B.C. D.5.如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△PAB内,若∠C=50°,则∠P的度数可以为()A. 20°B. 50°C. 110°D. 80°6.点A(2,6)与点B(4,6)均在抛物线y=ax2+bx+c(a≠0)上,则下列说法正确的是()A. a>0B. a<0C. 6a+b=0D. a+6b=07.如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A. 当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B. 当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C. 当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D. 当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形8.如图,在4×4的网格图中,A、B、C是三个格点,其中每个小正方形的边长为1,△ABC的外心可能是()A. M点B. N点C. P点D. Q点9.如图,在半径为6的⊙O中,正方形AGDH与正六边形ABCDEF都内接于⊙O,则图中阴影部分的面积为()A. 27-9B. 54-18C. 18D. 5410.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A. 2B. 3C.D. 3二、填空题(本大题共5小题,共20.0分)11.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=13米,则旗杆BC的高度为______米.12.用如图的两个自由转动的转盘做“配紫色”游戏分别转动两个转盘若其中一个转出红色,另一个转出蓝色即可配出紫色,则配成紫色的概率是______.13.小帅家的新房子刚装修完,便遇到罕见的大雨,于是他向爸爸提议给窗户安上遮雨罩.如图1所示的是他了解的一款雨罩.它的侧面如图2所示,其中顶部圆弧AB 的圆心O在整直边缘D上,另一条圆弧BC的圆心O.在水平边缘DC的廷长线上,其圆心角为90°,BE⊥AD于点E,则根据所标示的尺寸(单位:c)可求出弧AB所在圆的半径AO的长度为______cm.14.如图,在正方形ABCD中,E是对角线BD上一点,DE=4BE,连接CE,过点E作EF⊥CE交AB的延长线于点F,若AF=8,则正方形ABCD的边长为______.15.如图①,正三角形和正方形内接于同一个圆;如图②,正方形和正五边形内接于同一个圆;如图③,正五边形和正六边形内接于同一个圆;…;则对于图①来说,BD 可以看作是正______边形的边长;若正n边形和正(n+1)边形内接于同一个圆,连接与公共顶点相邻同侧两个不同正多边形的顶点可以看做是______边形的边长.三、解答题(本大题共8小题,共80.0分)16.如图,BD、AC相交于点P,连接AB、BC、CD、DA,∠1=∠2(1)求证:△ADP∽△BCP;(2)若AB=8,CD=4,DP=3,求AP的长.17.如图,在一居民楼AB和塔CD之间有一棵树EF,从楼顶A处经过树顶E点恰好看到塔的底部D点,且俯角α为38°.从距离楼底B点2米的P处经过树顶E点恰好看到塔的顶部C点,且仰角β为28°.已知树高EF=8米,求塔CD的高度.(参考数据:sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)18.某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某种苹果到了收获季节,投入市场销售时,调查市场行情,发现该苹果的销售不会亏本,且该产品的日销售量y(千克)与销售单价x(元)之间满足一次函数关系关于销售单价、日销售量、日销售利润的几组对应值如表:销售单价x10152328(元)日销售量y20015070m (千克)日销售利40010501050400润w(元)(注:日销售利润=日销售量×(销售单价-成本单价))(1)求y关于x的函数解析式(要写出x的取值范围)及m的值;(2)根据以上信息,填空:产品的成本单价是______元,当销售单价x=______元时,日销售利润w最大,最大值是______元;(3)某农户今年共采摘苹果4800千克,该品种苹果的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批苹果?请说明理由19.课题学习:矩形折纸中的数学实践操作折纸不仅是一项有趣的活动,也是一项益智的数学活动.数学课上,老师给出这样一道题将矩形纸片ABCD沿对角线AC翻折,使点B落在矩形所在平面内,B'C和AD相交于点E,如图1所示.探素发现(1)在图1中,①请猜想并证明AE和EC的数量关系;②连接B'D,请猜想并证明B'D和AC的位置关系;(2)第1小组的同学发现,图1中,将矩形ABCD沿对角线AC翻折所得到的图形是轴对称图形.若沿对称轴EF再次翻折所得到的图形仍是轴对称图形,展开后如图2所示,请你直接写出该矩形纸片的长、宽之比;(3)若将图1中的矩形变为平行四边形时(AB≠BC),如图3所示,(1)中的结论①和结论②是否仍然成立,请直接写出你的判断.拓展应用(4)在图3中,若∠B=30°,AB=2,请您直接写出:当BC的长度为多少时,△AB'D 恰好为直角三角形.20.如图,在平面直角坐标系的第一象限中,有一点A(1,2),AB∥x轴且AB=6,点C在线段AB的垂直平分线上,且AC=5,将抛物线y=ax2(a>0)的对称轴右侧的图象记作G.(1)若G经过C点,求抛物线的解析式;(2)若G与△ABC有交点.①求a的取值范围;②当0<y≤8时,双曲线y=经过G上一点,求k的最大值.21.如图1,在矩形ABCD中,AB=4,BC=3,以AB为直径的半圆O在矩形ABCD的外部,将半圆O绕点A顺时针旋转a度(0°≤a≤180°).(1)在旋转过程中,B′C的最小值是______,如图2,当半圆O的直径落在对角线AC上时,设半圆O与AB的交点为M,则AM的长为______.(2)如图3,当半圆O与直线CD相切时,切点为N,与线段AD的交点为P,求劣弧AP的长;(3)在旋转过程中,当半圆弧与直线CD只有一个交点时,设此交点与点C的距离为d,请直接写出d的取值范围.22.在△ABC中,AB=AC=5,BC=8,点M是△ABC的中线AD上一点,以M为圆心作⊙M.设半径为r(1)如图,当点M与点A重合时,分别过点B,C作⊙M的切线,切点为E,F.求证:BE=CF;(2)如图2,若点M与点D重合,且半圆M恰好落在△ABC的内部,求r的取值范围;(3)当M为△ABC的内心时,求AM的长.23.如图,直线y=-x+4分别交x轴、y轴于A、C两点,抛物线y=-x2+mx+4经过点A,且与x轴的另一个交点为点B.连接BC,过点C作CD∥x轴交抛物线于点D(1)求抛物线的函数表达式;(2)若点E是抛物线上的点,求满足∠ECD=∠BCO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线AC上,点P为第一象限内的抛物线上一点,若以点C、M、N、P为顶点的四边形是菱形,求菱形的边长.答案和解析1.【答案】C【解析】【分析】此题考查了二次函数图象上点的坐标特征,熟练掌握二次函数性质是解本题的关键.把y=10代入二次函数解析式求出x的值,确定出A与B的横坐标,即可求出AB的长.【解答】解:把y=10代入二次函数解析式得:x2+1=10,解得:x=3或x=-3,即A(3,10),B(-3,10),则AB的长度为6.故选C.2.【答案】C【解析】解:根据位似图形的定义可知,第1、2、4个图形是位似图形,而第3个图形对应点的连线不能交于一点,故位似图形有3个.故选:C.根据位似图形的定义:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.本题考查了位似图形的定义,解题的关键是牢记位似图形的性质:位似图形一定相似,对应点的连线交于一点,对应边互相平行.3.【答案】A【解析】【分析】本题考查了点与圆的位置关系,解题的关键是根据数据判断出点到直线的距离和圆的半径的大小关系,难度不大.根据点到直线的距离和圆的半径的大小关系判断点与圆的位置关系即可.【解答】解:∵⊙O的半径OA长为,若OB=,∴OA<OB,∴点B在圆外,故选A.4.【答案】D【解析】解:选项A的图形的主视图均为:选项B、C的图形的主视图均为:原图和选项D的图形的主视图均为:故选:D.根据从正面观察得到的图形是主视图即可解答.本题考查了简单组合体的三视图的知识,从正面看所得到的图形是主视图.5.【答案】D【解析】解:延长AP交圆O于D,连接BD,则∠ADB=∠C=50°,∴∠APB>∠ADB>50°,∵点O在△PAB内,∴∠APB<90°,∴∠P的度数可以为80°,故选:D.延长AP交圆O于D,连接BD,根据三角形的外角的性质得到∠APB>∠ADB>50°,于是得到结论.本题考查了三角形的外接圆与外心,三角形的外角的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.6.【答案】C【解析】【分析】根据题意可以得到a、b的关系式,然后根据二次函数的性质即可判断各个选项中的结论是否成立.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.【解答】解:∵点A(2,6)与点B(4,6)均在抛物线y=ax2+bx+c(a≠0)上,∴,解得:6a+b=0,故选项C正确,选项D错误,由题目中的条件无法判断a的正负情况,故选项A、B错误.故选:C.7.【答案】D【解析】解:A.当E,F,G,H是四边形ABCD各边中点,且AC=BD时,存在EF=FG=GH=HE,故四边形EFGH为菱形,故A正确;B.当E,F,G,H是四边形ABCD各边中点,且AC⊥BD时,存在∠EFG=∠FGH=∠GHE=90°,故四边形EFGH为矩形,故B正确;C.如图所示,若EF∥HG,EF=HG,则四边形EFGH为平行四边形,此时E,F,G,H不是四边形ABCD各边中点,故C正确;D.如图所示,若EF=FG=GH=HE,则四边形EFGH为菱形,此时E,F,G,H不是四边形ABCD各边中点,故D错误;故选:D.连接四边形各边中点所得的四边形必为平行四边形,根据中点四边形的性质进行判断即可.本题主要考查了中点四边形的运用,解题时注意:中点四边形的形状与原四边形的对角线有关.8.【答案】D【解析】解:由图可知,△ABC是锐角三角形,∴△ABC的外心只能在其内部,由此排除A选项和B选项,由勾股定理得,BP=CP=≠PA,∴排除C选项,故选:D.由图可知,△ABC是锐角三角形,于是得到△ABC的外心只能在其内部,根据勾股定理得到BP=CP=≠PA,于是得到结论.本题考查了三角形的外接圆与外心,勾股定理,熟练掌握三角形的外心的性质是解题的关键.9.【答案】B【解析】解:设EF交AH于M、交HD于N,连接OF、OE、MN,如图所示:根据题意得:△EFO是等边三角形,△HMN是等腰直角三角形,∴EF=OF=6,∴△EFO的高为:OF•sin60°=6×=3,MN=2(6-3)=12-6,∴FM=(6-12+6)=3-3,∴阴影部分的面积=4S△AFM=4×(3-3)×3=54-18;故选:B.设EF交AH于M、交HD于N,连接OF、OE、MN,根据题意得到△EFO是等边三角形,△HMN是等腰直角三角形,由三角函数求出△EFO的高,由三角形面积公式即可得出阴影部分的面积.本题考查了正多边形和圆,三角形的面积,解题的关键是知道阴影部分的面积等于4个三角形的面积.10.【答案】A【解析】解:过点O作OE⊥AB于E,如图:∵O为圆心,∴AE=BE,∴OE=BC,∵OE≤OP,∴BC≤2OP,∴当E、P重合时,即OP垂直AB时,BC取最大值,最大值为2OP=2.故选:A.过点O作OE⊥AB于E,由垂径定理易知E是AB中点,从而OE是△ABC中位线,即BC=20E,而OE≤OP,故BC≤2OP.本题主要考查了垂径定理的基本应用、三角形三边关系,难度适中;过圆心作弦的垂线是运用垂径定理的常用技巧和手段,要熟练掌握.11.【答案】9.5【解析】解:设CD=2x米,∵斜面AC的坡度为1:2,∴AD=2x,由勾股定理得,CD2+AD2=AC2,即x2+(2x)2=()2,解得,x=,则CD=,AD=5,在Rt△ABD中,BD2=AB2-AD2=144,解得,BD=12,则BC=12-2.5=9.5,故答案为:9.5.设CD=2x米,根据坡度的概念用x表示出AD,根据勾股定理求出x,根据勾股定理求出BD,结合图形计算即可.本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键.12.【答案】【解析】解:用列表法将所有可能出现的结果表示如下:红(红,红)(蓝,红)(蓝,红)蓝(红,蓝)(蓝,蓝)(蓝,蓝)黄(红,黄)(蓝,黄)(蓝,黄)黄(红,黄)(蓝,黄)(蓝,黄)红蓝蓝上面等可能出现的12种结果中,有3种情况可以得到紫色,所以可配成紫色的概率是:,故答案为:.根据题意,用列表法将所有可能出现的结果,分析可能得到紫色的概率,得到结论.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.13.【答案】61【解析】解:连接BO1,易知BE=60cm,AE=50cm.设弧AB的半径为Rcm,则O1B=Rcm,O1E=(R-50)cm.在Rt△O1BE中,由勾股定理得:O1B2=BE2+O1E2,即R2=602+(R-50)2,解得:R=61.故答案为:61连接BO1,设弧AB的半径为Rcm,在直角三角形BO1E中,则O1B=Rcm,O1E=(R-50)cm,BE=60cm,根据勾股定理列出关于R的方程,解方程求出半径R的值即可.本题主要考查了勾股定理,垂径定理,难度适中,关键是求出弧AB所在圆的半径.14.【答案】5【解析】解:如图所示:过点E作EM⊥BC,EN⊥AB,分别交BC、AB于M、N两点,且EF与BC相交于点H.∵EF⊥CE,∠ABC=90°,∠ABC+∠HBF=180°,∴∠CEH=∠FBH=90°,又∵∠EHC=∠BHF,∴△ECH∽△BFH(AA),∴∠ECH=∠BFH,∵EM⊥BC,EN⊥AB,四边形ABCD是正方形,∴四边形ENBM是正方形,∴EM=EN,∠EMC=∠ENF=90°,在△EMC和△ENF中∴△EMC≌△ENF(AAS)∴CM=FN,∵EM∥DC,∴△BEM∽△BDC,∴.又∵DE=4BE,∴=,同理可得:,设BN=a,则AB=5a,CM=AN=NF=4a,∵AF=8,AF=AN+FN,∴8a=8解得:a=1,∴AB=5.故答案为:5.由∠EHC=∠BHF,∠CEH=∠FBH=90°可判定△ECH∽△BFH,从而得到∠ECH=∠BFH;作辅助线可证明四边形ENBM是正方形,根据正方形的性质得EM=EN,由角角边可证明△EMC≌△ENF,得CM=FN;因DE=4BE,△BEM∽△BDC,△BEN∽△BDA和线段的和差可求出正方形ABCD的边长.本题考查了正方形的判定与性质,两个三角形全等的判定与性质,两个似三角形的判定与性质,线段的和差等综合知识,重点是掌握两个三角形相似和全等的判定的方法,难点是作辅助线构建两个三角形全等.15.【答案】十二正n(n+1)【解析】解:如图①,连接OA、OB、OD,∵正三角形ADC和正方形ABCD接于同一个⊙O,∴∠AOD==120°,∠AOB==90°,∴∠BOD=∠AOD-∠AOB=30°,∵=12,∴BD可以看作是正十二边形的边长;若正n边形和正(n+1)边形内接于同一个圆,同理可得∠AOD=,∠AOB=,∴∠BOD=∠AOD-∠AOB=-=,∵=n(n+1),∴BD可以看作是正n(n+1)边形的边长.故答案为十二;正n(n+1).如图①,连接OA、OB、OD,先计算出∠AOD=120°,∠AOB=90°,则∠BOD=30°,然后计算可判断BD是正十二边形的边长;对于正n边形和正(n+1)边形内接于同一个圆,同样计算出∠BOD=∠AOD-∠AOB=,利用=n(n+1)可判断BD可以看作是正n(n+1)边形的边长.本题考查了正多边形与圆:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.正多边形每一边所对的圆心角叫做正多边形的中心角.16.【答案】解:(1)证明:∵∠1=∠2,∠DPA=∠CPB∴△ADP∽△BCP(2)∵△ADP∽△BCP,∴=,∵∠APB=∠DPC∴△APB∽△DPC∴==,∴AP=6【解析】(1)由∠1=∠2,∠DPA=∠CPB(对顶角相等),即可得证△ADP∽△BCP(2)由△ADP∽△BCP,可得=,而∠APB与∠DPC为对顶角,则可证△APB∽△DPC,从而得==,即可求AP此题主要考查相似三角形的判定,本题关键是要懂得找相似三角形,利用相似三角形的性质求解.17.【答案】解:由题意知,∠EDF=α=38°,∴FD=≈=10(米).EH=8-2=6(米)在Rt△PEH中,∵tanβ==.∴≈0.5.∴BF=12(米)PG=BD=BF+FD=12+10=22(米).在直角△PCG中,∵tanβ=.∴CG=PG•tanβ≈22×0.5=11(米).∴CD=11+2=13(米).【解析】根据题意求出∠EDF=38°,通过解直角△EFD求得FD,在Rt△PEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△PCG中,继而可求出CG的长度.本题考查了解直角三角形的应用-仰角俯角问题,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.18.【答案】(1)设y与x的函数关系式为y=kx+b,解:将(10,200)、(15,150)代入,得:,解得:,∴y与x的函数关系式为y=-10x+300(8≤x≤30);(2)8,19,1210;(3)由(2)知,当获得最大利润时,定价为19元/千克,则每天的销售量为y=-10×19+300=110千克,∵保质期为40天,∴总销售量为40×110=4400,又∵4400<4800,∴不能销售完这批苹果.【解析】解:(1)见答案;(2)设每天销售获得的利润为w,则w=(x-8)y=(x-8)(-10x+300)=-10(x-19)2+1210,∵8≤x≤30,∴当x=19时,w取得最大值,最大值为1210;故答案为:8,19,1210;(3)见答案.(1)利用待定系数法求解可得;(2)根据“总利润=单件利润×销售量”列出函数解析式,并配方成顶点式即可得出最大值;(3)求出在(2)中情况下,即x=19时的销售量,据此求得40天的总销售量,比较即可得出答案.本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及找到题目蕴含的相等关系,据此列出二次函数的解析式,并熟练掌握二次函数的性质.19.【答案】解:(1)如图1中,①结论:EA=EC.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAC=∠ACB,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.②连接DB′.结论:DB′∥AC.∵EA=EC,∴∠EAC=∠ECA,∵AD=BC=CB′,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(2)如图2中,①当AB:AD=1:1时,四边形ABCD是正方形,∴∠BAC=∠CAD=∠EAB′=45°,∵AE=AE,∠B′=∠AFE=90°,∴△AEB′≌△AEF(AAS),∴AB′=AF,此时四边形AFEB′是轴对称图形,符合题意.②当AD:AB=时,也符合题意,∵此时∠DAC=30°,∴AC=2CD,∴AF=FC=CD=AB=AB′,∴此时四边形AFEB′是轴对称图形,符合题意.(3)如图3中,当四边形ABCD是平行四边形时,仍然有EA=EC,DB′∥AC.理由:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠ACB,由翻折可知:∠ACB=∠ACE,∴∠EAC=∠ECA,∴EA=EC.∵EA=EC,∴∠EAC=∠ECA,∵AD=BC=CB′,∴ED=EB′,∴∠EB′D=∠EDB′,∵∠AEC=∠DEB′,∴∠EB′D=∠EAC,∴DB′∥AC.(4)①如图3-1中,当∠AB′C=90°时,易证∠BAC=90°,BC==.②如图3-2中,当∠ADB′=90°时,易证∠ACB=90°,BC=AB•cos30°=.③如图3-3中,当∠DAB′=90°时,易证∠B=∠ACB=30°,BC=2•AB•cos30°=2.④如图3-4中,当∠DAB′=90°时,易证:∠B=∠CAB=30°,BC==,综上所述,满足条件的BC的长为或或2或【解析】(1)①想办法证明∠EAC=∠ECA即可判断AE=EC.②想办法证明∠ADB′=∠DAC即可证明.(2)①当AB:AD=1:1时,符合题意.②当AD:AB=时,也符合题意,(3)结论仍然成立,证明方法类似(1).(4)先证得四边形ACB′D是等腰梯形,分四种情形分别讨论求解即可解决问题;本题属于四边形综合题,考查了翻折变换,矩形的性质,平行四边形的性质,直角三角形的判定和性质,勾股定理,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.20.【答案】解:(1)如图1中,作CH⊥AB于H.∵CA=CB=5,CH⊥AB,∴AH=HB=3,在Rt△ACH中,CH==4,∴C(4,6),∵抛物线y=ax2(a>0)经过C点,∴6=16a,∴a=,∴抛物线的解析式为y=x2.(2)①∵A(1,2),B(7,2),当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,∴a=,∵若G与△ABC有交点,∴≤a≤2.②由题意当a=时,y=x2,当y=8时,8=x2,∴x>0,∴x=14,∴当反比例函数y=经过点(14,8)时k的值最大,此时k=112,∴k的最大值为112.【解析】(1)如图1中,作CH⊥AB于H.求出点C坐标即可解决问题;(2)①当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,可得a=,由此即可解决问题;②由题意当a=时,y=x2,当y=8时,8=x2,因为x>0,推出x=14,由题意当反比例函数y=经过点(14,8)时k的值最大;本题考查二次函数综合题、待定系数法、勾股定理等知识,解题的关键是理解题意,学会利用特殊点解决问题,属于中考压轴题.21.【答案】(1)1 ,;(2)在图3中,连接OP、ON,过点O作OG⊥AD于点G.∵半圆与直线CD相切,∴ON⊥DN,∴四边形DGON为矩形,∴DG=ON=2,∴AG=AD-DG=1.在Rt△AGO中,∠AGO=90°,AO=2,AG=1,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP为等边三角形,∴劣弧AP的长==π;(3)由(2)可知:△AOP为等边三角形,∴DN=GO=OA=,∴CN=CD+DN=4+,当点B′在直线CD上时,如图4所示.在Rt△AB′D中(点B′在点D左边),AB′=4,AD=3,∴B′D==,∴CB′=4-,∵AB′为直径,∴∠ADB′=90°,∴当点B′在点D右边时,半圆交直线CD于点D、B′.∴当半圆弧与直线CD只有一个交点时,4-≤d<4或d=4+.【解析】解:(1)∵在矩形ABCD中,AB=4,BC=3,∴AC=5,在旋转过程中,当点B′落在对角线AC上时,B′C的值最小,最小值为1;在图2中,连接B′M,则∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=5.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;故答案为:1,;(2)见答案;(3)见答案.【分析】(1)连接B′M,则∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的长度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根据相似三角形的性质可求出AM的长度;(2)连接OP、ON,过点O作OG⊥AD于点G,则四边形DGON为矩形,进而可得出DG、AG的长度,在Rt△AGO中,由AO=2、AG=1可得出∠OAG=60°,进而可得出△AOP 为等边三角形,再利用弧长公式即可求出劣弧AP的长;(3)由(2)可知:△AOP为等边三角形,根据等边三角形的性质可求出OG、DN的长度,进而可得出CN的长度,画出点B′在直线CD上的图形,在Rt△AB′D中(点B′在点D左边),利用勾股定理可求出B′D的长度进而可得出CB′的长度,再结合图形即可得出:半圆弧与直线CD只有一个交点时d的取值范围.本题考查了相似三角形的判定与性质、矩形的性质、等边三角形的性质、勾股定理以及切线的性质,解题的关键是:(1)利用相似三角形的性质求出AM的长度;(2)通过解直角三角形找出∠OAG=60°;(3)依照题意画出图形,利用数形结合求出d的取值范围.22.【答案】解:(1)如图1,连接AE,AF,∵BE和CF分别是⊙O的切线,∴∠BEA=∠CFA=90°,∵AB=AC,AE=AF,∴Rt△BAE≌Rt△ACF(HL),∴BE=CF;(2)如图2,过点D作DG⊥AB于点G,∵AB=AC=5,AD是中线,∴AD⊥BC,∴AD==3,∴BD×AD=AB×DG,∴DG=,∴当0<r<时,半圆M恰好落在△ABC内部;(3)当M为△ABC的内心时,如图3,过M作MH⊥AB于H,作MP⊥AC于P,则有MH=MP=MD,连接BM、CM,∴AB•MH+BC•MD+AC•MP=AD•BC,∴r===,∴AM=AD-DM=.【解析】(1)连接AE,AF,利用“HL”证Rt△BAE≌Rt△ACF即可得;(2)作DG⊥AB,由AB=AC=5,AD是中线知AD⊥BC且AD==3,依据BD×AD=AB×DG可得DG=,从而得出答案;(3)作MH⊥AB,MP⊥AC,有MH=MP=MD,连接BM、CM,根据AB•MH+BC•MD+AC•MP=AD•BC求出圆M的半径,从而得出答案.本题是圆的综合问题,解题的关键是掌握等腰三角形的判定与性质、全等三角形的判定与性质、圆的切线的判定与性质等知识点.23.【答案】解:(1)y=-x+4,令x=0,则y=4,令y=0,则x=4,则点A、C的坐标分别为(4,0)、(0,4),将点A的坐标代入抛物线的表达式并解得:m=3,故抛物线的表达式为:y=-x2+3x+4…①,令y=0,则x=-1或4,故点B(-1,0);(2)①当点E在CD上方时,tan∠BCO==,则直线CE的表达式为:y=x+4…②,联立①②并解得:x=0或(舍去0),则点E(,);②当点E在CD下方时,同理可得:点E′(,);故点E的坐标为E(,)或(,);(3)①如图2,当CM为菱形的一条边时,过点P作PQ∥x轴,∵OA=OC=4,∴∠PMQ=∠CAO=45°,设点P(x,-x2+3x+4),则PM=PQ=x,C、M、N、P为顶点的四边形是菱形,则PM=PN,即:x=-x2+3x+4,解得:x=0或4-(舍去0),故菱形边长为x=4-2;②如图3,当CM为菱形的对角线时,同理可得:菱形边长为2;故:菱形边长为4-2或.【解析】(1)利用直线方程求得点A、C的坐标,根据点A、C坐标求得抛物线解析式;(2)分点E在CD上方、点E在CD下方两种情况,分别求解即可;(3)分CM为菱形的一条边、CM为菱形的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数、菱形基本性质等,要注意分类求解、避免遗漏.。

2020年河北省保定市中考数学一模试卷

2020年河北省保定市中考数学一模试卷

中考数学一模试卷题号 一二三四总分得分一、选择题(本大题共 16 小题,共 42.0 分)1.以下计算结果为 1 的是( )3A. ( -1 ) ( )B. ( -1 ) ( -1 )C. ( -1) ( ) D. (-1)+ -1 -÷ -12.将数字 0.0000208 用科学记数法可表示为 a ×10n ( 1≤a < 10, n 为整数)的形式,则n 的值为()A. 4B. -4C. 5D. -53. 以下图形中,能确立 ∠1> ∠2 的是()A.B.C.D.4. 一个点从数轴上表示 -2 的点开始, 向右挪动 7 个单位长度, 再向左挪动 4 个单位长 度.则此时这个点表示的数是()A.0B.2C.1D.-15.把图中暗影部分的小正方形挪动一个,使它与其他四个暗影部分的正方形构成一个既是轴对称又是中心对称的新图形,这样的移法,正确的选项是()A. 6→3B. 7→ 16C. 7→8D.6→ 156. 以下说法中正确的个数是()① -1 的倒数是 1 ② 4 的平方根是 2 ③ tan45 °=1④ 2a 2?3a -1 =6a⑤一组数据 1,1, 1 的方差为 1A.1个B.2个C.3个D.4个7.一个正方体的六个面上分别标有-1,-2, -3, -4, -5, -6 中的一个数,各个面上所 标数字都不同样,如图是这个正方体的三种搁置方法,则数字 -3 对面的数字是()A. -1B. -2C. -5D. -68. 已知,则 A=()A. B. C.2D. x -1 2019201810.如图,将一张正六边形纸片的暗影部分剪下,拼成一个四边形,若拼成的四边形的面积为 2a,则纸片的节余部分的面积为()A. 5aB. 4aC. 3aD. 2a11. 设函数y=(k≠0 x 0 z=,则z ,>)的图象以下图,若对于 x 的函数图象可能为()A.B.C.D.12.如图,某边防战士驾驶摩托艇出门巡逻,先从港口 A 点沿北偏东60 °的方向行驶30海里到 B 点,再从 B 点沿北偏西30°方向行驶 30 海里到 C 点,要想从 C 点直接回到港口 A,行驶的方向应是()向 D. 南偏西45°方向13.2 3 6 8 x的独一众数是x,此中x是不等式组的解,则这一组数据;;;;组数据的中位数是()A. 3B. 4C.D. 614. 为了鼓舞市民节俭用电,某市对居民用电推行“阶梯收费”(总电费=第一阶梯电费 +第二阶梯电费).规定:用电量不超出200 度按第一阶梯电价收费,超出200 度的部分按第二阶梯电价收费.如图是张磊家 2015 年 9 月和 10 月所交电费的收条,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A. 元、元B. 元、元C. 元、元D. 元、元15.如图,点 E 在边长为 10 的正方形 ABCD 内,知足∠AEB=90 °,则暗影部分的面积的最小值是()A. 75B. 100-C.D. 2516.四位同学在研究函数y=x2+bx+c( b, c 是常数)时,甲发现当x=1 时,函数有最小值;乙发现 -1 是方程 x2+bx+c=0 的一个根;丙发现函数的最小值为3;丁发现当x=2 时, y=4 ,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁二、填空题(本大题共 3 小题,共12.0 分)17.比较大小:______3(填“>”、“ =”或“<”).18.如图,在△ABC 中,∠ABC=2∠C,小明做了以下操作:(Ⅰ)以 A 为圆心, AB 长为半径画弧,交 AC 于点 F;(Ⅱ)以 A 为圆心,随意长为半径画弧,交 AB、AC 于 M、N 两点,分别以M、 N 为圆心,以大于MN 为半径画弧,两弧交于一点P,作射线 AP,交 BC 于点 E;(Ⅲ)作直线EF.依照小明尺规作图的方法,若,,则 AC 的长为 ______;19.如图,点 A1、A2、 A3在直线 y=x 上,点 C1, C2, C3在直线 y=2x 上,以它们为极点挨次结构第一个正方形A1C1A2 B1,三、计算题(本大题共 1 小题,共8.0 分)20.已知: a+b=4( 1)求代数式( a+1)( b+1) -ab 值;2 2(2)若代数式 a -2ab+b +2a+2b 的值等于 17,求 a-b 的值.四、解答题(本大题共 6 小题,共58.0 分)21.某学校为了认识九年级学生寒假的阅读状况,随机抽取了该年级的部分学生进行检查,统计了他们每人的阅读本数,设每名学生的阅读本数为n,并按以下规定分为四档:当 n<3 时,为“偏少”;当 3≤n< 5 时,为“一般”;当 5≤n<8 时,为“优异”;当 n≥8时,为“优异”.将检查结果统计后绘制成不完好的统计图表:阅读本数 n(本) 1 2 3 4 5 6 7 8 9 人数(名) 1 2 6 7 12 x 7 y 1 请依据以上信息回答以下问题:( 1)分别求出统计表中的x, y 的值;(2)求扇形统计图中“优异”类所在扇形的圆心角的度数;(3)假如随机去掉一个数据,求众数发生变化的概率,并指出众数变化时,去掉的是哪个数据.22. 在一次聚会上,规定每两个人会面一定握手,且握手 1 次.(1)若参加聚会的人数为 3,则共握手 ______次;若参加聚会的人数为 5,则共握手______次;(2)若参加聚会的人数为 n( n 为正整数),则共握手 ______次;( 3)若参加聚会的人共握手28 次,恳求出参加聚会的人数.( 4)嘉嘉由握手问题想到了一个数学识题:若线段AB上共有m个点(不含端点A,B),线段总数为多少呢?请直接写出结论.23.如图,在△ABC 中, AD 是 BC 边上的中线, E 是 AD 的中点,过点 A 作 BC 的平行线交 BE 的延伸线于点 F ,连结 CF .(1)求证: AF=DC ;(2)若 AB⊥AC,试判断四边形 ADCF 的形状,并证明你的结论.(3)在(2)的条件下,假如四边形 ADCF 为正方形,在△ABC 中应增添什么条件,请直接把增补条件写在横线上 ______(不需说明原因).24.如图1,在直角坐标系中,一次函数的图象l 1与 y 轴交于点 A( 0, 2),与一次函数 y=x-3 的图象 l2交于点 E( m,-5).(1)求 m 的值及 l1的表达式;(2)直线 l1与 x 轴交于点 B,直线 l 2与 y 轴交于点 C,求四边形 OBEC 的面积;(3)如图 2,已知矩形 MNPQ ,PQ=2,NP=1, M( a, 1),矩形 MNPQ 的边 PQ 在 x 轴上平移,若矩形MNPQ 与直线 l1或 l 2有交点,直接写出 a 的取值范围.25.某游玩园有一个直径为 16 米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心 3 米处达到最高,高度为 5 米,且各方向喷出的水柱恰幸亏喷水池中心的装修物处集合.以下图,以水平方向为x 轴,喷水池中心为原点成立直角坐标系.( 1)求水柱所在抛物线(第一象限部分)的函数表达式;( 2)王师傅在喷水池内维修设备时期,喷水管不测喷水,为了不被淋湿,身高米的王师傅站即刻一定在离水池中心多少米之内?(3)经检修评估,游玩园决定对喷水设备做以下设计改良:在喷出水柱的形状不变的前提下,把水池的直径扩大到 32 米,各方向喷出的水柱仍在喷水池中心保存的原装修物(高度不变)处集合,请研究扩建改造后喷水池水柱的最大高度.26. 以下图,点 A 为半圆 O 直径 MN 所在直线上一点,射线AB 垂直于 MN ,垂足为A,半圆绕 M 点顺时针转动,转过的角度记作α;设半圆 O 的半径为 R,AM 的长度为 m,回答以下问题:研究:( 1)若 R=2,m=1,如图 1,当旋转 30°时,圆心 O′到射线 AB 的距离是______;如图 2,当α =______时°,半圆 O 与射线 AB 相切;( 2)如图 3,在( 1)的条件下,为了使得半圆O 转动 30°即能与射线 AB 相切,在保持线段 AM 长度不变的条件下,调整半径R 的大小,请你求出知足要求的R,并说明原因.( 3)发现:( 3)如图 4,在 0°<α< 90°时,为了对随意旋转角都保证半圆O 与射线 AB 能够相切,小明研究了 cosα与 R、m 两个量的关系,请你帮助他直接写出这个关系; cosα= (用含有 R、m 的代数式表示)拓展:( 4)如图 5 ,若 R=m,当半圆弧线与射线 AB 有两个交点时,α的取值范围是 ______,并求出在这个变化过程中暗影部分(弓形)面积的最大值(用m 表示)答案和分析1.【答案】C【分析】解:∵( -1)+( -1) =-2 ,应选项A 不切合题意,∵( -1) -( -1) =0,应选项B不切合题意,∵( -1)÷(-1) =1,应选项 C 切合题意,3应选: C.依据选项中的式子能够计算出正确的结果,从而能够解答本题.本题考察有理数的混淆运算,解答本题的重点是明确有理数混淆运算的计算方法.2.【答案】D【分析】解: 0.0000208=2.08 ×10-5,故 n=-5 .应选: D.绝对值小于 1 的正数也能够利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不一样的是其所使用的是负指数幂,指数由原数左侧起第一个不为零的数字前面的0 的个数所决定.a×10- n,此中本题考察用科学记数法表示较小的数,一般形式为1≤|a< 10,n 为由原数左侧起第一个不为零的数字前面的0 的个数所决定.3.【答案】C【分析】解: A、∵∠1 与∠2 是对顶角,∴∠1=∠2 ,故本选项错误;B、若两条直线平行,则∠1= ∠2 ,若所截两条直线不平行,则∠1 与∠2 没法进行判断,故本选项正确;C、∵∠1 是∠2 所在三角形的一个外角,∴∠1>∠2,故本选项正确;D 、∵已知三角形是直角三角形,∴由直角三角形两锐角互余可判断出∠1=∠2.应选: C.分别依据对顶角相等、平行线的性质、三角形外角的性质对四个选项进行逐个判断即可.本题考察的是对顶角相等、平行线的性质、三角形外角的性质及直角三角形的性质,熟知以上知识是解答本题的重点.4.【答案】C【分析】解:依据题意得:-2+7-4=1 ,则此时这个点表示的数是1,应选: C.依据平移的路径确立出此时点表示的数即可.本题考察了数轴,列出正确的算式是解本题的重点.5.【答案】D【分析】解:暗影部分的小正方形6→15,能使它与其他四个暗影部分的正方形构成一个既是轴对称又是中心对称的新图形.应选: D.6.【答案】B【分析】解:① -1 的倒数是 -1,② 4 的平方根是±2,③tan45 °=1 ,④ 2a2?3a-1=6 a⑤一组数据1, 1,1 的方差为 0,正确的个数有 2 个;应选: B.依据倒数、单项式乘单项式、负整数指数幂、特别角的三角函数值和方差的意义分别进行解答即可.本题考察了倒数、单项式乘单项式、负整数指数幂、特别角的三角函数值和方差的意义,解题的重点是正确理解各观点的含义.7.【答案】B【分析】解:由图可知,∵与 -2 相邻的面的数字有-1、-4、 -5、 -6,∴-2 的对面数字是-3.应选: B.依据与 -2 相邻的面的数字有-1、 -4、 -5、 -6 判断出 -2 的对面数字是-3,即可求解.本题考察了正方体相对两个面上的文字,依据相邻面上的数字确立出相对面上的数字是解题的重点.8.【答案】B【分析】解:∵,∴A=?( 1+)=?=,应选: B.依据已知得出 A=?( 1+ ),先算括号内的加法,再算乘法即可.本题考察了分式的混淆运算,能正确依据分式的运算法例进行化简是解本题的重点.9.【答案】C2019 2018 2018 2018 【分析】解:( -8) +( -8) =( -8)×( -8+1) =-7 ×( -8),应选: C.将已知式子提取公因数(-8)2018即可求解;本题考察有理数的乘方;能够将较大数提取公因数是解题的重点.10.【答案】B【分析】解:以下图:将正六边形可分为 6 个全等的三角形,∵暗影部分的面积为2a,∴每一个三角形的面积为a,∵节余部分可切割为 4 个三角形,∴节余部分的面积为4a.应选: B.以下图可将正六边形分为 6 个全等的三角形,暗影部分由两个三角形构成,节余部分由 4 个三角形构成,故此可求得节余部分的面积.本题主要考察的是图形的剪拼,将正六边形切割为六个全等的三角形是解题的重点.11.【答案】D【分析】解:∵y= ( k≠0, x> 0),∴z= = = ( k≠0,x>0).∵反比率函数y= ( k≠0, x> 0)的图象在第一象限,∴k> 0,∴> 0.∴z 对于 x 的函数图象为第一象限内,且不包含原点的正比率的函数图象.应选: D.依据反比率函数分析式以及z= ,即可找出z 对于 x 的函数分析式,再依据反比率函数图象在第一象限可得出k>0,联合 x 的取值范围即可得出结论.本题考察了反比率函数的图象以及正比率函数的图象,解题的重点是找出z 对于 x 的函数分析式.本题属于基础题,难度不大,解决该题型题目时,依据分式的变换找出z关于 x 的函数关系式是重点.12.【答案】A【分析】解:如图,由题可得,∠BAF=60°,∠CBE =30°,AF//BE,∴∠ABC=90 °,又∵AB=BC,∴△ABC 是等腰直角三角形,∴∠BCA=45 °,又∵∠BCD=∠CBE=30°,∴∠ACD=15 °,∴从 C 点直接回到港口A,行驶的方向应是南偏西15 °方向,应选: A.依照∠BAF =60°,∠CBE=30°,AF ∥BE,可得∠ABC=90°,从而得出△ABC 是等腰方向角描绘方向时,往常以正北或正南方向为角的始边,以对象所处的射线为终边,故描绘方向角时,一般先表达北或南,再表达偏东或偏西.13.【答案】D【分析】解:由不等式组得,3<x<7,∵一组数据2; 3; 6;8; x 的独一众数是x,∴x=6,∴这组数据为:2、 3、6、 6、 8,∴这组数据的中位数是6,应选: D.依据不等式组能够求得 x 的取值范围,而后依据一组数据2;3; 6; 8; x 的独一众数是x,能够求得x 的值,从而能够获得这组数据的中位数.本题考察众数、中位数、解一元一次不等式组,解答本题的重点是明确众数、中位数的定义,会解答一元一次不等式组.14.【答案】A【分析】解:设第一阶梯电价每度x 元,第二阶梯电价每度y 元,由题意可得,,解得.即:第一阶梯电价每度0.5 元,第二阶梯电价每度0.6 元.应选: A.设第一阶梯电价每度 x 元,第二阶梯电价每度 y 元,分别依据 9 月份和 10 月份的电费收条,列出方程组,求出 x 和 y 值.本题考察了二元一次方程组的应用,解答本题的重点是读懂题意,设出未知数,找出适合的等量关系,列方程组求解.15.【答案】A【分析】【剖析】本题考察正方形的性质,三角形的面积,垂线段最短等知识,解题的重点是学会用转变的思想思虑问题,属于中考常考题型.取 AB 的中点 O,连结 OE,作 EH ⊥AB 于 H.求出△ABE 的面积的最大值即可解决问题.【解答】解:取 AB 的中点 O,连结 OE,作 EH ⊥AB 于 H.∵∠AEB=90 °, OA=OB,∴OE= AB=5,∵S△ABE= ×AB×EH , EH ≤OE,∴当 EH 与 OE 重合时,△AEB 的面积最大,面积的最大值= ×10 ×5=25 ,∴暗影部分的面积的最小值=10 ×10-25=75.应选 A.16.【答案】B【分析】解:假定甲和丙的结论正确,则,解得:,∴抛物线的分析式为y=x2 -2x+4.当 x=-1 时, y=x2-2x+4=7 ,∴乙的结论不正确;当 x=2 时, y=x2-2x+4=4,∴丁的结论正确.∵四位同学中只有一位发现的结论是错误的,∴假定成立.应选: B.假定两位同学的结论正确,用其去考证此外两个同学的结论,只需找出一个正确一个错误,即可得出结论(本题选择的甲和丙,利用极点坐标求出 b、 c 的值,而后利用二次函数图象上点的坐标特点考证乙和丁的结论).本题考察了抛物线与 x 轴的交点、二次函数的性质以及二次函数图象上点的坐标特点,利用二次函数的性质求出 b、 c 值是解题的重点.17.【答案】<【分析】解:∵2 =,3=,∴2<3,故答案为:<.求出 2 =,3=,再比较即可.本题考察了二次根式的性质,实数的大小比较的应用,主要考察学生的比较能力.18.【答案】【分析】解:依据作图的步骤,可知:△ABE≌△AEF ( SAS)∴AB=AF, BE=EF,∠ABC=∠EFA=2∠C∴∠CEF=∠C∴FE=FC =BE∵,∴,∴依据作图的步骤,可知△ABE 与△AEF 全等,那么AB =AF ,BE=EF,∠ABC=∠EFA ,∠ABC=2∠C,从而推出∠CEF =∠C,得出 FE=FC,最后把 AF 与 FC 相加得出 AC 的长;这题主要考察:圆规作图,三角形全等的性质与判断,等腰三角形的性质,三角形的外角性质,解题的打破口是:理解该题的圆规作图能够得出三角形全等,利用三角形的全等的性质来求.19.【答案】 ( 4,2)22n-4【分析】 解: ∵点 A 1、 A 2、 A 3 在直线 y=x 上, A 2 的横坐标是 1, ∴A 2( 1, 1),∵点 C 1, C 2, C 3 在直线 y=2x 上, ∴C 1( , 1), A 1( , ),∴A 1C 1=1- = , B 1( 1, ),∴第 1 个正方形的面积为:() 2;∵C 2( 1, 2),2( 2, 1), A 3( 2, 2), A 2 2,B∴ C =2-1=112;∴第 2 个正方形的面积为: ∵C 3( 2, 4),3( 4, 2),A 3 3,B∴ C =4-2=222;∴第 3 个正方形的面积为: ,∴第 n 个正方形的面积为:( 2n-2) 2=22n-4.故答案为( 4 , 2), 22n-4.由 A 2 的横坐标是 1,可得 A 2( 1, 1),利用两个函数分析式求出点 C 1、 A 1 的坐标,得出 A 1C 1 的长度以及第 1 个正方形的面积,求出 B 1 的坐标;而后再求出 C 2 的坐标,得出第 2 个正方形的面积,求出B 2 的坐标;再求出 B 3、C 3 的坐标,得出第 3 个正方形的面 积;从而得出规律即可获得第n 个正方形的面积.本题考察了一次函数图象上点的坐标特点,正方形的性质以及规律型中图形的变化规律,解题的重点是找出规律.本题难度适中,解决该题型题目时,依据给定的条件求出第 1、 2、3 个正方形的边长,依据数据的变化找出变化规律是重点.20.【答案】 解:( 1)原式 =ab+a+b+1- ab=a+b+1,当 a+b=4 时,原式 =4+1=5 ;( 2) ∵a 2-2ab+b 2+2a+2 b=( a-b ) 2+2( a+b ),∴( a-b ) 2+2×4=17,∴( a-b ) 2=9,则 a-b=3 或 -3.【分析】 ( 1)将原式睁开、归并同类项化简得a+b+1,再代入计算可得;22( 2)由原式 =( a-b ) +2( a+b )可得( a-b ) +2×4=17,据此进一步计算可得.本题主要考察代数式的求值, 解题的重点是掌握多项式乘多项式的运算法例、 因式分解的能力及整体思想的运用.21.【答案】解:( 1)由表可知被检查学生中“一般”品位的有 13 人,所占比率是 26%,所以共检查的学生数是 13÷26%=50 , ∵12+x+7=50 ×60%, ∴x=11,∵y+1=50- ( 1+2) -( 6+7) -(12+11+7 ), ∴y=3.( 2)扇形统计图中“优异”类所在扇形的圆心角的度数360°× =28.8 °.( 3)由表格可知,本来的众数是5,只有去掉一个数据5,众数才会变成 5 和 6,所以众数发生变化的概率是=,去掉的数据是5.【分析】( 1)第一求得总人数,而后即可求得x 和 y 的值;( 2)第一求得样本中的优异率,而后用样本预计整体即可;( 3)依据本来的众数是5,只有去掉一个数据5,众数才会变成 5 和 6,求解可得.本题主要考察了扇形统计图,用样本预计整体以及频数散布表的运用,从扇形图上能够清楚地看出各部分数目和总数目之间的关系.各部分扇形圆心角的度数=部分占整体的百分比×360°.22.【答案】解:(1)3;10;(2) n( n-1);(3)依题意,得: n( n-1) =28 ,整理,得: n2-n-56=0 ,解得: n1=8,n2=-7 (不合题意,舍去).答:参加聚会的人数为8 人.(4)∵线段 AB 上共有 m 个点(不含端点 A, B),∴可当作共有( m+2)个人握手,∴线段总数为( m+2)( m+1).【分析】【剖析】( 1)由握手总数 =参加聚会的人数×(参加聚会的人数 -1)÷2,即可求出结论;(2)由参加聚会的人数为 n( n 为正整数),可知每人需跟( n-1)人握手,同( 1)即可求出握手总数;(3)由( 1)的结论联合共握手 28 次,即可得出对于 x 的一元二次方程,解之取其正当即可得出结论;(4)将线段数当作人握手次数,联合(1)即可得出结论.本题考察了一元二次方程的应用以及列代数式,解题的重点是:(1)依据各数目之间的关系,列式计算;(2)依据各数目之间的关系,列出代数式;(3)找准等量关系,正确列出一元二次方程;(4)将线段数当作人握手次数来解决问题.【解答】解:( 1) 3×( 3-1)÷2=3 , 5×( 5-1)÷2=10.故答案为: 3; 10.(2)∵参加聚会的人数为 n(n 为正整数),∴每人需跟( n-1)人握手,∴共握手n( n-1)次.故答案为:n( n-1).(3)见答案;(4)见答案 .23.【答案】(1)证明:连结DF ,∵E 为 AD 的中点,∴AE=DE ,∵AF ∥BC,∴∠AFE=∠DBE ,在△AFE 和△DBE 中,,∴△AFE ≌△DBE( AAS),∴EF=BE,∵AE=DE ,∴四边形 AFDB 是平行四边形,∴BD =AF ,∵AD 为中线,∴DC =BD ,∴AF=DC;(2)四边形 ADCF 的形状是菱形,证明:∵AF=DC,AF ∥BC,∴四边形 ADCF 是平行四边形,∵AC ⊥AB,∴∠CAB=90 °,∵AD 为中线,∴AD =DC ,∴平行四边形ADCF 是菱形;(3) AC=AB【分析】( 1)见答案(2)见答案(3)解: AC=AB,原因是:∵∠CAB=90°, AC=AB, AD 为中线,∴AD ⊥BC,∴∠ADC=90 °,∵四边形 ADCF 是菱形,∴四边形 ADCF 是正方形,故答案为: AC=AB.【剖析】( 1)连结 DF ,证三角形AFE 和三角形DBE 全等,推出AF=BD ,即可得出答案;( 2)依据平行四边形的判断得出平行四边形ADCF ,求出 AD=CD,依据菱形的判断得出即可;( 3)依据等腰三角形性质求出AD ⊥BC,推出∠ADC =90°,依据正方形的判断推出即可.本题考察了平行四边形、菱形、矩形、正方形的判断,全等三角形的性质和判断,直角三角形斜边上中线性质的应用,主要考察学生的推理能力.24.【答案】解:(1 E m -5 )在一次函数y=x-3 图象上,)∵点(,∴m-3=-5 ,∴m=-2;设直线 l1的表达式为 y=kx+b,∵直线 l1过点 A(0, 2)和 E( -2, -5),∴,解得.∴直线 l1的表达式为.( 2)由( 1)可知: B 点坐标为, C 点坐标为( 0,-3),∴=S +S = .S 四边形OBEC △OBE △OCE( 3)或3≤a≤6.当矩形 MNPQ 的极点 Q 在 l1上时, a 的值为,矩形 MNPQ 向右平移,当点N 在 l 1上时,,解得 x= ,即点 N(, 1),∴a 的值为+2= ,矩形 MNPQ 持续向右平移,当点Q 在 l2上时, a 的值为 3,矩形 MNPQ 持续向右平移,当点N 在 l 2上时,x-3=1 ,解得 x=4 ,即点 N( 4 ,1),∴a 的值 4+2=6,综上所述,当或 3≤a≤6时,矩形MNPQ 与直线 l1或 l 2有交点.【分析】( 1)依据点 E 在一次函数图象上,求出m 的值,利用待定系数法即可求出直线 l1的函数分析式;( 2)由( 1)求出点 B、C 的坐标,利用 S 四边形OBEC△△即可得解;=S OBE+S OCE( 3)分别求出矩形MNPQ 在平移过程中,当点Q 在 l1上、点 N 在 l1上、点 Q 在 l2上、点 N 在 l 2上时 a 的值,即可得解.本题主要考察两条直线订交或平行、图形的平移等知识的综合应用,在解决第(3)小题时,只有求出各临界点时 a 的值,就能够获得 a 的取值范围.25.【答案】解:(1 )设水柱所在抛物线(第一象限部分)的函数表达式为y=a x-3 )(2 +5( a≠0),将( 8, 0)代入 y=a( x-3)2+5,得: 25a+5=0,解得: a=- ,∴水柱所在抛物线(第一象限部分)的函数表达式为y=- ( x-3)2+5( 0< x< 8).( 2)当 y=1.8 时,有 - ( x-3)2,解得: x1=-1, x2=7 ,∴为了不被淋湿,身高 1.8 米的王师傅站即刻一定在离水池中心7 米之内.( 3)当 x=0 时, y=- ( x-3)2+5= .设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=- x2+bx+ ,∵该函数图象过点(16, 0),0=- ×162,解得: b=3 ,∴+16b+∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=- x2+3x+ =- ( x-)2+.∴扩建改造后喷水池水柱的最大高度为米.【分析】( 1)依据极点坐标可设二次函数的极点式,代入点(8,0),求出 a 值,此题得解;( 2)利用二次函数图象上点的坐标特点,求出当y=1.8 时 x 的值,由此即可得出结论;( 3)利用二次函数图象上点的坐标特点可求出抛物线与y 轴的交点坐标,由抛物线的2+bx+ ,形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=- x代入点( 16, 0)可求出 b 值,再利用配方法将二次函数表达式变形为极点式,即可得出结论.本题考察了待定系数法求二次函数分析式以及二次函数图象上点的坐标特点,解题的关键是:( 1)依据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特点求出当y=1.8 时 x 的值;( 3)依据点的坐标,利用待定系数法求出二次函数表达式.26.【答案】()1+1 60( 2)设切点为P,连结 O′ P,作 MQ ⊥O′ P,则四边形APQM 是矩形.∵O′P=R,∴R= R+1,∴R=4+2.(3)(4) 90°<α≤ 120°如图 5 所示,当N′落在 AB 上时,暗影部分面积最大,所以 S═- ? m? m= -m2.【分析】解:( 1)如图 1 中,作 O′ E⊥AB 于 E, MF⊥O′ E 于 F .则四边形 AMFE 是矩形, EF=AM=1 .想方法求出 O′ E 的长即可.在 Rt△MFO ′中,∵∠MO ′F=30°, MO ′ =2,∴O′F=O′ M?cos30 =°, O′ E= +1,∴点 O′到 AB 的距离为+1 .如图2中,设切点为F,连结O′F,作O E OA于E,则四边形O′EAF是矩形,′ ⊥∴AE=O′ F=2,∵AM =1,∴EM =1,在 Rt△O′ EM 中, cosα= = ,∴α =60 °故答案为+1, 60°.(2)见答案.(3)设切点为 P,连结 O′ P,作 MQ ⊥O′ P,则四边形 APQM 是矩形.在 Rt△O′ QM 中, O′ Q=R?cosα, QP=m,∵O′P=R,∴R?cos α+m=R,∴cos α= .故答案为.( 4)如图 5 中,当半圆与射线AB 相切时,以后开始出现两个交点,此时α=90°;当N′落在AB上时,为半圆与AB 有两个交点的最后时辰,此时∵MN′ =2 AM,所以∠AMN′ =60°,所以,α =120因°此,当半圆弧线与射线AB 有两个交点时,α的取值范围是:90°<α≤ 120 °.故答案为90°<α≤ 120;°这个变化过程中暗影部分(弓形)面积的最大值(用m 表示)求解过程见答案.【剖析】(1)如图 1 中,作 O′ E⊥AB 于 E,MF⊥O′ E 于 F.则四边形 AMFE 是矩形,EF=AM=1.如图 2 中,设切点为 F,连结 O′ F,作 O′ E⊥OA 于 E,则四边形 O′ EAF 是矩形,在Rt△O′ EM 中,由 sin α== ,推出α =60;°( 2)设切点为 P,连结 O′ P,作 MQ ⊥O′ P,则四边形 APQM 是矩形.列出方程即可解决问题;(3)设切点为 P,连结 O′ P,作 MQ ⊥O′ P,则四边形 APQM 是矩形.列出方程即可解决问题;( 4)当半圆与射线AB 相切时,以后开始出现两个交点,此时α=90°;当N′落在AB 上时,为半圆与AB 有两个交点的最后时辰,此时∵MN′ =2AM,所以∠AMN′ =60°,所以,α=120°所以,当半圆弧线与射线AB 有两个交点时,α的取值范围是: 90°<α≤ 120.°当N′落在 AB 上时,暗影部分面积最大,求出此时的面积即可.本题考察圆综合题、旋转变换、切线的判断和性质、解直角三角形等知识,解题的重点是学会增添常用协助线,结构直角三角形或特别四边形解决问题,所以中考压轴题.。

2020年保定市中考数学模拟试卷及答案

2020年保定市中考数学模拟试卷及答案

2020年保定市中考数学模拟试卷及答案一、选择题1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A .2.3×109 B .0.23×109 C .2.3×108 D .23×1072.通过如下尺规作图,能确定点D 是BC 边中点的是( )A .B .C .D .3.下列各式中能用完全平方公式进行因式分解的是( )A .x 2+x+1B .x 2+2x ﹣1C .x 2﹣1D .x 2﹣6x+9 4.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D .5.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .5B .4C .213D .4.86.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y=4x ﹣12x 2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:27.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k >0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1;2,△OAC与△CBD的面积之和为,则k的值为()A.2B.3C.4D.8.根据以下程序,当输入x=2时,输出结果为()A.﹣1B.﹣4C.1D.119.某服装加工厂加工校服960套的订单,原计划每天做48套.正好按时完成.后因学校要求提前5天交货,为按时完成订单,设每天就多做x套,则x应满足的方程为()A.96096054848x-=+B.96096054848x+=+C.960960548x-=D.96096054848x-=+10.如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .9211.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x -=+C .60(125%)6030x x⨯+-= D .6060(125%)30x x⨯+-= 12.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55a b > D .-3a >-3b 二、填空题13.如图,△ABC 的三个顶点均在正方形网格格点上,则tan ∠BAC =_____________.14.关于x 的一元二次方程2310ax x --=的两个不相等的实数根都在-1和0之间(不包括-1和0),则a 的取值范围是___________15.如图,添加一个条件: ,使△ADE ∽△ACB ,(写出一个即可)16.某品牌旗舰店平日将某商品按进价提高40%后标价,在某次电商购物节中,为促销该商品,按标价8折销售,售价为2240元,则这种商品的进价是______元.17.如图,在Rt △AOB 中,OA=OB=32O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .18.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.19.已知反比例函数的图象经过点(m,6)和(﹣2,3),则m的值为________.20.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD =∠MAP+∠PAB,则AP=_____.三、解答题21.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)图1中a的值为;(Ⅱ)求统计的这组初赛成绩数据的平均数、众数和中位数;(Ⅲ)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.22.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.问题:探究函数y=x+的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)函数的自变量x的取值范围是:____;(2)如表是y与x的几组对应值,请将表格补充完整:x…﹣3﹣2﹣﹣1123…y…﹣3﹣3﹣3﹣443…(3)如图,在平面直角坐标系中描点并画出此函数的图象;(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】230000000=2.3×108 ,故选C.2.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.3.D解析:D【解析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:A 、x 2+x+1不符合完全平方公式法分解因式的式子特点,故选项错误;B 、x 2+2x ﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;C 、x 2﹣1不符合完全平方公式法分解因式的式子特点,故选项错误;D 、x 2﹣6x+9=(x ﹣3)2,故选项正确.故选D .4.C解析:C【解析】【分析】x=0,求出两个函数图象在y 轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b ,所以,两个函数图象与y 轴相交于同一点,故B 、D 选项错误;由A 、C 选项可知,抛物线开口方向向上,所以,a >0,所以,一次函数y=ax+b 经过第一三象限,所以,A 选项错误,C 选项正确.故选C .5.C解析:C【解析】【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】 ∵AB 为直径,∴90ACB ︒∠=,∴6BC ==,∵OD AC ⊥, ∴142CD AD AC ===,在Rt CBD ∆中,BD ==故选C .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.6.A解析:A【解析】分析:求出当y=7.5时,x 的值,判定A ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出抛物线与直线的交点,判断C ,根据直线解析式和坡度的定义判断D . 详解:当y=7.5时,7.5=4x ﹣12x 2, 整理得x 2﹣8x+15=0,解得,x 1=3,x 2=5,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5侧面cm ,A 错误,符合题意;y=4x ﹣12x 2 =﹣12(x ﹣4)2+8, 则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 则小球落地点距O 点水平距离为7米,C 正确,不符合题意;∵斜坡可以用一次函数y=12x 刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意;故选:A .点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.7.C解析:C【解析】【分析】由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即可得出k的值.【详解】∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),∵△OAC与△CBD的面积之和为,∴(k-1)+ (k-1)=,∴k=4.故选C.【点睛】本题考查反比例函数系数k的几何意义,三角形面积的计算,解题的关键是用k表示出△OAC与△CBD的面积.8.D解析:D【解析】【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】当x=2时,x2﹣5=22﹣5=﹣1,结果不大于1,代入x2﹣5=(﹣1)2﹣5=﹣4,结果不大于1,代入x2﹣5=(﹣4)2﹣5=11,故选D.【点睛】本题考查了代数式求值,正确代入求值是解题的关键.9.D解析:D【解析】解:原来所用的时间为:96048,实际所用的时间为:96048x,所列方程为:96096054848x -=+.故选D . 点睛:本题考查了由实际问题抽象出分式方程,关键是时间作为等量关系,根据每天多做x 套,结果提前5天加工完成,可列出方程求解.10.B解析:B【解析】【分析】由平行四边形的性质和折叠的性质,得出ADB BDF DBC ∠∠∠==,由三角形的外角性质求出1BDF DBC DFC 202∠∠∠===,再由三角形内角和定理求出A ∠,即可得到结果.【详解】 AD //BC ,ADB DBC ∠∠∴=,由折叠可得ADB BDF ∠∠=,DBC BDF ∠∠∴=,又DFC 40∠=,DBC BDF ADB 20∠∠∠∴===,又ABD 48∠=,ABD ∴中,A 1802048112∠=--=,E A 112∠∠∴==,故选B .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出ADB ∠的度数是解决问题的关键.11.C解析:C【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x +万平方米, 依题意得:606030125%x x -=+,即()60125%6030x x ⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.12.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 二、填空题13.【解析】分析:在图形左侧添加正方形网格分别延长ABAC 连接它们延长线所经过的格点可构成直角三角形利用正切的定义即可得出答案详解:如图所示由图形可知∴tan ∠BAC=故答案为点睛:本题考查了锐角三角函 解析:13【解析】分析:在图形左侧添加正方形网格,分别延长AB 、AC ,连接它们延长线所经过的格点,可构成直角三角形,利用正切的定义即可得出答案.详解:如图所示,由图形可知,90AFE ∠=︒,3AF AC =,EF AC =,∴tan ∠BAC =133EF AC AF AC ==. 故答案为13. 点睛:本题考查了锐角三角函数的定义. 利用网格构建直角三角形进而利用正切的定义进行求解是解题的关键.14.<a<-2【解析】【分析】【详解】解:∵关于x 的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0解得:a >−设f (x )=ax2-3x-1如图∵实数根都在-1解析:94-<a<-2【解析】【分析】【详解】解:∵关于x的一元二次方程ax2-3x-1=0的两个不相等的实数根∴△=(-3)2-4×a×(-1)>0,解得:a>−9 4设f(x)=ax2-3x-1,如图,∵实数根都在-1和0之间,∴-1<−32a-<0,∴a<−32,且有f(-1)<0,f(0)<0,即f(-1)=a×(-1)2-3×(-1)-1<0,f(0)=-1<0,解得:a<-2,∴−94<a<-2,故答案为−94<a<-2.15.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB,利用两边及其夹角法可判定△ADE∽△ACB.16.2000【解析】【分析】设这种商品的进价是x元根据提价之后打八折售价为2240元列方程解答即可【详解】设这种商品的进价是x元由题意得(1+40)x×08=2 240解得:x=2000故答案为:2000解析:2000,【解析】【分析】设这种商品的进价是x元,根据提价之后打八折,售价为2240元,列方程解答即可.【详解】设这种商品的进价是x元,由题意得,(1+40%)x×0.8=2240,解得:x=2000,故答案为:2000.【点睛】本题考查了一元一次方程的应用——销售问题,弄清题意,熟练掌握标价、折扣、实际售价间的关系是解题的关键.17.【解析】试题分析:连接OPOQ∵PQ是⊙O的切线∴OQ⊥PQ根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB时线段PQ最短此时∵在Rt△AOB中OA=OB=∴AB=O A=6∴OP=AB=3∴解析:22【解析】试题分析:连接OP、OQ,∵PQ是⊙O的切线,∴OQ⊥PQ.根据勾股定理知PQ2=OP2﹣OQ2,∴当PO⊥AB时,线段PQ最短.此时,∵在Rt△AOB中,OA=OB=,∴AB=OA=6.∴OP=AB=3.∴.18.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.19.-1【解析】试题分析:根据待定系数法可由(-23)代入y=可得k=-6然后可得反比例函数的解析式为y=-代入点(m6)可得m=-1故答案为:-1解析:-1【解析】试题分析:根据待定系数法可由(-2,3)代入y=kx,可得k=-6,然后可得反比例函数的解析式为y=-6x,代入点(m,6)可得m=-1.故答案为:-1.20.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.三、解答题21.(1) 25 ; (2) 这组初赛成绩数据的平均数是1.61.;众数是1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.【解析】【分析】【详解】试题分析:(1)、用整体1减去其它所占的百分比,即可求出a 的值;(2)、根据平均数、众数和中位数的定义分别进行解答即可;(3)、根据中位数的意义可直接判断出能否进入复赛.试题解析:(1)、根据题意得:1﹣20%﹣10%﹣15%﹣30%=25%; 则a 的值是25;(2)、观察条形统计图得: 1.502 1.554 1.605 1.656 1.70324563x ⨯+⨯+⨯+⨯+⨯=++++=1.61; ∵在这组数据中,1.65出现了6次,出现的次数最多, ∴这组数据的众数是1.65; 将这组数据从小到大排列为,其中处于中间的两个数都是1.60, 则这组数据的中位数是1.60.(3)、能; ∵共有20个人,中位数是第10、11个数的平均数,∴根据中位数可以判断出能否进入前9名;∵1.65m >1.60m , ∴能进入复赛考点:(1)、众数;(2)、扇形统计图;(3)、条形统计图;(4)、加权平均数;(5)、中位数22.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:AB 10===, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x 元,则玉兰树的单价为1.5x 元,根据题意得:1200090001501.5x x+= 解得:x =120,经检验x =120是原分式方程的解,∴1.5x =180.答:银杏树的单价为120元,则玉兰树的单价为180元.24.(1)4,4,1,1;(2)x =2或x =﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,再整理化简求出y的值,最后求出x的值.【详解】(1)因为3和5的均值为4,所以,设y=x+4,原方程可化为(y﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y=x+2,原方程可化为(y﹣1)4+(y+1)4=706,去括号,得:(y2﹣2y+1)2+(y2+2y+1)2=706,y4+4y2+1﹣4y3+2y2﹣4y+y4+4y2+1+4y3+2y2+4y=706,整理,得:2y4+12y2﹣704=0(成功地消去了未知数的奇次项),解得:y2=16或y2=﹣22(舍去)所以y=±4,即x+2=±4.所以x=2或x=﹣6.【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.25.(1)x≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.【解析】【分析】(1)由分母不为零,确定x的取值范围即可;(2)将x=1,x=2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;【详解】(1)因为分母不为零,∴x≠0;故答案为a≠0.(2)x=1时,y=3;x=2时,y=3;故答案为3,3.(3)如图:(4)此函数有最小值和最大值;【点睛】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.。

【精选3份合集】河北省保定市2020年中考一模数学试卷有答案含解析

【精选3份合集】河北省保定市2020年中考一模数学试卷有答案含解析

中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.不等式组12342xx+>⎧⎨-≤⎩的解集表示在数轴上正确的是()A.B.C.D.解析:C【解析】【详解】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.2.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A.12B.24C.14D.13解析:D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD 中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD=,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.3.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-解析:A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.4.若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是( )A .m <1B .m >﹣1C .m >1D .m <﹣1解析:C【解析】 试题解析:关于x 的一元二次方程2x 2x m 0-+=没有实数根,()224241440b ac m m ∆=-=--⨯⨯=-<,解得: 1.m >故选C .5.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车x 辆,根据题意,可列出的方程是 ( ).A .3229x x -=+B .3(2)29x x -=+C .2932x x +=- D .3(2)2(9)x x -=+ 解析:B【解析】 【分析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.6.如图,半径为3的⊙A 经过原点O 和点C (0,2),B 是y 轴左侧⊙A 优弧上一点,则tan∠OBC 为( )A .13B .2C .24D .223解析:C【解析】试题分析:连结CD ,可得CD 为直径,在Rt△OCD 中,CD=6,OC=2,根据勾股定理求得OD=4 所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OB C=,故答案选C .考点:圆周角定理;锐角三角函数的定义.7.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .3y x =B .3y x =C .1y x =-D .2y x = 解析:B【解析】y=3x 的图象经过一三象限过原点的直线,y 随x 的增大而增大,故选项A 错误; y=3x的图象在一、三象限,在每个象限内y 随x 的增大而减小,故选项B 正确; y=−1x 的图象在二、四象限,故选项C 错误; y=x²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D 错误;故选B.8.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数和中位数分别是( ) 学生数(人)5 8 14 19 4 时间(小时)6 7 8 9 10 A .14,9B .9,9C .9,8D .8,9 解析:C【解析】【详解】解:观察、分析表格中的数据可得:∵课外阅读时间为1小时的人数最多为11人,∴众数为1.∵将这组数据按照从小到大的顺序排列,第25个和第26个数据的均为2,∴中位数为2.故选C.【点睛】本题考查(1)众数是一组数据中出现次数最多的数;(2)中位数的确定要分两种情况:①当数据组中数据的总个数为奇数时,把所有数据按从小到大的顺序排列,中间的那个数就是中位数;②当数据组中数据的总个数为偶数时,把所有数据按从小到大的顺序排列,中间的两个数的平均数是这组数据的中位数.9.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-解析:B【解析】【分析】首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:12000120001001.2x x=+故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.10.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°。

河北省定兴县联考2019-2020学年中考数学模拟试卷

河北省定兴县联考2019-2020学年中考数学模拟试卷

河北省定兴县联考2019-2020学年中考数学模拟试卷一、选择题1.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°2.关于x的一元二次方程(m﹣2)x2﹣4x+1=0有两个实数解,则实数m的取值范围( )A.m≤6B.m≤6且m≠2C.m<6且m≠2D.m<63.如图的四个转盘中,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A. B. C. D.4.如图,⊙O是△ABC的外接圆,OD⊥AB于点D,交⊙O于点E,∠C=60°,如果⊙O的半径为2,则结论错误的是()A.AD=DBB.AE EBC.OD=1D.AB5.一只布袋里装有4个只有颜色不同的小球,其中3个红球,1个白球,小敏和小丽依次从中任意摸出1个小球,则两人摸出的小球颜色相同的概率是()A.14B.12C.23D.346.如图,点A,B在反比例函数y=(x>0)的图象上,点C,D在反比例函数y=(k>0)的图象上,AC∥BD∥y轴,已知点A,B的横坐标分别为1;2,△OAC与△CBD的面积之和为,则k的值为()A.2B.3C.4D.7.如图,在扇形AOB中,∠AOB=90°,OA=2,点C、D分别为OA、OB的中点,分别以C、D为圆心,以OA、OB为直径作半圆,两半圆交于点E,则阴影部分的面积为()A.142π- B.12π- C.184π-D.142π+8.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m ,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为( )A .22.4mB .23.2mC .24.8mD .27.2m9.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(a ,b ),则点A'的坐标为( )A .(-a ,-b )B .(-a ,-b-1)C .(-a ,-b+1)D .(-a ,-b+2)10.如图,四边形OABC 是矩形,四边形ADEF 是正方形,点A 、D 在x 轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y=kx(k 为常数,k≠0)的图象上,正方形ADEF 的面积为4,且BF=2AF ,则k 值为( )A .4B .-4C .6D .-611.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =( )A .4πB .2πC .πD .23π 12.如图,AB A B ''=,A A '∠=∠,若ABC A B C '''∆≅∆,则还需添加的一个条件有( )A.1种B.2种C.3种D.4种二、填空题13.从1,2,3,4四个数中任取一个数作为AC 的长度,又从4,5中任取一个数作为BC 的长度,6AB =,则AB AC BC 、、能构成三角形的概率是_____.14.如图,反比例函数y =﹣3x的图象经过▱ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥CD ,则▱ABCD 的面积是_____.15.计算20180(1)2)--=_____. 16.已知反比例函数k 1y x-=的图象在第二、四象限内,那么k 的取值范围是________. 17.规定:在平面直角坐标系xOy 中,“把某一图形先沿x 轴翻折,再沿y 轴翻折”为一次变化.如图,已知正方形ABCD ,顶点A (1,3),C (3,1).若正方形ABCD 经过一次上述变化,则点A 变化后的坐标为 ,如此这样,对正方形ABCD 连续做2015次这样的变化,则点D 变化后的坐标为 .18.一个不透明的盒中装有9个小球,其中有2个红球,3个黄球,4个蓝球,这些小球除颜色外无其它差别,从盒中随机摸出一个小球为红球的概率是______________.三、解答题19.某城市响应“绿水青山就是金山银山”的号召,准备在全市宣传开展“垃圾分类”活动,先对随机抽取的1000名公民的年龄段分布情况和对“垃圾分类”所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2). (1)补全条形图;(2)扇形图中态度为“一般”所对应的扇形的圆心角的度数是 ;(3)这次随机调查中,年龄段是“25岁一下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是 ;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,这个城市总人口大约500万人,则对开展“垃圾分类”持“支持”态度的估计有多少万人?20.在平面直角坐标系xOy 中,已知抛物线y =x 2﹣2ax+a 2+2的顶点C ,过点B(0,t)作与y 轴垂直的直线l ,分别交抛物线于E ,F 两点,设点E(x 1,y 1),点F(x 2,y 2)(x 1<x 2). (1)求抛物线顶点C 的坐标;(2)当点C 到直线l 的距离为2时,求线段EF 的长;(3)若存在实数m ,使得x 1≥m﹣1且x 2≤m+5成立,直接写出t 的取值范围.21.如图,在平面直角坐标系xOy 中,直线l x ∥轴,且直线l 与抛物线24y x x =-+和y 轴分别交于点A ,B ,C ,点D 为抛物线的顶点.若点E 的坐标为()1,1,点A 的横坐标为1.(1)线段AB 的长度等于________;(2)点P 为线段AB 上方抛物线上的一点,过点P 作AB 的垂线交AB 于点H ,点F 为y 轴上一点,当PBE △的面积最大时,求2PH HF FO ++的最小值; (3)在(2)的条件下,删除抛物线24y x x =-+在直线PH 左侧部分图象并将右侧部分图象沿直线PH 翻折,与抛物线在直线PH 右侧部分图象组成新的函数M 的图象.现有平行于FH 的直线1:l y mx t =+,若直线1l 与函数M 的图象有且只有2个交点,求t 的取值范围(请直接写出t 的取值范围,无需解答过程). 22.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处若∠AGE =32°,则∠GHC 等于多少度?23.某水果批发商经销一种高档水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价0.1元,销售量将减少1千克(1)现该商场保证每天盈利1500元,同时又要照顾顾客,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,使该商场获利最大?24.(本题满分8分)扬州市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.(1)每位考生有__________种选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种主案用A B C、、、…或①、②、③、…等符号来代表可简化解答过程)25.如图,在△ABC中,∠ACB=90°,点P在∠BCA平分线CD上,且PA=PB.(1)用尺规作出符合要求的点P(保留作图痕迹,不需要写作法);(2)判断△ABP的形状(不需要写证明过程)【参考答案】***一、选择题13.58.14.615.016.k<117.(-1,-3);(-3,-3)18.2 9三、解答题19.(1)详见解析;(2)36°;(3)5%;(4)360万人.【解析】【分析】(1)用整体“1”减去已知年龄段所占的百分比,得出25~35岁所占的百分比即可补全条形统计图;(2)先求出态度为“一般”所占的百分比,再用所得结果乘以360°即可求出结果;(3)求出25岁以下的人数,用“不赞成”的人数除以25岁以下的人数,即可得解;(4)用样本估计总体即可求出结果.【详解】(1)25~35岁所占百分比为:1-10%-35%-25%-10%=20%,故条形图如下:(2)态度为“一般”的所占百分比为:1-18%-39%-33%=10%,∴态度为“一般”所对应的扇形的圆心角的度数是:360°×10%=36°;(3)1000×10%=100(人)∴“不赞成”的占的百分比为:5⨯100%=5%100⨯(万人)(4)72500=360【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(1)(a,2);(2)EF=;(3)2<t≤11.【解析】【分析】(1)利用配方法将二次函数解析式由一般式变形为顶点式,进而可得出顶点C的坐标;(2)由抛物线的开口方向及点C到直线l的距离为2,可得出直线l的解析式为直线y=4,再利用二次函数图象上点的坐标特征可求出点E,F的坐标,进而可得出线段EF的长;(3)代入y=t可求出点E,F的坐标,进而可得出线段EF的长,结合存在实数m,使得x1≥m-1且x2≤m+5成立,可得出关于t的不等式组,解之即可得出t的取值范围.【详解】(1)∵y=x2﹣2ax+a2+2=(x﹣a)2+2,∴抛物线顶点C的坐标为(a,2);(2)如图:∵1>0,∴抛物线开口向上,又∵点C(a ,2)到直线l 的距离为2,直线l 垂直于y 轴,且与抛物线有交点, ∴直线l 的解析式为y =4. 当y =4时,x 2﹣2ax+a 2+2=4, 解得:x 1=a,x 2=,∴点E 的坐标为(a,4),点F 的坐标为,4), ∴EF =﹣(a)=; (3)当y =t 时,x 2﹣2ax+a 2+2=t , 解得:x 1=ax 2=∴EF =又∵存在实数m ,使得x 1≥m﹣1且x 2≤m+5成立,∴206t ->⎧⎪⎨⎪⎩,解得:2<t≤11. 【点睛】本题考查了二次函数的三种性质、二次函数图象上点的坐标特征、两点间的距离公式以及解不等式组,解题的关键是:(1)利用配方法将二次函数解析式由一般式变形为顶点式;(2)利用二次函数图象上点的坐标特征,求出点E ,F 的坐标;(3)由线段EF 长度的范围,找出关于t 的不等式组. 21.(3) t 的取值范围为:t <134.【解析】 【分析】(1)先求抛物线y=-x 2+4x 的对称轴,由于已知点A 的坐标,再利用对称性可求点B 坐标;从而得AB 的长度;(2)先根据B 和E 坐标得出BE 的解析式,然后设与其平行的直线为y=x+b ,过点H 作y=-x 的垂线,可求得HF 和FO ,从而得解;(3)可根据顶点位置的变动,得出抛物线y=-x 2+4x 右侧部分图象沿直线PH 翻折后抛物线的解析式;由(2)FH 直线解析式,平行于FH 的直线l 1:y=mx+t ,其m 值可求;令y=mx+t 与翻折后抛物线相切,可求得t 的临界值,结合图象可得最后答案. 【详解】解:(1)抛物线y =﹣x 2+4x 的对称轴为直线422(1)x ==⨯-.∵点A 的横坐标为1.代入y =﹣x 2+4x 得:y =3,∴A (1,3),由抛物线的对称性得:点B 的坐标为(3,3). ∴AB =2. 故答案为:2.(2)∵B (3,3),E (1,1),∴直线BE 解析式为y =x ,作l ∥BE ,且与抛物线相切,则可设l 的解析式为:y =x+b .根据该直线与抛物线相切,列一元二次方程,令其判别式为0,可求得b 的值,从而得点P 的坐标,进而得点H 坐标及PH 长,∴x+b =﹣x 2+4x ,即x 2﹣3x+b =0, ∴△=9﹣4b =0,b =94,∴x 2﹣3x+94=0, ∴切点为:x =32,y =154,∴PH =154﹣3=34过点H 作y =﹣x 的垂线,交y =﹣x 于点G ,交y 轴于点F ,则GF FO ,∠FGO =∠OFG =∠CFH =∠CHF =45°,3,2CF CH HF ∴===3,224OF CO CF GF =-===34PH HF FO ++=+=.∴PH+HF+2FO (3)在(2)的条件下,平行于FH 的直线l 1:y =mx+t ,若直线l 1与函数M 的图象有且只有2个交点,∵∠CFH =45°,l 1∥FH , ∴m =1,y =x+t ,∵抛物线y =﹣x 2+4x 的顶点D 为(2,4),点H 为(32,3)点P 为(32,154),∴抛物线y =﹣x 2+4x 右侧部分图象沿直线PH 翻折后抛物线顶点为(1,4),其解析式为y =﹣x 2+2x+3.当直线y =x+t 与抛物线y =﹣x 2+2x+3相切时,x+t =﹣x 2+2x+3, ∴x 2﹣x+t ﹣3=0,△=1﹣4(t ﹣3)=13﹣4t =0 ∴t =134; ∴t <134时直线l 1与函数M 的图象有且只有2个交点. ∴t 的取值范围为:t <134. 【点睛】二次函数的综合题,考查了二次函数的对称性,函数的最值,以及一次函数与二次函数的图象交点个数问题,综合性比较强.22.∠GHC =106° 【解析】 【分析】由折叠的性质可得∠DGH 的度数,再根据两直线平行,同旁内角互补,即可得到结论. 【详解】 ∵∠AGE=32°, ∴∠DGE=148°, 由折叠可得:∠DGH 12∠DGE=74°. ∵AD ∥BC ,∴∠GHC=180°﹣∠DGH=106°. 【点睛】本题考查了平行线的性质和折叠的性质,解题时注意:两直线平行,同旁内角互补. 23.(1)涨价5元;(2)涨价7.5元 【解析】 【分析】(1)根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值; (2)根据题意列出二次函数解析式,然后转化为顶点式,最后求其最值即可. 【详解】解:(1)设每千克应涨价x 元,由题意列方程得: (5+x )(200﹣0.1x)=1500 解得:x =5或x =10,答:为了使顾客得到实惠,那么每千克应涨价5元; (2)设涨价x 元时总利润为y , 则y =(5+x )(200﹣0.1x ) =﹣10x 2+150x+1000 =﹣10(x 2﹣15x )+1000 =﹣10(x ﹣7.5)2+1562.5,答:若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多. 【点睛】本题考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y =﹣x 2﹣2x+5,y =3x 2﹣6x+1等用配方法求解比较简单. 24.(1)4.(2)14【解析】 【分析】(1)先列举出毎位考生可选择所有方案:50米跑、立定跳远、坐位体前屈(用A 表示);50米跑、实心球、坐位体前屈(用B 表示);50米跑、立定跳远、1分钟跳绳(用C 表示);50米跑、实心球、1分钟跳绳(用D 表示);共用4种选择方案.(2)利用数形图展示所有16种等可能的结果,其中选择两种方案有12种,根据概率的概念计算即可. 【详解】(1)毎位考生可选择:50米跑、立定跳远、坐位体前屈(用A表示);50米跑、实心球、坐位体前屈(用B表示);50米跑、立定跳远、1分钟跳绳(用C表示);50米跑、实心球、1分钟跳绳(用D表示);共用4种选择方案.故答案为4.(2)用A、B、C、D代表四种选择方案.(其他表示方法也可)解法一:用树状图分析如下:解法二:用列表法分析如下:所以小明与小刚选择同种方案的概率=41= 164.【点睛】本题考查了概率的概念:用列举法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P=mn.25.(1)见解析;(2)等腰直角三角形.【解析】【分析】(1)由PA=PB知点P同时还在线段AB的中垂线上,据此作图可得;(2)点P分别作PE⊥AC、PF⊥CB,垂足为E、F,由全等三角形的判定定理得出Rt△APE≌Rt△BPF,再由全等三角形的性质即可判断出△ABP是等腰直角三角形.【详解】(1)如图所示,点P即为所求;(2)△ABP是等腰直角三角形,理由如下:过点P分别作PE⊥AC、PF⊥CB,垂足为E、F.∵PC平分∠ACB,PE⊥AC、PF⊥CB,垂足为E、F,∴PE=PF.在Rt△APE与Rt△BPF中,∵PE PF PA PB=⎧⎨=⎩,∴Rt△APE≌Rt△BPF.∴∠APE=∠BPF,∵∠PEC=90°,∠PFC=90°,∠ECF=90°,∴∠EPF=90°,∴∠APB=90°.又∵PA=PB,∴△ABP是等腰直角三角形.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握角平分线的性质及线段中垂线的尺规作图、中垂线的性质.。

河北省保定定兴县联考2019-2020学年中考数学模拟试卷

河北省保定定兴县联考2019-2020学年中考数学模拟试卷

河北省保定定兴县联考2019-2020学年中考数学模拟试卷一、选择题1.甲、乙两人将分别标有2,3,5,6四个数字的小球放入一个不透明的袋子里并搅匀,这些小球除数字外都相同,然后两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为x,再由乙猜这个小球上的数字,记为y.如果x,y 满足|x-y|≤2,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( ) A .12B .716C .58D .342.如图,已知矩形 AOBC 的三个顶点的坐标分别为 O(0,0),A(0,3), B(4,0),按以下步骤作图:①以点 O 为圆心,适当长度为半径作弧, 分别交 OC ,OB 于点 D ,E ;②分别以点 D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠BOC 内交于点 F ;③作射线 OF ,交边 BC 于点 G ,则点 G 的坐标为( )A .(4,43) B .(43,4) C .(53,4) D .(4,53) 3.化简21644m m m+--的结果是( ) A .4m -B .4m +C .44m m +- D .44m m -+ 4.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A.2B.3C.4D.5.如图,一个平行四边形被分成面积为S 1、S 2、S 3、S 4四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时,S 1S 4与S 2S 3的大小关系为( )A.S 1S 4>S 2S 3B.S 1S 4<S 2S 3C.S 1S 4=S 2S 3D.无法确定6.如图,平行四边形纸片ABCD ,CD=5,BC=2,∠A=60°,将纸片折叠,使点A 落在射线AD 上(记为点A′),折痕与AB 交于点P ,设AP 的长为x ,折叠后纸片重叠部分的面积为y ,可以表示y 与x 之间关系的大致图象是( )A .B .C .D .7.下列各式中不能用公式法分解因式的是 A .x 2-6x+9B .-x 2+y 2C .x 2+2x+4D .-x 2+2xy-y 28.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .棱锥D .球9.函数21k y x+=(k 为常数)的图象过点(2,y 1y 2),则y 1与y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .与k 的取值有关10.下表是某校合唱团成员的年龄分布表:A .平均数、中位数B .众数、中位数C .平均数、方差D .中位数、方差11.如图,△ABC 中,∠B =70°,则∠BAC =30°,将△ABC 绕点C 顺时针旋转得△EDC .当点B 的对应点D 恰好落在AC 上时,∠CAE 的度数是( )A .30°B .40°C .50°D .60°12.如图,矩形纸片ABCD ,AD =4,AB =3,如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当△EFC 是直角三角形时,那么BE 的长为( )A .1.5B .3C .1.5或3D .有两种情况以上二、填空题13.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点O 作直线EF 分别与AB 、DC 相交于E 、F 两点,若AC =10,BD =4,则图中阴影部分的面积等于_____.14.如图,已知直线AB CD ∥,110DCF ∠=︒,AE AF =,则A ∠=____︒.15.不等式1102x -+>的正整数解是____________; 16.某中学生物兴趣小组调查了本地区几棵古树的生长年代,记录数据如下(单位:年):200,240,220,200,210.这组数据的中位数是__.17.如图,在边长为3的正方形ABCD 中,点E 是BC 边上的点,EC=2,∠AEP=90°,且EP 交正方形外角的平分线CP 于点P ,则PC 的长为_____.18.分式方程的解是_____.三、解答题19.(1)计算1012cos 451)|13-︒⎛⎫++- ⎪⎝⎭(2)解分式方程:177x x x---=2 20.解方程组:(1)x 1x -+33x x --4=0 ;(2)5x y 14=+=⎪⎩ 21.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 表示该产品每千克生产成本y 1(单位:元)与产量x (单位:kg )之间的函数关系;线段CD 表示每千克的销售价y 2(单位:元)与产量x (单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义. (2)求线段AB 所表示的y 1与x 之间的函数表达式.(3)当0≤x≤90时,销售该产品获得的利润与产量的关系式是 ;当90≤x≤130时,销售该产品获得的利润与产量的关系式是 ;总之,当产量为 kg 时,获得的利润最大,最大利润是 .22.计算:﹣12018+4cos45°﹣21()3-- 23.解不等式组211,?331x x x ①②+-⎧⎨+-⎩……请结合题意填空,完成本题的解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省保定市定兴县2020年九年级第一次模拟考试数 学 试 题本试卷满分为120分,考试时间为120分钟.一、选择题(本大题共16个小题,共42分。

1—10小题各3分;11—16小题各2分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如图1,一个三角形只剩下一个角,这个三角形为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上都有可能2.如图2,某排球队检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数.下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是( )A .B .C .D .3.如图3,AB ∥CD ,∠C =48°,∠1=( )A .42°B .48°C .132°D .138°4.如图4,在由边长相同的7个正六边形组成的网格中,点A ,B 在格点上.再选择一个格点C ,使△ABC 是以AB 为腰的等腰三角形,符合点C 条件的格点个数是( ) A .1 B .2 C .3 D .4 5.下列调查:①机场对乘客进行安检; ②对北京世园会游客满意度的调查;③对全省中学生视力情况的调查; ④九年级一班要选出1人参加学校的100米比赛. 其中适合全面调查的是( ) A .②③B .①④C .②④D .①③图 1图 4图 2图36.把0.00205写成a ×10n (1≤a <10,n 为整数)的形式,则n 为 ( )A. -2B. -3C. -4D. -5 7.计算:1252-50×125+252=( )A. 100B. 150C. 10000D. 225008.已知二元一次方程组⎩⎪⎨⎪⎧5x +4y =20①4x -5y =8 ②,如果用加减消元法消去y ,则下列方法可行的是( )A. ①×4+②×5B. ①×5+②×4C. ①×5-②×4D. ①×4-②×5 9.关于x 的方程x 2+2x -a =0没有实数根,则a 的值可能是( )A .-2B .-1C .0D .210.已知:∠MON ,如图5,小静进行了以下作图:①在∠MON 的两边上分别截取OA ,OB ,使OA =OB ; ②分别以点A ,B 为圆心,OA 长为半径作弧,两弧交于点C ; ③连接AC ,BC ,AB ,OC .若OC =2,S 四边形OACB =4,则AB 的长为( ) A .5B .4C .3D .211.要制作一个密封的长方体铁盒,嘉嘉设计出了它的三视图,如图6,按图中尺寸(单位:cm )判断,要制作这个长方体铁盒,如果只考虑面积因素,采用下列哪种面积的铁板最合理( ) A .1000cm 2 B .1030cm 2 C .1100cm 2D .1200cm 2 12.如图7,函数xky =(k ≠0,x <0)的图像L 经过点A (-4,2),直线AB 与x 轴交于点B (-5,0),经过点C (0,4)作y 轴的垂线,分别交L 和直线AB 于点M ,N ,则MN =( ) A .1 B .-5 C .-1图5图6D .513.如图8,在平整的桌面上面一条直线l ,将三边都不相等的三角形纸片ABC 平放在桌面上,使AC 与边l 对齐,此时△ABC 的内心是点P ;将纸片绕点C 顺时针旋转,使点B 落在l 上的点B '处,点A 落在A '处,得到△A 'B 'C '的内心点P '.下列结论正确的是( )A .PP '与l 平行,PC 与P 'B '平行 B .PP '与l 平行,PC 与P 'B '不平行 C .PP '与l 不平行,PC 与P 'B '平行D .PP '与l 不平行,PC 与P 'B '不平行14.如图,一艘货船在A 处,巡逻艇C 在其南偏西60°的方向上,此时一艘客船在B 处,巡逻艇C 在其南偏西20°的方向上,则此时从巡逻艇上看这两艘船的视角∠ACB 的度数是( ) A. 80° B. 60° C. 40° D. 30°15.如图10,数轴上有两点A ,B ,表示的数分别是m ,n .已知m ,n 是两个连续的整数,且m +n =-1,则分式122--m m m ÷mm -12的值为( )A .-1B .1C .3D .-316.如图11,∠ACB =90°,AC =BC ,CD 平分∠ACB ,点D ,E 关于CB 对称,连接EB并延长,与AD 的延长线交于点F ,连接DE ,CE . 对于以下结论: ①DE 垂直平分CB ; ②AD =BE ;③∠F 不一定是直角; ④EF 2+DF 2=2CD 2. 其中正确的是( )图8图11图10A .①④B .②③C .①③D .②④二、填空题(本大题共3个小题,17小题3分;18—19小题各有2个空,每空2分.共11分.请把答案填在题中横线上) 17.12020)(12020(-+)= .18.根据如下程序,解决下列问题:(1)当m =-1时,n = ; (2)若n =6,则m = . 19.如图12,下列正多边形都满足BA 1=CB 1,在正三角形中,我们可推得:∠AOB 1=60°;在正方形中,可推得:∠AOB 1=90°;在正五边形中,可推得:∠AOB 1=108°,依此类推在正八边形中,AOB 1= °,在正n (n ≥3)边形中,∠AOB 1= °.三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)对于四个数“-6,-2,1,4”及四种运算“+,-,×,÷”,列算式..解答: (1)求这四个数的和;(2)在这四个数中选出两个数,填入下列□中,使得:①“□-□”的结果最小;②“□×□”的结果最大.(3)在这四个数中选出三个数,在四种运算中选出两种,组成一个算式,使运算结果等于没选的那个数.21.(本小题满分9分)如图13-1,给定一个正方形,要通过画线将其分割成若干个互不重叠的正方形.第1次画线分割成4个互不重叠的正方形,得到图13-2;第2次画线分割成7个互不重叠的正方形,得到图13-3……以后每次只在上次得到图形的左上角的正方形中画线.尝试:第3次画线后,分割成个互不重叠的正方形;第4次画线后,分割成 个互不重叠的正方形.发现:第n 次画线后,分割成 个互不重叠的正方形;并求第2020次画线后得到互不重叠的正方形的个数.探究:若干次画线后,能否得到1001个互不重叠的正方形?若能,求出是第几次画线后得到的;若不能,请说明理由.22.(本小题满分9分)一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上都各标一个不小于-2的数,已知其中3个乒乓球上标的数分别是-2,2,4,所标的4个数的中位数是0. (1)求这4个数的众数;(2)从这个口袋中随机摸出1个球,求摸出的球面上的数是正数的概率;(3)从这个口袋中随机摸出1个球(不放回),再从余下的球中随机摸出1个球,用列表法求两次摸出的球面上的数之和为负数的概率.图13-1 图13-2 图13-3 先摸 后摸23.(本小题满分9分)如图14-1和14-2,矩形ABCD 中,E 是AD 的中点,P 是BC 上一点,AF ∥PD ,∠FPE =∠DPE .(1)作射线PE 交直线AF 于点G ,如图14-1.①求证:AG =DP ;②若点F 在AD 下方,AF =2,PF =7,求DP 的长.(2)若点F 在AD 上方,如图14-2,直接写出PD ,AF ,PF 的等量关系. 24.(本小题满分10分)甲、乙二人均从A 地出发,甲以60米/分的速度向东匀速行进,10分钟后,乙以(60+m )米/分的速度按同样的路线去追赶甲,乙出发5.5分钟后,甲以原速原路返回,在途中与乙相遇,相遇后两人均停止行进.设乙所用时间为t 分钟. (1)当m =6时,解答:①设甲与A 地的距离为甲s ,分别求甲向东行进及返回过程中,甲s 与t 的函数关系式(不写t 的取值范围);②当甲、乙二人在途中相遇时,求甲行进的总时间. (2)若乙在出发9分钟内与甲相遇,求m 的最小值.图14-1 图14-2如图15,△ABC中,∠ACB=90°,AC=3,BC=4,延长BC到点D,使BD=BA,P是BC边上一点.点Q在射线BA上,PQ=BP,以点P为圆心,PD长为半径作⊙P,交AC于点E,连接PQ,设PC=x.(1)AB=,CD=,当点Q在⊙P上时,求x的值;(2)x为何值时,⊙P与AB相切?(3)当PC=CD时,求阴影部分的面积;(4)若⊙P与△ABC的三边有两个公共点,直接写出x的取值范围.图15 备用图如图16,函数y =-x 2+21x +c (-2020≤x ≤1)的图象记为L 1,最大值为M 1;函数 y =-x 2+2cx +1(1≤x ≤2020) 的图象记为L 2,最大值为M 2.L 1的右端点为A ,L 2的左端点为B ,L 1,L 2合起来的图形记为L . (1)当c =1时,求M 1,M 2的值;(2)若把横、纵坐标都是整数的点称为“美点”,当点A ,B 重合时,求L 上“美点”的个数;(3)若M 1,M 2的差为1647,直接写出c 的值.图16。

相关文档
最新文档